Construction of Field Algebras with Quantum Symmetry from Local Observables

Volker Schomerus
January 11, 1994
It has been discussed earlier that ( weak quasi-) quantum groups allow for conventional interpretation as internal symmetries in local quantum theory. From general arguments and explicit examples their consistency with (braid-) statistics and locality was established. This work addresses to the reconstruction of quantum symmetries and algebras of field operators. For every algebra $\cal A$ of observables satisfying certain standard assumptions, an appropriate quantum symmetry is found. Field operators are obtained which act on a positive definite Hilbert space of states and transform covariantly under the quantum symmetry. As a substitute for Bose/Fermi (anti-) commutation relations, these fields are demonstrated to obey local braid relation.