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I dedicate this thesis to two groups of people.
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allowed me to reach this level of understanding within a single lifetime.

Secondly, most importantly, to those who come after me and gift me the honor of reading my words.
I hope the blood, sweat, and tears I have invested in the following pages may spare you at least a few

difficulties. May you harvest the dates I have planted.





There are more things in heaven and earth, Horatio, than are dreamt of in
your philosophy.

Hamlet, Prince of Denmark, in William Shakespeare’s The Tragedy of
Hamlet, Prince of Denmark, Act I, Scene V.

When it comes to atoms, language can be used only as in poetry. The
poet, too, is not nearly so concerned with describing facts as with creating
images and establishing mental connections.

Niels Bohr, as quoted by Heisenberg (1972, p. 41).

It takes more. Open your mind to the past—art, history, philosophy. And
all this may mean something.

Captain Jean-Luc Picard (Sir Patrick Stewart), in Star Trek: The Next
Generation Season 2, Episode 17: Samaritan Snare.





Resumo

Teoria quântica de campos em espaços-tempos curvos é possivelmente o formalismo mais confiável
com o qual se pode investigar efeitos quânticos na presença de campos gravitacionais intensos. No
entanto, ela é comumente estudada por meio de tratamentos perturbativos. Nesta dissertação,
desejamos usar o grupo de renormalização funcional—uma versão não-perturbativa do grupo de
renormalização—como uma técnica para descrever fenômenos não-perturbativos em espaços-tempos
curvos. O sistema escolhido é um detector de Unruh–DeWitt acoplado a um campo quântico escalar.
Discutimos como formular um tal sistema em termos de uma ação e como calcular seu fluxo de
renormalização para o caso de um detector inercial em um espaço-tempo plano, por simplicidade.
Aprendemos, contudo, que os resultados são divergentes no limite em que o espaçamento energético
do detector se anula. Possíveis abordagens alternativas são discutidas ao final.

Esta dissertação também apresenta uma revisão de teoria quântica de campos em espaços-tempos
curvos através do formalismo algébrico, embora não assuma experiência prévia com análise funcional.
Assim, ela fecha um buraco pedagógico na literatura. Ademais, também revisamos o grupo de renor-
malização funcional e derivamos a equação deWetterich assumindo um conteúdo de campos genérico
que pode incluir tanto campos bosônicos quanto fermiônicos. Uma tal dedução é dificilmente
encontrada nas introduções pedagógicas disponíveis na literatura de física de altas energias.

Palavras-chave: teoria quântica de campos em espaços-tempos curvos, grupo de renormalização
funcional, detectores de partículas.
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Abstract

Quantum field theory in curved spacetime is perhaps the most reliable framework in which one
can investigate quantum effects in the presence of strong gravitational fields. Nevertheless, it is
often studied by means of perturbative treatments. In this thesis, we aim at using the functional
renormalization group—a nonperturbative realization of the renormalization group—as a technique
to describe nonperturbative quantum phenomena in curved spacetimes. The chosen system is an
Unruh–DeWitt particle detector coupled to a scalar quantum field. We discuss how to formulate
such a system in terms of an action and how one can compute its renormalization group flow in the
case of an inertial detector in flat spacetime, for simplicity. We learn, however, that the results are
divergent in the limit in which the detector’s energy gap vanishes. Possible workarounds are discussed
at the end.

This thesis also presents a review of quantum field theory in curved spacetimes by means of the
algebraic approach, although it assumes no previous experience with functional analysis. Hence, it
fills a pedagogical gap in the literature. Furthermore, we also review the functional renormalization
group and derive the Wetterich equation assuming a general field content that might include both
bosonic and fermionic fields. Such a derivation is also hardly found in pedagogical introductions
available in the high energy physics literature.

Keywords: quantum field theory in curved spacetime, functional renormalization group, particle
detectors.
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One

Why Do Things Fall?
We shall understand why it is interesting to consider the effects of gravity on quantum phenomena
and why quantum field theory in curved spacetime is a fruitful framework. We shall also learn why
the functional renormalization group is an interesting technique to be applied in these contexts and
which sorts of problems it might help us uncover. Technical discussions are temporarily overlooked
and delayed to the remaining chapters.

Quantization of the gravitational field, which appears to be necessary for
physical reasons, may be carried out without any new difficulties by means
of a formalism fully analogous to that applied here.

Heisenberg and Pauli (1929), as translated by Stachel (1999, p. 527).

Although there has been a lot of work in the last fifteen years, I think it
would be fair to say that we do not yet have a fully satisfactory and
consistent quantum theory of gravity.

Hawking (1975).

I believe all physicists have experienced the widely spread belief that Physics is incomprehensibly
difficult. While there is definitely truth in that belief—and the existence of unsolved problems in
Physics is proof—it is also beautiful to notice how some truly deep questions are not only compre-
hensible, but simple enough to be asked by an arbitrarily chosen child. Why is the sky blue? How can
airplanes fly? Why does water evaporate when heated up? How did the Universe begin? Can we go
back in time? What is time? What are things made of? Why do they fall? These questions are easily
asked, but hardly answered. Some of them are as old as humankind, but we still have not reached a
satisfactory conclusion about them.

The Ancient Greeks, for example, already discussed what things are made of and why they
fall. Aristotle proposed everything on Earth was made up of water, earth, fire, and air. Each of the
four elements would have a tendency to move towards its natural place—upwards for fire and air,
downwards for water and earth. They would also tend tomove in straight lines, and would eventually
get tired ofmoving. This provided an explanation of phenomena below theMoon, while theHeavens
were ruled by the Physics of aether. This fifth element—or quintessence—was what the heavenly
bodies were made of and it had the tendency to move in circles, explaining hence why planets and
stars orbited the Earth (Russell 2004, Book I, Chap. 23).

Aristotle’s theory provides a really good description of everyday phenomena (Rovelli 2015), but
modern physicists usually have a different point of view when it comes to fundamental physics. Our
cutting edge understanding of what things are made of corresponds to a list of elementary particles

1
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described by the so-called standard model (SM), which is reviewed, e.g., on the book by Schwartz
(2014). This model has a couple of advantages over the Aristotelian model. For example, it is capable
of incredible quantitative predictions matching experiment to astonishingly high precision (Particle
Data Group et al. 2022). It does lack a remarkable feature of the Aristotelian model, though: it
cannot explain why things fall.

The best description of gravity currently known is general relativity (GR), discussed for example
on the books byHawking and Ellis (1973) andWald (1984). This theory describes gravitational effects
in terms of spacetime curvature, which is caused by the presence of matter—asWheeler (2000, p. 235)
has famously put it, “Spacetime tells matter how to move; matter tells spacetime how to curve”.
Just like the SM, GR has enormous success in describing experiments (Will 2014). Still, it lacks an
impressive feature the Aristotelian model had: it cannot explain what things are made of.

At first glance, these facts seem merely to mean we now need different descriptions for different
phenomena, which may seem like a perfectly reasonable conclusion. Nevertheless, this is not the
case. The facts that the SM does not consider gravity and that GR does not consider the small-scale
structure of matter mean that there are phenomena we are currently unable to understand. As good
as our present-day theories may be, they are unreliable in situations in which we need to consider
both the small-scale physics ignored by GR and the strong gravitational effects ignored by the SM.
This happens, for example, very close to the Big Bang or within black holes. Given that—to our
current knowledge—time literally starts at the Big Bang and literally ends inside black holes, it seems
we fail to understand where we came from and where we are going to.

The issue deepens once we consider what each of these theories actually mean in modern physics.
Whenever 𝑥 stands for position or 𝑡 for time in a physical equation, a spacetime structure is being
assumed. In non-relativistic physics this assumption is often implicit, but it is there anyway. What
GR truly represents in modern physics is our best knowledge of what spacetime is. It tells us what is
the stage on which the Universe happens, and how this stage can become an actor in its own play. As
for the SM, it is one of the greatest representatives of quantum mechanics (QM), which tells us the
rules which all physical theories must abide by. Therefore, GR andQM are the two pillars supporting
all known physics.

In spite of that, as Bronstein (1936a,b) first noticed, these two pillars are in some sense incompati-
ble: once GR and QM are taken into account, it is not possible to determine a component of a field
at some point 𝑥 to arbitrary precision. By “field” one means any function of spacetime, and these
sorts of objects are among the main building blocks of both GR and the SM. To understand this
impossibility, let us follow an adaptation of Bronstein’s argument presented by Rovelli and Vidotto
(2015, Sec. 1.2).

