Localization and the interface between quantum mechanics, quantum field theory and quantum gravity I (The two antagonistic localizations and their asymptotic compatibility)
Bert Schroer
December 15, 2009
It is shown that there are significant conceptual differences between QM and
QFT which make it difficult to view the latter as just a relativistic extension
of the principles of QM. At the root of this is a fundamental distiction
between Born-localization in QM (which in the relativistic context changes its
name to Newton-Wigner localization) and modular localization which is the
localization underlying QFT, after one separates it from its standard
presentation in terms of field coordinates. The first comes with a probability
notion and projection operators, whereas the latter describes causal
propagation in QFT and leads to thermal aspects of locally reduced finite
energy states. The Born-Newton-Wigner localization in QFT is only applicable
asymptotically and the covariant correlation between asymptotic in and out
localization projectors is the basis of the existence of an invariant
scattering matrix. In this first part of a two part essay the modular
localization (the intrinsic content of field localization) and its
philosophical consequences take the center stage. Important physical
consequences of vacuum polarization will be the main topic of part II. Both
parts together form a rather comprehensive presentation of known consequences
of the two antagonistic localization concepts, including the those of its
misunderstandings in string theory.
Keywords:
none