Fermionic fields in the functional approach to classical field theory

Kasia Rejzner
January 26, 2011
In this paper, we present a formulation of the classical theory of Fermionic (anticommuting) fields, which fits into the general framework proposed by K.Fredenhagen, M.Duetsch and R.Brunetti. It was inspired by the recent developments in perturbative algebraic quantum field theory and allows for a deeper structural understanding also on the classical level. We propose a modification of this formalism that allows to treat also Fermionic fields. In contrast to other formulations of classical theory of anticommuting variables, we don't introduce additional Grassman degrees of freedom. Instead the anticommutativity is introduced in a natural way on the level of functionals. Moreover our construction incorporates the functional-analytic and topological aspects, which is usually neglected in the treatments of anticommuting fields. We also give an example of an interacting model where our framework can be applied.