Suppose we want to determine the value of 𝜙(𝑥). In order to do so, we must first localize the
point 𝑥 to some precision, say 𝐿. This can be done by placing a particle at 𝑥 and ensuring the particle’s
position has uncertainty Δ𝑥 < 𝐿. Heisenberg’s Uncertainty Principle then ensures the uncertainty in
the particle’s momentum must satisfy

Δ𝑝 ≥ ℏ
2Δ𝑥 > ℏ

2𝐿 . (1.0.1)

We know the mean value of 𝑝2 is never smaller than Δ𝑝2 (by the definition of Δ𝑝 in QM), and hence
we may write

𝑝2 ≥ ℏ2

4𝐿2
. (1.0.2)
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If we want to consider small uncertainties in the position, this will then naturally lead us to large
momenta. In the ultra-relativistic limit, the particle’smass is negligible when compared to the particle’s
momentum, and hence we can write 𝐸 ≈ 𝑝𝑐. This allows us to write

𝐸2 ≥ ℏ2𝑐2

4𝐿2
, (1.0.3)

which now incorporates QM and special relativity (SR).
We now bring in gravity. FromGR, we know large concentrations of energy lead to the formation

of an event horizon with Schwarzschild radius 𝑅 = 2𝐺𝛭
𝑐2 , where𝑀 is related to the energy 𝐸 through

the famous formula 𝐸 = 𝑀𝑐2. Therefore, we can rewrite the Schwarzschild radius as*

𝑅 = 2𝐺𝐸
𝑐4

. (1.0.4)

Hence, Eq. (1.0.3) states that the smaller the value of 𝐿, the larger the energy of the confined
particle. Nevertheless, Eq. (1.0.4) tells us that the larger the energy of the confined particle, the larger
the event horizon radius 𝑅. Eventually, for sufficiently small 𝐿, we shall have 𝐿 ≤ 𝑅. More specifically,
if we impose 𝐿 ≥ 𝑅, the previous equations imply

𝐿2𝑐8

4𝐺2 ≥ 𝐸2, (1.0.5a)

≥ ℏ2𝑐2

4𝐿2
, (1.0.5b)

𝐿4 ≥ ℏ2𝐺2

𝑐6
, (1.0.5c)

𝐿 ≥ √ℏ𝐺
𝑐3
, (1.0.5d)

which means 𝐿must always be larger than the so-called Planck length 𝐿𝑝 ≡ √ ℏ𝐺
𝑐3 if we want to be able

to localize 𝑥. Otherwise, attempting to do so would form a black hole, preventing us from “peeking”
at what is going on.

This is a pictorial argument, but it illustrates why understanding quantum gravity (QG) is more
difficult than it is to understand other quantum theories. Notice this sketch doesn’t lead to the same
result for electromagnetism—if gravity did not exist, but electromagnetism still did, we would still be
able to probe small scales by using neutral particles. However, everything is subject to gravity.

Nowadays, we do have a more solid understanding of gravity. We know it is not perturbatively
renormalizable (’t Hooft andVeltman 1974; Goroff and Sagnotti 1986; reviewed by Percacci 2017, Secs.
3.5 and 3.6), we know how to use an effective field theory (EFT) perspective to obtain a quantum
description of gravity (Donoghue 1994b,a; reviewed by Burgess 2004), and we know it is remarkably
similar to many other familiar field theories (see, for example, Percacci 2023). We also have many
candidate theories to a full description of QG (see, e.g., Oriti 2009). Yet, no single theory can be
claimed to be a fully satisfactory and consistent quantum theory of gravity.

Two styles exist within the attempt to fill this gap in human knowledge: a “top-down” approach
and a “bottom-up” approach. The former consists in prescribing desirable features of a theory of

*Notice this is just an estimate. The properties of actual black holes do not depend only on mass, but also on angular
momentum and charge.
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QG—such as unitarity or the presence of a spin-2 field—to obtain a “goal theory” at high energies
and use it to derive consequences at lower energies which shouldmatch what we already know. This is
done, for example, within StringTheory or LoopQuantumGravity. The latter approach, bottom-up,
consists in starting from what we already know and slowly attempting to climb up towards higher
energies. This could be exemplified by studies relying on gravity as an EFT, by asymptotically safe
quantum gravity (ASQG), or by the main framework of this thesis: quantum field theory in curved
spacetime (QFTCS).

1.1 Why Quantum Field Theory in Curved Spacetime?

QFTCS consists of the framework in which one considers the evolution of quantum fields upon a
background composed of a fixed classical curved spacetime. In layman’s terms, it can be though of as
the theory of how elementary particles fall*.

A first motivation for considering QFTCS is that it provides a reliable environment for studying
quantum effects in the presence of gravity. While top-down approaches have the advantage of possibly
leading to a fundamental and exact theory, they have the disadvantage of also depending on speculative
assumptions. It is a high-risk, high-reward program. QFTCS, on the other hand, consists of gently
modifying standard quantum field theory (QFT) in flat spacetime to adapt it to a curved background.
The result is a language that relies only on our best-tested physical theories, without the need for any
bold hypotheses, but which is still capable of providing astonishing results†.

One may then argue, correctly, that QFTCS does not provide a fully satisfactory quantum
description of gravity. While true, it is important to notice that this does not contradict the usefulness
of the framework. For example, even though quantizing the electromagnetic field is a well-understood
procedure nowadays, there are situations inwhich one can understand quantum effects in the presence
of electromagnetic fields in a semiclassical approach. Indeed, an usual example of an application of
time-dependent perturbation theory is to understand how an atom responds to the presence of an
electromagnetic wave (Weinberg 2015, Chap. 6), and these investigations are far simpler to do than to
consider quantum electrodynamics in full detail. Therefore, in some sense, the fact QFTCS does not
quantize gravity should be understood as a feature of the framework, rather than simply a limitation.
While it is true that we currently do not understand QG and doing it is a humongous open problem
in theoretical physics, it should also be noted that having a fundamental theory and being able to use
it to derive meaningful consequences are different things (cf. Anderson 1972). QFTCS allows us to
comprehend quantum phenomena in the presence of gravitational fields without the need to deal
with any further complications or degrees of freedom that are necessary in more complex theories.
This is enough justification for this framework, at least within the range of phenomena accurately
described by it.

Another usefulness of this approach is to obtain a deeper understanding of QFT itself. While
the SM, for example, is typically formulated on an inertial reference frame in flat spacetime, we know
spacetime is curved, and hence any theory in flat spacetime is an approximation. QFTCS allows us
to dive into the foundations of QFT and understand what a QFT is, how it is formulated in other

*Although this analogy should be taken with a grain of salt—as we shall see on Section 2.4, the notion of elementary
particle is not even well defined on a general curved spacetime.

†While QFTCS is our focus in this thesis, it is important to mention that seeing gravity as an EFT also has similar
advantages in the sense of being a particularly “safe” approach.
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frames of reference, how to formulate it in the absence of any particular choice of coordinates or
reference frame, which elements of the theory are indeed fundamental for its description, and so on.

QFTCS also provides a rich language to understand problems in which both the causal structure
of spacetime and quantum effects should play a significant role. This happens, for example, in the field
known as relativistic quantum information (RQI). Ever since the first few years of quantum theory, it
has been noticed that QM and SR lead to curious predictions. The Einstein–Podolsky–Rosen “para-
dox” (Einstein, Podolsky, and Rosen 1935) is probably one of the best known examples. Modernly,
these investigations have matured into a whole area of research trying to understand the role relativity
and quantum effects can play when two observers try to communicate. In particular, examples from
this field are some of the main motivations for this thesis, as we shall now see.

1.2 Why a Nonperturbative Approach?

As usual in many areas of physics, a great amount of the investigations done within QFTCS are
carried out perturbatively. In this thesis, our goal is to introduce new techniques to the area so that
nonperturbative results can be obtained. Our main focus will be on the example of a quantum field
interacting with a particle detector.

Relativistic Quantum Communication Channels

Within the field of RQI, a way of implementing a communication protocol between two observers is
to give to each of them a qubit (i.e., a two-level system) coupled to a relativistic quantum field. The
observers can then convey information to one another by making measurements of their qubits, the
effects of which are then carried by the field from sender to receiver.

A very general version of such a protocol was recently proposed by Landulfo (2016). The model
will be described in further detail on Chapter 4, but some of its important features are:

i. it can be solved exactly due to the choice of coupling;

ii. the results obtained hold for a large class of spacetimes;

iii. it is not necessary to choose an arbitrary notion of “particles”;

iv. the quantum state of the field can belong to a large class of “vacuum-like” states;

v. both sender and receiver can be assumed to have arbitrary trajectories through spacetime;

vi. both sender and receiver interact with the quantum field in only a bounded region of spacetime;

vii. the protocol allows for the transmission of classical information;

viii. observers that are not causally related are incapable of exchanging information.

In spite of these advantages, themodel still has limitations. The very choice of coupling that allows the
model to be solved exactly makes the transmission of quantum information impossible without the
assistance of extra entanglement between the parts and does not allow one to harvest entanglement
from the quantum field. Moreover, it prevents usage of the qubits as particle detectors.
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Within QFTCS, and particularly within RQI, particle detectors are an omnipresent tool. Their
basic concept is to couple a qubit to a quantum field in such a manner that the detector will get
excited if it interacts with a “particle”. This notion can be put in a detailed setting, as we shall do at
the end of Section 2.4. The method can then be used to understand phenomena including, but not
limited to, acceleration-induced thermality (Unruh andWald 1984), neutrino oscillations (Torres et al.
2020), entanglement between quantum field modes (Pozas-Kerstjens and Martín-Martínez 2015),
and has even been proposed as a substitute for clocks as the fundamental measurement apparatus in
curved spacetimes (Perche and Martín-Martínez 2022). Hence, adapting the analysis carried out by
Landulfo (2016) to a different coupling is of profound interest.

Backreaction

A second motivation to study nonperturbative QFTCS is to obtain a deeper understanding of
backreaction.

QFTCS per se means to consider quantum fields evolving on a fixed spacetime. Hence, the fields
are treated as “test fields”, meaning their stress-energy is assumed to have negligible effects upon the
background geometry. This is, of course, an approximation, and it is interesting to wonder what
happens once one considers how the fields affect the spacetime they are in. These effects are typically
referred to as the backreaction of the fields on the background geometry.

