Non-local in time perturbations of linear hyperbolic PDEs

Gandalf Lechner, Rainer Verch
July 06, 2013
Linear Integro-differential equations of the form $(D+\lambda W)f=0$ are studied, where $D$ is a normal or prenormal hyperbolic differential operator on $\mathbb{R}^n$, $\lambda\in\mathbb{C}$ is a coupling constant, and $W$ is a regular integral operator with compactly supported kernel. In particular, $W$ can be non-local in time, so that a Hamiltonian formulation is not possible. It is shown that for sufficiently small $|\lambda|$, the hyperbolic character of $D$ is essentially preserved. Unique advanced/retarded fundamental solutions are constructed by means of a convergent expansion in $\lambda$, and the solution spaces are analyzed. It is shown that the acausal behavior of the solutions is well-controlled, but the Cauchy problem is ill-posed in general. Nonetheless, a scattering operator can be calculated which describes the effect of $W$ on the space of solutions of $D$. It is also described how these structures occur in the context of wave or Dirac equations on noncommutative deformations of Minkowski space, and how the results obtained here can be used for the analysis of classical and quantum field theories on such spaces.

hyperbolic partial differential equations, noncommutative geometry, star products, deformations