Intersecting Jones projections
Sebastiano Carpi
December 22, 2004
Let $M$ be a von Neumann algebra on a Hilbert space $H$ with a cyclic and
separating unit vector $\Omega$ and let $\omega$ be the faithful normal state on $M$
given by $\omega(\cdot)=(\Omega,\cdot\Omega)$. Moreover, let ${N_i :i\in I}$ be a
family of von Neumann subalgebras of $M$ with faithful normal conditional
expectations $E_i$ of $M$ onto $N_i$ satisfying $\omega=\omega\circ E_i$ for all $i\in I$
and let $N=\bigcap_{i\in I} N_i$. We show that the projections $e_i, e$ of $H$ onto
the closed subspaces $\bar{N_i\Omega}$ and $\bar{N\Omega}$ respectively satisfy
$e=\bigwedge_{i\in I}e_i$.This proves a conjecture of V.F.R. Jones and F. Xu in
\cite{JonesXu04}.
open access link
International Journal of Mathematics 16 (2005) 687--691
Keywords:
none