Semiclassical gravity is an upgrade of QFTCS. In this new framework, one starts to consider
self-consistent solutions of the Einstein equations and the quantum fields’ equations of motion
simultaneously. This can be done by considering, for example, the semiclassical Einstein equations,

𝐺𝑎𝑏 = 8𝜋[𝑇𝑎𝑏 + 𝜔(�̂�𝑎𝑏 )], (1.2.1)

where 𝜔(𝐴) denotes the expectation value of the operator 𝐴 in the state 𝜔. �̂�𝑎𝑏 is the stress-energy
tensor of the quantum fields, 𝑇𝑎𝑏 is the classical stress tensor, and 𝐺𝑎𝑏 is the Einstein curvature tensor.

Notice that Eq. (1.2.1) has some limitations. In principle, one could try to analyze a given physical
situation by using QFTCS, then compute 𝜔(�̂�𝑎𝑏 ), renormalize it, and proceed iteratively. This
procedure yields a perturbative approach. However, the approach will not make sense if “𝑇𝑎𝑏 ∼
𝜔(�̂�𝑎𝑏 )” in some sense, i.e., if the quantum fields cannot be treated as mere perturbations upon a
classical spacetime. Furthermore, it is difficult to understand how to deal with Eq. (1.2.1) in situations
with “𝜔(�̂�𝑎𝑏

2) ∼ 𝜔(�̂�𝑎𝑏 )
2”, i.e., in which the quantum fluctuations are large. This happens, for

example, for a compact quantum mass in a state which is a superposition of position eigenstates. The
semiclassical Einstein equations claim that such a configuration would lead to the gravitational field
of the mass positioned in between the two positions, which seems uncomfortable at best and even
paradoxical at worst (see, e.g., Wald 2020).

Given these limitations, it is interesting to wonder whether nonperturbative approaches could
lead us to a better understanding of semiclassical gravity beyond the semiclassical Einstein equations.
While this would not be a full theory of QG, it can represent a significant leap forward within a solid
and reliable framework.

1.3 Why the Functional Renormalization Group?
There aremany different nonperturbative approaches to studyingQFT, such as exploiting theDyson–
Schwinger equations (Dyson 1949; Schwinger 1951a,b; reviewedby Itzykson andZuber 1980, Sec. 10.1)
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or formulating the theory in a lattice. Our approach is to use the functional renormalization group
(FRG), which means we shall obtain nonperturbative effects by considering the renormalization
group (RG) flow computed to all orders in ℏ. This approach is reviewed in the books by Percacci
(2017) and Reuter and Saueressig (2018), for example.

The RG is a manner of accounting for quantum corrections by promoting the coupling constants
of a QFT to functions of scale. This encodes quantum effects in the “constants” and is extremely
common within both high-energy physics (Schwartz 2014, Chap. 23) and statistical mechanics (Zinn-
Justin 2007). Very often one computes this RG flow only up to a few orders in perturbation theory,
but it is also possible to obtain nonperturbative results.

As it turns out, there are different ways of implementing this idea, and correspondingly there
are many different functional renormalization group equations (FRGEs). We are interested in con-
sidering an FRGE often known as the “Wetterich equation” (Wetterich 1993; Bonini, D’Attanasio,
and Marchesini 1993; Morris 1994). It is a flow equation for the effective average action, which itself
is a notion of action suitable to a particular scale. In other words, the Wetterich equation describes
how the action should change as one changes the scale of consideration for a theory. This has the
advantage of involving an object which is familiar to high energy physics—viz., the action—and also
the Wetterich equation is a common tool within ASQG (Eichhorn 2019; Percacci 2017, 2023; Reuter
and Saueressig 2018), meaning there is already literature on methods using this particular FRGE in
curved spacetimes.

RG methods are particularly suitable for the problems we are interested in. When studying
acceleration-induced thermality—one of the main sorts of effects considered in QFTCS—there is a
natural energy scale dictated by the relevant temperature. Hence, it is simple to evolve the coupling
constants to the scale of interest.

1.4 Thesis Structure

For the reasons previously explained, we are interested in applying FRG techniques to QFTCS. To
do so in a concrete example, we shall work with the problem of understanding the nonperturbative
RG flow of a Unruh–DeWitt detector. Here is the approach we shall take to achieve such goal in
this thesis. The text assumes the reader to be somewhat experienced with GR and QFT. Most of
the necessary material is covered in the books by Wald (1984) and Weinberg (1995, 1996), but other
references are often suggested.

Chapter 2 reviews the main aspects of QFTCS. We shall do it through the so-called “algebraic
approach”, which provides a formulation of the theory independent of arbitrary choices of reference
frame or coordinate system. It is rare to find discussions of the algebraic approach that do not rely on
previous knowledge by the reader about functional analysis and other aspects of pure mathematics,
and hence our discussion tries to avoid these prerequisites with the goal of filling a pedagogical gap in
the literature. The chapter also discusses how the algebraic approach connects to other approaches—
such as Fock space techniques or the Euclidean path integral approach used throughout most of this
thesis—and derives and discusses the Unruh effect, one of the paradigmatic predictions of QFTCS.

Chapter 3 is concerned with the FRG techniques. We shall review some of the conceptual ideas
behind the RG and derive the Wetterich equation for a theory with arbitrary field content. We also
learn how to perform the calculations necessary to extract information from the FRGE and how to
interpret these results.
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Chapter 4 is the centerpiece of this project. It is concerned with the application of FRG tech-
niques to Unruh–DeWitt particle detectors. We shall discuss the formulation of an Unruh–DeWitt
detector in terms of a path integral and how to apply functional renormalization to such a system.
Unfortunately, our calculations will lead to divergent results in the limit in which the detector’s energy
gap vanishes, at which point we shall discuss possible reasons and workarounds.

Chapter 5, at last, discusses the conclusions and future prospects.

g 0 G



Two

Quantum Field Theory in Curved
Spacetime

We shall formulate quantum field theory in curved spacetime through the algebraic approach, a choice
justified at the beginning of the chapter. The connection between this approach and others—such as
the use of a Hilbert space—will also be clarified. The Unruh effect is derived in four different ways
to illustrate the algebraic approach, the Euclidean techniques we shall need later on, the idea of a
particle detector, and how one could obtain similar results with Fock space techniques.

Quantum field theory is—as its name suggests—the quantum theory of
fields. “Particles” do not play any fundamental role in the formulation of
quantum field theory.

Wald (2019).

Perhaps the most important lesson of relativity is that, ironically, nothing relevant is relative.
Many common expositions of the theory render this fact mysterious by focusing too heavily on
changes of reference frames instead of their underlying geometrical structure. Nevertheless, it is a
fact of physics, and perhaps of logic, that any well-defined experiment has the very same result for all
observers and in any choice of coordinate system.

This choice of phrasing might seem to go against what is usual in many textbooks. Suppose,
for example, that a certain particle is at rest with respect to Alice’s reference frame, but in motion
with respect to Bob’s reference frame. One will find in textbooks the correct statement that, if Alice
and Bob each measure the energy of the particle, they will find different results. Nevertheless, it is
often overlooked that they are both performing different experiments in the sense their experimental
apparatuses are set up differently. Indeed, one of the apparatuses is in motion with respect to the
particle, while the other one is not. Hence, deep down, Alice and Bob are conducting different
experiments. The only reason one would be prompted to think their measurements should match is
the linguistic confusion of calling different properties of the particle by the same word: “energy”.

This presents a conceptual difficulty when formulating general relativity (GR). One is faced with
the fact that humans frequently use the same word for different concepts, and certain expositions
might keep this ambiguity. For example, if one attempts at formulating relativity in terms of co-
ordinate systems and how to change between them, then these sorts of linguistic confusions will
be present in the formulation itself. Furthermore, one will be formulating the theory in terms of
unphysical and arbitrary choices—after all, coordinate systems are not dependent on the physics, but
on the physicist. Hence, such a formulation suffers from conceptual difficulties that may not affect

9
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the mathematics or the calculations if one is careful enough, but that make it dangerous for one to
commit mistakes and misunderstand the meaning of the theory.

Nowadays, texts such as Hawking and Ellis (1973) and Wald (1984) avoid such issues by formu-
lating GR in terms of its geometric meaning. For example, suppose again the situation in which
Alice and Bob want to measure the energy of a particle. In geometric terms, this can be posed in the
following manner. Let 𝑝𝑎 be the particle’s four-momentum, 𝑢𝑎 be Alice’s four-velocity, and 𝑣𝑎 be
Bob’s four-velocity. ThenAlice desires tomeasure −𝑝𝑎 𝑢𝑎, while Bob desires tomeasure −𝑝𝑎 𝑣𝑎. Both of
them desire to measure scalars, meaning their measurements cannot depend on choices of coordinates
(as they should not). Furthermore, Alice is perfectly capable of performing the same experiment as
Bob and measuring −𝑝𝑎 𝑣𝑎, the only difference being that Alice will not call this quantity “energy”.
Quite naturally, when the same experiment (measuring −𝑝𝑎 𝑣𝑎) is performed by different observers,
they always obtain the same result.

Another way of noticing this fact is by setting up a simple mental experiment. Consider any
experiment with results being either “yes” or “no”. For example, this experiment could be “Is the
particle’s energy greater than or equal to 1 eV?”. Suppose now that Bob attaches to his apparatus
a bomb that will explode and destroy the laboratory if the experiment yields “yes”. Day to day
experience leads one to believe that both Bob and Alice will always agree on whether the bomb has or
not gone off. In other words, changing observers cannot change the result of an experiment, even
though it does change the words one uses to describe the results. They will not disagree on the results,
but rather on the choice of calling the property being measured “energy”. Alice might still refuse to
call −𝑝𝑎 𝑣𝑎 energy, but agrees on whether the bomb has or not gone off.

