Local Nature of Coset Models
Søren Köster
March 24, 2003
The local algebras of the maximal Coset model C_max associated with a chiral
conformal subtheory A\subset B are shown to coincide with the local relative
commutants of A in B, provided A contains a stress energy tensor.
Making the same assumption, the adjoint action of the unique
inner-implementing representation U^A associated with A\subset B on the local
observables in B is found to define net-endomorphisms of B. This property is
exploited for constructing from B a conformally covariant holographic image in
1+1 dimensions which proves useful as a geometric picture for the joint
inclusion A\vee C_max \subset B.
Immediate applications to the analysis of current subalgebras are given and
the relation to normal canonical tensor product subfactors is clarified. A
natural converse of Borchers' theorem on half-sided translations is made
accessible.
Keywords:
none