Equivalence of the (generalised) Hadamard and microlocal spectrum condition for (generalised) free fields in curved spacetime
Ko Sanders
March 05, 2009
We prove that the singularity structure of all n-point distributions of a
state of a generalised real free scalar field in curved spacetime can be
estimated if the two-point distribution is of Hadamard form. In particular this
applies to the real free scalar field and the result has applications in
perturbative quantum field theory, showing that the class of all Hadamard
states is the state space of interest. In our proof we assume that the field is
a generalised free field, i.e. that it satisies scalar (c-number) commutation
relations, but it need not satisfy an equation of motion. The same argument
also works for anti-commutation relations and it can be generalised to
vector-valued fields. To indicate the strengths and limitations of our
assumption we also prove the analogues of a theorem by Borchers and Zimmermann
on the self-adjointness of field operators and of a very weak form of the
Jost-Schroer theorem. The original proofs of these results in the Wightman
framework make use of analytic continuation arguments. In our case no
analyticity is assumed, but to some extent the scalar commutation relations can
take its place.
Keywords:
none