Similarly, consider any experiment which has a real number as a result. Suppose that the experi-
ment is set up such that its result is shown on a computer screen. It would be extremely shocking if
Alice and Bob happened to see different numbers on the same computer screen. The experiment
never depended on the observer, but only on the experimental setup, which could have been made by
either Alice or Bob. At least within classical physics, the role of the observer comes only in interpreting
the results. One of them insists in calling the measured quantity by the name “energy”, while the
other refuses to do so.

As one could expect, quantum field theory in curved spacetime (QFTCS) inherits these linguistic
difficulties from GR. Usual formulations of quantum field theory (QFT) in flat spacetime will very
often depend heavily on coordinates and the Poincaré group (see Weinberg 1995, for example), and
hence they can end up with the same conundrums of giving the same name to different objects.
In flat spacetime, this is often excused. For example, the word “particle” is defined to have the
same meaning by all inertial observers in Minkowski spacetime. Nevertheless, this will not be true
in curved spacetimes or for non-inertial observers: the Unruh effect (Section 2.4) clearly shows
that different observers may interpret the same physical state as possessing different quantities of
“particles”. Similarly, the word “vacuum” will turn out to be very subtle, since it typically is taken to
mean “absence of particles”.

Unfortunately, most expositions of QFT depend very heavily on the notions of particle and
vacuum. Canonical quantization, for example, consists in formulating the theory by specifying its
Hilbert space as the Fock space, which is inherently tied to a notion of particle and to a notion of
vacuum. If these notions depend on the observer, then they are not due to physics, but due to the
physicist. Hence, they are not fundamental and may end up obscuring important properties of
the theory. While we can formulate QFTCS using a Fock space and exploit its properties to obtain
interesting consequences, it is not always desirable to do so.
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A second option would be to employ path integral techniques. Nevertheless, path integrals
require a choice of a preferred vacuum state, which invariably introduces the physicist into the
equations that ideally would involve only the physics. Furthermore, it is not obvious whether any
state would be admissible on a path integral, especially in curved spacetimes. We shall discuss these
issues in Section 2.5.

Path integrals can also involve one further difficulty. They are mathematically mysterious objects,
due to the difficulty of understanding their convergence properties. Since this is a mathematical
problem rather than a physical one, we shall overlook it in this text. However, it is not unusual
to bypass these difficulties by formulating the theory in Euclidean signature—i.e., one makes an
analytical continuation to imaginary time to obtain expressions that are well-defined. In fact, an
analytical continuation is necessary even in less rigorous approaches to make sense of the Gaussian
integrals that come up (Peskin and Schroeder 1995, p. 286). This Euclidean approach introduces yet
another limitation, since not all spacetimes admit such a continuation and, when they do, it might not
be unique, as we are going to show in Section 2.5. Hence, this approach is also not always desirable.

These reasons lead authors such as Hollands and Wald (2015) to take another route, known as
the “algebraic approach”, which we now follow. We shall focus on what are the essential objects of
QFTCS and make an effort to stick to them and avoid any other possible complications or prejudices.
We are going to concern ourselves with the physics while avoiding the temptation of introducing
our own choices of states, coordinates, and so on in our equations. While many discussions of this
approach are fairly mathematically-inclined, we will ignore the mathematical details and proceed
formally, instead of rigorously. In other words, while we shall borrow terms and notions commonly
used in mathematical physics, we will keep the line of work common to theoretical physicists. This is
not much different from how we would overlook the convergence of path integrals or the functional
analytic details of Hilbert spaces had we chosen to follow other approaches.

It is important to point out that, even though some approaches have limitations when compared
to others, there is not an ultimate approach we should always use. In fact, in this text we shall later
employ Euclidean path integral methods, even though our initial formulation of QFTCS will be
algebraic. The point is that different jobs require different tools. When formulating QFTCS, it is
interesting to use a language that makes clear what are the theory’s essential features, allowing us to
have a clear picture of what we are doing. On the other hand, this language might turn out to be
difficult to carry calculations with. Hence, once we are interested in doing actual computations, we
will be opportunistic and use a more convenient approach.

2.1 What Constitutes a Physical Theory?

To introduce the algebraic approach, we shall motivate its use by following the discussions in the
books by Alfsen and Shultz (2003, Chap. 6), Araki (1999, Chap. 1), and Strocchi (2008, Chap. 1).
Our goal is to conclude that an algebraic structure is expected to arise in any physical theory, or at least
in a wide class of physical theories. In more detail, we shall see how fairly general considerations about
experiments with probabilistic outcomes lead to the notions of states and observables, as done by
Araki (1999). FollowingAraki (1999) and Strocchi (2008), wewill then argue that the observables have
the algebraic structure of a Jordan algebra. At last, we shall consider the arguments given by Alfsen
and Shultz (2003) to conclude it is natural to expect this Jordan algebra to be just the Hermitian
operators on a larger ∗-algebra. Relevant definitions will be provided as they become necessary.
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States and Observables

Physics is an experimental science, and hence we will develop our description keeping this in mind
as much as possible. While we may not provide details on how to set up specific experiments, it is
important to remember that our goal is to describe results of experiments. The importance of this
viewpoint can be exemplified by our previous example. While the meaning of the word “energy”
depends on whether Alice or Bob is saying it, there is no ambiguity on the results of an experimental
measurement.

Hence, let us begin by ensuring we are talking about experiments. In a laboratory conducting an
experiment, one can identify four components that might be relevant:

i. the physical system itself, which is the object of the measurement and was prepared in some
way;

ii. the experimental apparatus, used to perform the measurement on the system;

iii. the observer conducting the experiment;

iv. the environment, which is everything else.

We have previously argued that the observer should not be relevant on physical predictions, as
long as “observer” is understood in the relativistic sense of the word. Quantum mechanics (QM)
introduces somemore nuance on theword “observer”, and there is an ongoing discussion on their role
in the theory, but we shall do as Araki (1999) and neglect any possible influences due to the observer.
We shall also make the simplifying assumption that the environment is not playing a relevant role in
the process. Therefore, we are assuming an experiment is completely defined by a physical system
(including its detailed preparation) and by a measurement apparatus (also including its detailed
preparation).

Let us then introduce a notation to “tag” the physical system and the apparatus. We will write
𝜔 to denote the physical system (and its detailed preparation) and𝑄 to denote the apparatus (and
its detailed preparation). Hence, 𝜔1 and 𝜔2 may denote different systems, or the same system after
undergoing different preparations, and so on. Similarly,𝑄1 and𝑄2 may mean completely different
experimental apparatuses, or the same apparatus after undergoing two different preparations, and so
on. Notice it is important to include the preparations of both the system and the apparatus in our
discussion: there is no reason to expect a priori that different preparations of either will lead to the
same experimental results.

To perform a measurement, we start with some isolated system 𝜔 and some isolated apparatus𝑄
which are known beforehand, including their detailed preparations. We then bring them together
and let them interact until the apparatus sets in some state. For example, we wait until a needle is
pointing somewhere, at which point we can read the result of the measurement. The possible results
will be denoted by the symbols 𝑝, 𝑞, etc. These might be numbers or something different, such as the
notion of “up” or “down”.

This measurement can be performed multiple times by repeating or mimicking 𝜔 and𝑄. In some
experiments, the same result will be obtained every single time. In other experiments, different results
are obtained at each iteration. We shall make the hypothesis, however, that the results always approach
some underlying probability distribution. This assumption is based on the practical justification that
it has worked so far, and on the philosophical justification that it is difficult to conceive how to do
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physics in any other way. If experiments did not follow some sort of probability distribution, then
perhaps we would not be able to do physics at all.

Suppose now we repeat the same experiment𝑁 times and get the result 𝑝 a total of 𝑛𝑝 times. If
there is indeed some underlying probability distribution, then the limit

𝑤𝑄
𝜔 (𝑝) = lim

𝛮→∞

𝑛𝑝
𝑁 (2.1.1)

exists. 𝑤𝑄
𝜔 (𝑝) is then interpreted as the probability that measuring the system 𝜔with the apparatus𝑄

yields the result 𝑝. As expected of a probability, notice that* 0 ≤ 𝑤𝑄
𝜔 (𝑝) ≤ 1 and∑𝑝 𝑤

𝑄
𝜔 (𝑝) = 1.

The definition of the probabilities 𝑤𝑄
𝜔 (𝑝) allows us to start discussing the notions of states and

observables. Let us begin with states.
Suppose there are two system preparations 𝜔1 and 𝜔2 such that

𝑤𝑄
𝜔1(𝑝) = 𝑤𝑄

𝜔2(𝑝) (2.1.2)

for every apparatus𝑄 and for every result 𝑝. This is just a mathematical way of stating that these two
different preparations 𝜔1 and 𝜔2 lead to the very same experimental results. Hence, it makes sense for
us to consider them as being equivalent. We can then use Eq. (2.1.2) to define an equivalence relation
on the space of all system preparations. The quotient of the space of all system preparations by this
equivalence relation will be said to be the space of states. Therefore, a state is an equivalence class of
system preparations. In other words, a state is a collection of system preparations that lead to the
same experimental results. From now on, we will use 𝜔 to denote states rather than preparations.

