Field Theory on Curved Noncommutative Spacetimes
Alexander Schenkel, Christoph F. Uhlemann
March 16, 2010
We study classical scalar field theories on noncommutative curved spacetimes.
Following the approach of Wess et al. [Classical Quantum Gravity 22 (2005),
3511 and Classical Quantum Gravity 23 (2006), 1883], we describe noncommutative
spacetimes by using (Abelian) Drinfel'd twists and the associated *-products
and *-differential geometry. In particular, we allow for position dependent
noncommutativity and do not restrict ourselves to the Moyal-Weyl deformation.
We construct action functionals for real scalar fields on noncommutative curved
spacetimes, and derive the corresponding deformed wave equations. We provide
explicit examples of deformed Klein-Gordon operators for noncommutative
Minkowski, de Sitter, Schwarzschild and Randall-Sundrum spacetimes, which solve
the noncommutative Einstein equations. We study the construction of deformed
Green's functions and provide a diagrammatic approach for their perturbative
calculation. The leading noncommutative corrections to the Green's functions
for our examples are derived.
Keywords:
QFT on non-commutative spaces, QFT on curved spacetimes