The classical limit and spontaneous symmetry breaking in algebraic quantum theory
Christiaan J. F. van de Ven
September 13, 2021
In this paper an overview of some recent developments on the classical limit
and spontaneous symmetry breaking (SSB) in algebraic quantum theory is given.
In such works, based on the theory of $C^*$-algebras, the concept of the
classical limit has been formalized in a complete algebraic manner.
Additionally, since this setting allows for commutative as well as
non-commutative $C^*$-algebras, and hence for classical and quantum theories,
it provides an excellent framework to study SBB as an emergent phenomenon when
transitioning from the quantum to the classical world by turning off a
semi-classical parameter. We summarize the main results and show that this
algebraic approach sheds new light on the connection between the classical and
the quantum realm, where particular emphasis is placed on the role of SSB in
Theory versus Nature. To this end a detailed analysis is carried out and
illustrated with three different physical models: Schr\"{o}dinger operators,
mean-field quantum spin systems and the Bose-Hubbard model.
Keywords:
none