In a similar fashion, let us suppose now two experimental apparatuses𝑄1 and𝑄2 such that

𝑤𝑄1
𝜔 (𝑝) = 𝑤𝑄2

𝜔 (𝑝) (2.1.3)

holds for every state 𝜔 and for every result 𝑝. Just as with the states, there is no point in distinguishing
𝑄1 and𝑄2, since they both lead to the same experimental results. Hence, we shall also introduce an
equivalence relation in the space of all apparatuses and proceed as with the states. We now get a space
𝒜 of observables, which are the equivalence classes of apparatuses. In other words, an observable is a
collection of experimental apparatuses that lead to the same experimental results. From now on, we
will use𝑄 to denote observables rather than apparatuses.

Functions of Observables

There is no a priori imposition on the possible results of an experiment. They could be concepts such
as “up” and “down”, “full” and “empty”, and so on. They could be a color, as one would get if the
scale on an ammeter was changed to a color gradient (Fig. 2.1 on the next page). While the collection
of possible results can be fairly arbitrary, it is common and convenient to map them to real numbers.
We shall also follow this convention from now on.

There is a lot of freedom in how we label our results. For example, suppose we want to measure
the 𝑧-component of an electron’s spin. In terms of real numbers, we can name them +1 and −1, + ℏ

2
and − ℏ

2 , 1 and 0, and any other combination of two real numbers. The labels themselves are picked
*Some nuances arise when we consider infinite possible results. We will ignore them in our simplified treatment, but

Araki (1999, Chap. 1) discusses this more carefully.
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Figure 2.1: While it is typical to measure currents on an ammeter using real numbers as depicted on (a), this is
merely a convention. One could also make the unusual choice of labeling the ammeter’s scale using
a color gradient and measure current using color, as depicted on (b).

only out of convention. We then notice that our present discussion has a curious feature: if we
measure the 𝑧-component of an electron’s spin using an apparatus that yields the results +1 and −1
and later do the same experiment using an apparatus that yields + ℏ

2 and − ℏ
2 we cannot say that the two

apparatuses are measuring the same observable. After all, they gave different results and will never
yield the same probability distributions. Nevertheless, it is clear that the results of both experiments
are related by a simple change in scale. To account for this, we shall introduce the notion of function
of an observable.

Let 𝑓∶ ℝ → ℝ be some function. If𝑄 ∈ 𝒜, we define 𝑓(𝑄) ∈ 𝒜 as the observable that yields 𝑓(𝑞)
in any experiment in which𝑄would yield 𝑞. In practice this can be achieved by simply rewriting the
numbers on the scale of an apparatus used to measure the observable𝑄. For example, in the case of
an analog apparatus used to measure an electron’s spin in some direction, we can just use tape to stick
a piece of paper with the new values on top of the old ones.

𝑓 does not need to be one-to-one, but if it fails to be, then 𝑓(𝑄) is “coarser” than𝑄 in the sense
that it does not distinguish results as much as𝑄 does. As an example, consider once again the ammeter
on Fig. 2.1. Instead of mapping the results to a color gradient we could have chosen to simply map the
results to −1, 0 or +1 depending only on the sign of the current. In this case, the change of scales loses
information about the experiment and 𝑓(𝑄) is not able to distinguish results as much as𝑄 could.

A particularly interesting case is that in which 𝑓(𝑞) = 1 for any 𝑞. In this case, we denote 𝑓(𝑄) = 1.
Since 𝑓 is constant, 1 does not depend on𝑄. If 𝑓(𝑞) = 𝑐 for all 𝑞where 𝑐 ∈ ℝ, then we write 𝑓(𝑄) = 𝑐1.
From an experimental point of view such a choice is hardly justified, but from a theoretical standpoint
it is only extremely inconvenient.

Expectation Values

Before we discuss the algebraic structure of a theory, let us pick a state 𝜔 and an observable𝑄 ∈ 𝒜. We
define the expectation value of𝑄 in the state 𝜔 as

𝜔(𝑄) = ∑
𝑝
𝑝𝑤𝑄

𝜔 (𝑝). (2.1.4)
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It is interesting to notice that if we know 𝜔(𝑄) for every𝑄, we know 𝑤𝑄
𝜔 (𝑝) for every𝑄 and 𝑝, since

𝑤𝑄
𝜔 (𝑝) = 𝜔(𝜒𝑝(𝑄)), where 𝜒𝑝 is the function given by

𝜒𝑝(𝑞) = {
1, if 𝑞 = 𝑝,
0, otherwise.

(2.1.5)

Hence, knowing 𝑤𝑄
𝜔 (𝑝) and knowing 𝜔(𝑄) is interchangeable. Both of them can be seen as “coordi-

nates” for the state 𝜔, since two states 𝜔1 and 𝜔2 are equal if, and only if, 𝜔1(𝑄) = 𝜔2(𝑄) for all𝑄 and
if, and only if, 𝑤𝑄

𝜔1(𝑝) = 𝑤𝑄
𝜔2(𝑝) for all𝑄 and all 𝑝.

It is also interesting to point out that in QM we often need transition probabilities, but these can
always be written in terms of expectation values. Indeed, this follows from the so-called polarization
identity,

⟨𝜓∣𝜙⟩ = 1
4(∥𝜓 + 𝜙∥2 − ∥𝜓 − 𝜙∥2 − 𝑖∥𝜓 + 𝑖𝜙∥2 + 𝑖∥𝜓 − 𝑖𝜙∥2), (2.1.6)

which can be proved by expanding the right-hand side (RHS).Notice that all terms on theRHS can be
understood as expectation values. Theymight be expectation values in different states and concerning
different observables, of course. Nevertheless, all probabilities in QM boil down to computing an
expression of the form ⟨𝜓∣𝜙⟩, and hence they all boil down to expectation values.

Algebraic Structure of Observables

Suppose𝑄1 and𝑄2 are observables. We can define their sum as the observable𝑄1 + 𝑄2 such that

𝜔(𝑄1) + 𝜔(𝑄2) = 𝜔(𝑄1 + 𝑄2) (2.1.7)

for every state 𝜔. In experimental practice,𝑄1 + 𝑄2 might not have a straightforward interpretation,
meaning we might be expanding𝒜 beyond our original physical motivations.

Since we have already defined functions of observables, we can also define the product of𝑄 by a
scalar: 𝑐 ⋅ 𝑄 = 𝑓(𝑄), where 𝑓(𝑞) = 𝑐𝑞.

As one can check, these operations of addition and multiplication by a scalar turn𝒜 into a vector
space.

We can still equip 𝒜 with more structure in a natural way. For example, we are able to com-
pute functions of elements of 𝒜. In particular, given 𝑄 ∈ 𝒜, 𝑄2 is well-defined by our previous
prescriptions.

Using all of these structures we can see that𝒜 is naturally endowed with a product defined as

𝑄1 ∘ 𝑄2 =
1
2[(𝑄1 + 𝑄2)

2 − 𝑄2
1 − 𝑄

2
2]. (2.1.8)

This is known as the Jordan product. Notice that it is commutative by construction. Jordan, von
Neumann, and Wigner (1934) have proven this product is weakly associative, i.e.,

(𝑄2
1 ∘ 𝑄2) ∘ 𝑄1 = 𝑄2

1 ∘ (𝑄2 ∘ 𝑄1). (2.1.9)

If𝑄1 and𝑄2 are functions of a common underlying observable𝑄, then we are actually capable of
expanding the definition of the Jordan product and write𝑄1 ∘𝑄2 =

1
2 (𝑄1𝑄2 +𝑄2𝑄1). This expression

makes sense because𝑄1𝑄2 is actually of the form 𝑓(𝑄)𝑔(𝑄) for some𝑄 and some functions 𝑓 and 𝑔.
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Hence, the expression actually means 𝑄1𝑄2 = ℎ(𝑄), where ℎ(𝑞) = 𝑓(𝑞)𝑔(𝑞). In this particular case,
notice that ∘ is homogeneous, i.e.,

𝑄1 ∘ (𝜆𝑄2) = (𝜆𝑄1) ∘ 𝑄2 = 𝜆(𝑄1 ∘ 𝑄2) (2.1.10)

for any real number 𝜆. We shall follow Strocchi (2008, p. 20) and assume Eq. (2.1.10) for all𝑄1, 𝑄2 ∈ 𝒜.
Under these hypotheses,𝒜 then satisfies the following properties:

i. it is a real vector space;

ii. it has a bilinear product ∘ ∶ 𝒜 × 𝒜 → 𝒜;

iii. ∘ is commutative;

iv. ∘ is weakly associative.

Such a structure is known as a Jordan algebra. It is also possible to show that it can be naturally turned
into a normed space (Strocchi 2008, pp. 18–21), but we will overlook the topological properties to
keep our discussion at an introductory level.

Jordan algebras often occur as the subspace of Hermitian operators acting on a Hilbert space.
Indeed, ifℋ is a Hilbert space and𝑄1 and𝑄2 are linear operators inℋ, we can define their Jordan
product as the symmetrized product 𝑄1 ∘ 𝑄2 = 1

2(𝑄1𝑄2 + 𝑄2𝑄1). Notice that if 𝑄1 and 𝑄2 are
Hermitian, then so is𝑄1 ∘ 𝑄2. Weak associativity can be proved with a bit of algebra. Hence, this is a
class of common examples of Jordan algebras. Notice this is relevant because it allows us to see how
our construction of a natural algebraic structure for any physical theory is leading us to the Hilbert
spaces of quantum mechanics*.

Nevertheless, not all Jordan algebras are simply the Hermitian operators on some Hilbert space.
The pathological example is the space of 3 × 3Hermitian matrices with octonion entries (Alfsen and
Shultz 2003, Theorem 4.6). We are then posed with the question of whether these pathological
examples may or may not be of physical interest.

Most of the mathematical physics literature works not with Jordan algebras, but with ∗-algebras,
which do resemble the operators in a Hilbert space in a well-defined sense. Since this leads to a
convenient and powerful framework, we shall do the same. To justify this, we shall follow an argument
given by Alfsen and Shultz (2003, pp. 196–197), but see also the argument by Streater (2007, Sec.
12.4).

When it comes to dealing with states and observables, Jordan algebras are sufficient. We are
perfectly capable of using the structure of a Jordan algebra to obtain, for example, the probabilities we
might be interested in. However, as Alfsen and Shultz (2003, pp. 196–197) argue, QM requires more
than that from the observables, for they are also generators of symmetries. For example, momentum
is not only the physical notion of momentum, but also the generator of translations. This means we
also need the observables to have a Lie algebra structure, and this is not made possible by the Jordan
product alone. However, suppose there is an associative product ⋅ such that𝑄1∘𝑄2 =

1
2 (𝑄1 ⋅𝑄2+𝑄2 ⋅𝑄1).

*It is also interesting to point out that classical mechanics also admits a formulation in terms of Hilbert spaces, often
calledKoopman–vonNeumannmechanics (Mauro 2002). Our algebraic construction then seems to recover both quantum
and classical theories. It is also possible to show that every commutative 𝐶∗-algebra can be understood as the collection
of continuous functions on a phase space (Bratteli and Robinson 1987, Theorem 2.1.11; Landsman 2017, Theorem 3.1),
which recovers our usual notion of observables in classical physics.
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Then the commutator [𝑄1, 𝑄2] = 𝑄1 ⋅ 𝑄2 − 𝑄2 ⋅ 𝑄1 can introduce the Lie algebra structure we need
for the symmetry generators, solving our difficulty.

A convenient manner of implementing this is precisely by copying the algebraic structure of the
linear operators acting on aHilbert space. The technical term for such a structure is a ∗-algebra, which
has the following properties

i. it is a complex vector space;

ii. it has a bilinear product ⋅ ∶ 𝒜 × 𝒜 → 𝒜;

iii. ⋅ is associative;

iv. it has an antilinear operation ∗ ∶ 𝒜 → 𝒜 such that (𝑄1 ⋅ 𝑄2)
∗ = 𝑄∗

2 ⋅ 𝑄
∗
1 and𝑄∗∗ = 𝑄.

Notice the ∗ operation mimics the Hermitian conjugate found in Hilbert spaces. It is often called an
“involution”.

Recall that we have been ignoring the topological properties for simplicity. Had we considered
them, then we would be led to the structure of a 𝐶∗-algebra, which is a normed ∗-algebra with some
convenient properties. More details can be found in the books by Alfsen and Shultz (2003), Araki
(1999), and Strocchi (2008), among others.

𝐶∗-algebras correspond to algebras of bounded operators, which intuitivelymeans the observables
have bounded values. This is different from what is traditionally done in the theoretical physics
literature, since position, for example, is unbounded. Nevertheless, for practical experimentation
aspects, we never measure unbounded values, and hence it is perfectly reasonable to work with
bounded operators only. In any case, theoretical physicists not acquainted with functional analysis
are more used to working with unbounded operators. Due to this and the fact that we want to avoid
diving into discussions concerning norms and topological aspects, we can safely work with ∗-algebras
only. Khavkine and Moretti (2015) take a similar stance within QFTCS.

2.2 Recovering Hilbert Spaces from ∗-Algebras

In the previous section, we explained why we expect all physical theories to be related to a ∗-algebra.
Let us now see how we can recover the traditional notions of Hilbert spaces from these algebras.
This is relevant within QFTCS because, as we will learn, there can be more than one Hilbert space
associated to an algebra, and this lack of uniqueness is the origin of the difficulty to define what is
meant by a “particle” in an observer-independent manner.

We now take the defining property of a physical theory to be a ∗-algebra 𝒜. This gives us the
observables, which are Hermitian operators in this algebra, i.e., elements with𝑄 = 𝑄∗. Notice that
not all Hermitian operators are physically significant—given any operator𝑄,𝑄+𝑄∗ is Hermitian. In
ordinary QM,𝑄 could even be the unitary operator related to some symmetry transformation, and
hence𝑄 + 𝑄∗ would not get the usual interpretation of observable we usually desire. Nevertheless,
do notice this remark is not exclusive to the algebraic approach, since it also happens in the Hilbert
space approach.

We have observables, but we still need states. Earlier, we noticed states can be seen as functions
from the observables to the real line. Indeed, the expectation value of the observable𝑄 in the state 𝜔
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was 𝜔(𝑄). Furthermore, we defined the product of an observable by a scalar 𝜆 and the addition of
observables in such a way that

𝜔(𝑄1 + 𝜆𝑄2) = 𝜔(𝑄1) + 𝜆𝜔(𝑄2). (2.2.1)

Hence, now that we are taking an algebra of observables as the defining feature of a theory, we will
define the states as linear functionals on the algebra, i.e., linear maps 𝜔∶ 𝒜 → ℂ. They can yield
complex values, since not every element in the algebra is a physical observable. Furthermore, we will
require them to be normalized*, 𝜔(1) = 1, and to be positive, 𝜔(𝑄∗𝑄) ≥ 0. Notice these impositions
ensure we are mimicking the expectation values we already understand in QM.

Suppose nowwe are given an algebra𝒜 and a state𝜔∶ 𝒜 → ℂ. It is possible to perform aprocedure
known as the Gelfand–Naimark–Segal (GNS) construction (Gelfand and Naimark 1943; Segal 1947)
that yields a Hilbert spaceℋ on which one can represent the algebra𝒜 by means of operators acting
onℋ. This Hilbert space does depend on 𝜔.

The word “represent” is used here in the sense of representation theory. Group representations
are widely used in modern theoretical physics (see Zee 2016), and algebra representations are defined
in a similar fashion. Ifℋ is a Hilbert space,ℒ(ℋ) the space of linear operators acting onℋ, and𝒜 a
∗-algebra, a representation is a linear map 𝜋∶ 𝒜 → ℒ(ℋ) that preserves the algebraic product and the
involution, i.e., 𝜋(𝑄1𝑄2) = 𝜋(𝑄1)𝜋(𝑄2) and 𝜋(𝑄∗) = 𝜋(𝑄)∗. Hence, a representation of an algebra on
a Hilbert space is a “copy” of the algebra in the operators acting on the Hilbert space. This copy may
or may not be faithful: nothing prevents a representation from assigning the same operator onℒ(ℋ)
to different elements of𝒜. If the representation is one-to-one, it is said to be faithful.

The technical details of the GNS construction theorem vary depending on the assumptions taken.
Khavkine andMoretti (2015, Theorem 5.1.13) discuss the theorem for unital ∗-algebras (i.e., ∗-algebras
which have a unit element), while most books on 𝐶∗-algebras discuss the 𝐶∗ case—which is the one
usually meant when one speaks of the GNS construction. We will omit the details and focus on the
physical meaning of the theorem.

Specifically, given a ∗-algebra satisfying some assumptions and some chosen state 𝜔 on said algebra,
the GNS construction yields us

i. a Hilbert spaceℋ;

ii. a representation 𝜋∶ 𝒜 → ℒ(ℋ);

iii. a vector |𝜔⟩ ∈ ℋ.

This triple has the property that 𝜔(𝐴) = ⟨𝜔|𝜋(𝐴)𝜔⟩ for all 𝐴 ∈ 𝒜, and hence |𝜔⟩ represents 𝜔 as a
vector in the Hilbert space. It also holds that†

{𝜋(𝐴) |𝜔⟩ ; 𝐴 ∈ 𝒜} = ℋ. (2.2.2)

The GNS triple is also unique up to unitary isomorphism, i.e., other triples with the same properties
are related to the GNS triple by a unitary transformation. Do notice, however, that the GNS triple

*I implicitly assumed the algebra to have a unit 1, although this is not really necessary. See the book by Bratteli and
Robinson (1987) for a more general treatment and more information.

†More precisely, the left-hand side (LHS) of Eq. (2.2.2) is dense on the Hilbert space.
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assumes a state underlying its construction, and different choices of states may lead to unequivalent
representations.

Notice that theGNS construction provides the bridge between the abstract algebras we previously
constructed and our usual notions of QM in a Hilbert space. However, it also allows us to start
noticing some limitations of the Hilbert space approach.

Let us provide an example. It is a common misconception that a state is pure if it can be written
as a vector on a Hilbert space, as opposed to a density matrix. Nevertheless, the GNS construction
showed us that any state can be written as a vector on some Hilbert space. One can show that density
matrices on a Hilbert space define algebraic states on the algebra𝒜 = ℬ(ℋ) of bounded operators
acting on the Hilbert space. Hence, the GNS construction allows us to pick any state, mixed or pure,
and find some Hilbert space in which this state is a vector. A more careful way to define a pure state
is by noticing that given a state 𝜔, there are always states 𝜔1 and 𝜔2 (𝜔1 ≠ 𝜔2) such that

𝜔(𝐴) = 𝜆𝜔1(𝐴) + (1 − 𝜆)𝜔2(𝐴) (2.2.3)

for all𝐴 ∈ 𝒜, where 𝜆 ∈ [0, 1]. At worst, take 𝜔1 = 𝜔, any 𝜔2, and 𝜆 = 1. A pure state is a state in which
Eq. (2.2.3) holding for all 𝐴 ∈ 𝒜 implies 𝜆 = 0 or 𝜆 = 1. A mixed state is then simply a state that is not
pure. For a pedagogical introduction to pure and mixed states from the point of view of the algebraic
approach, see the review by Barata et al. (2021).

This raises an important question: if it is possible for the same state to be represented as a density
matrix or as a vector, do we have any guarantee that all states are always represented? The answer is no.
Some states might not be representable as density matrices in some Hilbert spaces. In fact, we define
the folium of a state 𝜔 to be the collection of all algebraic states that can be written as a density matrix
in the GNS representation induced by 𝜔. This is relevant because it means that working with Hilbert
spaces keeps us from being able to see the whole picture. There are states that are not accessible from
a given Hilbert space*.

One might also wonder whether two representations of the same algebra𝒜 are always ensured to
be equivalent. In other words, suppose (ℋ1, 𝜋1) and (ℋ2, 𝜋2), 𝜋𝑖 ∶ 𝒜 → ℒ(ℋ𝑖), are representations of
𝒜. Is it always possible to find a unitary transformation𝑈∶ ℋ1 →ℋ2 such that 𝜋(𝐴)2 = 𝑈𝜋1(𝐴)𝑈

∗?
This is the most basic requirement for the two Hilbert spaces to yield the same theory. If we can’t
find such a transformation, then the inner products in a Hilbert space might have values different
from those on the other Hilbert space. Hence, they can lead to different descriptions.

For quantum systems with a finite number of degrees of freedom, this question is answered by
the Stone–von Neumann theorem (Hall 2013, Theorem 14.8), which ensures that all representations
of the canonical commutation relations (CCR) for a system with finitely many degrees of freedom
are equivalent†. However, the theorem fails in the case of infinitely many degrees of freedom, i.e., for
field theory. Therefore, we might get non-equivalent Hilbert spaces.

The issue with getting non-equivalent Hilbert spaces is we cannot tell which one is the correct
description. In some situations, symmetry considerations might allow us to pick a preferred Hilbert
space out of all possible ones. For example, inMinkowski spacetime there is a single Poincaré-invariant

*There are situations in which one can always approximate a state arbitrarily well by density matrices in a givenHilbert
space. This happens for a scalar quantum field in an arbitrary globally hyperbolic spacetime (Wald 1994, Theorem 4.5.2).

†Technically, the Stone–von Neumann theorem is a statement about the Weyl algebra, which corresponds to an
exponentiated version of the CCR algebra (seeWald 1994, Chap. 2, for details). While the CCR algebra is merely a ∗-algebra,
the Weyl algebra is a 𝐶∗-algebra, and hence it “behaves better” from a mathematical perspective.
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state, the Minkowski vacuum. Hence, it seems natural to pick the Hilbert space obtained by using
the GNS construction with the Minkowski vacuum. This leads one to the usual treatment of QFT
given, e.g., by Weinberg (1995). Similar comments are applicable to QFT in stationary spacetimes
such as Schwarzschild or De Sitter spacetimes (see Section 2.A), but not in a general curved spacetime.

Even in the occasion two different representations are equivalent, we should remark they can still
have different interpretations. For example, in QFT, the Hilbert space is often taken to be a Fock
space, which has a natural interpretation in terms of “particles”. The notions of “particle” associated
to the two equivalent Fock spaces might not be the same, and hence the unitary transformation will
not preserve particle number. This is not an issue: we are interested in a quantum theory of fields, not
of particles. However, it makes it clear that careless dependence on a Fock space might mix the actual
physical content of the theory with misconceptions due to a belief in “particles” as fundamental
entities.

2.3 Free Quantum Fields in Curved Spacetime
Given the previous motivations, we expect to be able to construct the algebra of observables for
any theory we are interested in studying. However, this turns out to not be so easy. In spite of
recent progress due to Brunetti et al. (2022) and Buchholz and Fredenhagen (2020), it is still not
proven that any interacting quantum field theory admits an algebraic formulation*. In addition,
while Hollands and Wald (2010) have put forth a proposal for how to define a quantum field theory
nonperturbatively, the majority of the current knowledge is restricted to perturbative approaches.

Due to these reasons, we will focus on discussing the algebraic formulation of a free real scalar
field on a globally hyperbolic spacetime. Further discussions can be found, for example, on the review
by Hollands and Wald (2015) and references therein. This review is also our main reference for this
section, alongside the book by Hack (2016). We should also add that this section assumes familiarity
with the causal structures in GR (see, e.g., Geroch 1970; Hawking and Ellis 1973; Pfäffle 2009; Wald
1984).

In a curved spacetime, we take a real scalar field 𝜙 to satisfy the Klein–Gordon equation in the
form

(∇𝑎 ∇
𝑎 − 𝑚2)𝜙 = 0, (2.3.1)

where ∇𝑎 is the Levi-Civita connection associated with the Lorentzian metric 𝑔𝑎𝑏 (signature − + ++).
In order to construct the algebra, we are also interested in working with the Klein–Gordon equation
with a source,

(∇𝑎 ∇
𝑎 − 𝑚2)𝜙 = 𝑗, (2.3.2)

where 𝑗 is some fixed arbitrary smooth function with compact support. We denote the space of
smooth functions of compact support on spacetimeℳ by𝒞∞

0 (ℳ).
Let Σ be a Cauchy surface forℳwith future-directed unit normal 𝑛𝑎. Let 𝑓0, 𝑓1 ∈ 𝒞∞

0 (Σ). Then
there is a unique function 𝜙 ∈ 𝒞∞(ℳ) such that the system

{
(∇𝑎 ∇

𝑎 − 𝑚2)𝜙 = 𝑗,
𝜙|Σ = 𝑓0,
𝑛𝑎∇𝑎 𝜙|Σ = 𝑓1

(2.3.3)

*Given other formulations are typically not as mathematically sound, this does mean we still do not know whether
interacting quantum field theories make mathematical sense at all.



2.3. Free Quantum Fields in Curved Spacetime 21

𝐾

𝐽(𝐾)

(a)

supp𝑓

supp𝐸+𝑓

supp𝐸−𝑓

(b)

Figure 2.2: Causal diagrams illustrating the good causal behavior of solutions to the Klein–Gordon equation.
The diagrams are drawn such that null geodesics are always at 45°. (a): if𝐾 = supp𝑓0 ∪ supp𝑓1 ∪
supp 𝑗, then the solution 𝜙 for Eq. (2.3.3) on the facing page is such that supp 𝜙 ⊆ 𝐽(𝐾) = 𝐽+(𝐾) ∪
𝐽−(𝐾). In the picture, the dashed lines indicate the boundary of 𝐽±(𝐾). (b): supports of the
advanced and retarded propagators 𝐸− and 𝐸+.

is satisfied (see, e.g., Ginoux 2009, Theorem 3). This solution is causally well behaved in the sense
that supp 𝜙 ⊆ 𝐽+(𝐾) ∪ 𝐽−(𝐾), where𝐾 = supp𝑓0 ∪ supp𝑓1 ∪ supp 𝑗 (Ginoux 2009, Theorem 3). This
is illustrated on Fig. 2.2a. It then follows that changing the value of, say, 𝑓0 outside of 𝐽−(𝑥)—where 𝑥
lies to the future of Σ—will not affect the value of 𝜙(𝑥).

This good behavior allows us to define the advanced and retarded Green’s operators (or propaga-
tors) for the Klein–Gordon equation. These are maps 𝐸± ∶ 𝒞∞

0 (ℳ) → 𝒞∞(ℳ) that map the source 𝑗
on Eq. (2.3.2) on the preceding page to a solution of the Klein–Gordon equation with boundary
conditions defined in the following way. For the advanced propagator 𝐸−, 𝐸−𝑗 is the unique solution
with supp𝐸−𝑗 ⊆ 𝐽−(supp 𝑗). Similarly, the retarded propagator 𝐸+ is defined such that 𝐸+𝑗 is the
unique solution with supp𝐸+𝑗 ⊆ 𝐽+(supp 𝑗). In other words, the retarded propagator propagates a
source to within the future light cone, while the advanced propagator propagates a source to within
the past light cone (see Fig. 2.2b). The existence and uniqueness of these operators is assured for the
Klein–Gordon equation in an arbitrary globally hyperbolic spacetime (Ginoux 2009, Corollary 6).

These operators might also be seen as distributional kernels. For example, we can write

(𝐸±𝑗)(𝑥) = ∫𝐸±(𝑥, 𝑦)𝑗(𝑦)√−𝑔d4𝑦 . (2.3.4)

If we apply the Klein–Gordon operator to both sides of this equation, we see that

(∇𝑎 ∇
𝑎 − 𝑚2)𝐸±(𝑥, 𝑦) = 1

√−𝑔
𝛿(4)(𝑥, 𝑦), (2.3.5)

where the occurrence of the metric determinant ensures coordinate-independence. Notice how these
propagators are analogous to the retarded and advanced Green’s function for Electrodynamics, for
example. Notice also that in this way of writing we can express their support properties as

supp𝐸± ⊆ {(𝑥, 𝑦) ∈ ℳ ×ℳ; 𝑥 ∈ 𝐽±(𝑦)}. (2.3.6)

We are particularly interested in the Pauli–Jordan commutator function (or simply commutator
function) 𝐸, defined through

𝐸 = 𝐸+ − 𝐸−. (2.3.7)
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Notice that the support properties of the advanced and retarded propagators imply that, as a distri-
butional kernel,

supp𝐸 ⊆ {(𝑥, 𝑦) ∈ ℳ ×ℳ; 𝑥 ∈ 𝐽+(𝑦) ∪ 𝐽−(𝑦)}. (2.3.8)

In Minkowski spacetime, translation symmetry implies 𝐸(𝑥, 𝑦) = 𝐸(𝑥 − 𝑦) and the commutator
function can be written explicitly as (Bogoliubov and Shirkov 1982, p. 334)

𝐸(𝑥) = − 1
2𝜋 sign(𝑥0)𝛿(−𝑥𝜇𝑥𝜇 ) +

sign(𝑥0)Θ(−𝑥𝜇𝑥𝜇 )𝐽1(𝑚√−𝑥𝜇𝑥𝜇 )
4𝜋√−𝑥𝜇𝑥𝜇

, (2.3.9)

where sign is the sign function,Θ is the Heaviside step function, 𝐽1 is the Bessel function and 𝑥𝜇𝑥𝜇
stands for the invariant interval. Notice that Bogoliubov and Shirkov (1982, Sec. 18.1) define the
Green’s functions for the Klein–Gordon equation following a convention that differs from ours by a
sign, leading to a sign difference between Eq. (2.3.9) and their expression.

One should note from Eq. (2.3.9) that the commutator function is a distribution, not a smooth
function. For Minkowski spacetime, we can see it is singular on the light cone.

Construction of the Algebra

With these preliminaries, we are ready to start defining the actual algebra we are interested in.
Firstly, we need to choose what are the observables we will consider. Within field theory, the

field variables 𝜙(𝑥) are our most natural choice. However, some care must be taken: we know from
QFT in flat spacetime that expressions such as 𝜙(𝑥)𝜙(𝑥) are ill-behaved and products of fields at the
same spacetime point lead to infinities. This happens because mathematically quantum fields are not
functions of spacetime, but operator-valued distributions. As such, we should actually smear them
with test functions 𝑓 ∈ 𝒞∞

0 (ℳ,ℂ). Hence, the fundamental variables we shall consider for now are

𝜙(𝑓) = ∫𝜙(𝑥)𝑓(𝑥)√−𝑔 d4𝑥 , (2.3.10)

for 𝑓 ∈ 𝒞∞
0 (ℳ,ℂ). We are not able to express quantities such as 𝜙(𝑥)𝜙(𝑥) yet, since working with

distributions enforces us to work with linear expressions. However, we can later enlarge the algebra
of observables to comprise such quantities and include, for example, the stress-energy-momentum
tensor (see Section 2.B). We are working with complex test functions because we desire to get to an
algebra over the complex numbers, as is required for quantum theory.

We start by defining our algebra𝒜 ≡ 𝒜(ℳ, 𝑔𝑎𝑏 ) by having it be the ∗-algebra obtained by formally
considering the identity together with all possible linear combinations, products, and involutions of
objects of the form 𝜙(𝑓). Rigorously, this means we are considering the free ∗-algebra* generated by 1
and the elements 𝜙(𝑓)with 𝑓 ∈ 𝒞∞

0 (ℳ,ℂ).
This procedure gives us an algebra, but it still does not reflect the physics we are interested in. For

example, let 𝑓, 𝑔 ∈ 𝒞∞
0 (ℳ,ℂ) and 𝑐 ∈ ℂ. Then we know there are elements 𝜙(𝑓), 𝜙(𝑔), and 𝜙(𝑓 + 𝑐𝑔)

in the algebra (we defined them to exist), but they are not related in any way. However, to match the
properties we expect of smeared fields, we would like these quantities to respect

𝜙(𝑓 + 𝑐𝑔) = 𝜙(𝑓) + 𝑐𝜙(𝑔). (2.3.11)
*See, e.g., the book by Geroch (1985) for more on free constructions.
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We shall then enforce this by hand by taking appropriate quotients of the algebra. We are now left
with an algebra that has this convenient property. This is the general procedure we shall follow to
impose the remaining conditions we would like. We essentially force the structure to respect the
desired properties by taking quotients at our convenience.

Next we would like to impose that the field satisfies the Klein–Gordon equation in the distribu-
tional sense. Using the known properties of distributional derivatives (see Strohmaier 2009), we see
that this is expressed as

𝜙((∇𝑎 ∇
𝑎 − 𝑚2)𝑓) = 0 (2.3.12)

for all 𝑓 ∈ 𝒞∞
0 (ℳ,ℂ).

Note that we could be quantizing a complex scalar field. Since we are interested in a real field, we
impose that 𝜙(𝑥) is real. By looking at our expression for what is a smeared field, Eq. (2.3.10) on the
preceding page, we see this translates to requiring

𝜙(𝑓)∗ = 𝜙(�̄�), (2.3.13)

where �̄� is the complex conjugate of 𝑓.
At last, what we wrote so far could refer to a classical theory. All of the properties we gave would

also be applicable to distributional solutions of the classical Klein–Gordon equation. Let us then
enforce the theory is a quantum theory by imposing commutation relations. This happens by means
of the commutator function,

[𝜙(𝑓1), 𝜙(𝑓2)] = 𝑖𝐸(𝑓1, 𝑓2)1, (2.3.14)

where
𝐸(𝑓1, 𝑓2) = ∫𝐸(𝑥, 𝑦)𝑓1(𝑥)𝑓2(𝑦)√−𝑔(𝑥) d4𝑥 √−𝑔(𝑦) d4𝑦 . (2.3.15)

As commented by Hollands and Wald (2015) and discussed at length by Wald (1994), we could also
choose to formulate the theory with a “symplectic smearing” based on test functions 𝑓 ∈ 𝒞∞

0 (Σ, ℂ),
with Σ being a Cauchy surface. In this case, one sees Eq. (2.3.14) recovers the usual expression for
the CCR. One should notice that 𝐸(𝑥, 𝑦) vanishes if 𝑥 and 𝑦 are spacelike related due to the support
properties of the propagators, and hence Eq. (2.3.14) implements Einstein causality: operators on
spacelike related regions commute.

It is also interesting to notice that if we introduce coordinates* (𝑡, �⃗�) on the spacetime manifold
ℳ = ℝ × Σ, then one can show that (Dimock 1980; Hack 2016, Theorem 2.2)

𝜕𝑡𝐸(𝑡, �⃗�; 𝑡
′, �⃗�′)∣

𝑡=𝑡′
= −𝛿(3)(�⃗�, �⃗�′) and 𝐸(𝑡, �⃗�; 𝑡′, �⃗�′)∣

𝑡=𝑡′
= 0, (2.3.16)

the second equation being merely a statement that the commutator function vanishes on spacelike
related events. Notice this means Eq. (2.3.14) implies

[𝜙(𝑡, �⃗�), 𝜙(𝑡, �⃗�′)] = 0, (2.3.17)

[𝜕𝑡𝜙(𝑡, �⃗�), 𝜕𝑡𝜙(𝑡, �⃗�
′)] = 0, (2.3.18)

[𝜙(𝑡, �⃗�), 𝜕𝑡𝜙(𝑡, �⃗�
′)] = 𝑖𝛿(3)(�⃗�, �⃗�′)1, (2.3.19)

*As mentioned in Appendix A, we write �⃗� for spatial points regardless of whether they actually have a vector space
structure.
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which are the usual equal-time commutation relations.
Notice Eq. (2.3.14) on the previous page also works as an a posteriori justification for our state-

ment that the fields are actually operator-valued distributions. Since the commutator function is a
distribution (as made evident by Eq. (2.3.9) on page 22), either the fields are distributional as well or
we get to the contradictory statement that the commutator of two smooth quantities is somehow
singular.

Vacua

The algebra we have just constructed allows us to express all states in terms of correlation functions.
Indeed, any element of the algebra is a linear combination of elements of the form 𝜙(𝑓1) ⋯ 𝜙(𝑓𝑛) for
some functions 𝑓𝑖 ∈ 𝒞∞

0 (ℳ,ℂ). Hence, we can completely specify a state 𝜔 by providing the 𝑛-point
functions

𝑊𝑛(𝑓1, … , 𝑓𝑛) ≡ 𝜔(𝜙(𝑓1) ⋯ 𝜙(𝑓𝑛)). (2.3.20)

In Lorentzian signature, these are sometimes referred to as “Wightman functions” (Streater and
Wightman 2000).

As we have previously mentioned, the notions of “vacuum” and of “particle” become subtle
within QFTCS. At this stage, it is interesting for us to give a well-defined meaning for these words so
that we can relate the theory in curved spacetimes to the conventional formulations in flat spacetime.
Which state deserves to be called “vacuum”? Is it even unique?

Within QFT in flat spacetime, the vacuum is often understood as the unique Poincaré invariant
state. It can also be characterized by the fact it is the Hamiltonian’s ground state. Nevertheless, both
of these properties are problematic in curved spacetime. Poincaré symmetry is a property of flat
spacetime, and hence there is no reason to expect it to be relevant, for example, in Schwarzschild
spacetime. Similarly, “the Hamiltonian’s ground state” is meaningless unless one has a preferred
congruence of observers defining which Hamiltonian we mean. Hence, these properties are not
convenient for us to use in a general spacetime. Instead, we need to focus on more general properties
of the Minkowski vacuum which we can transport to other contexts.

Perhaps the most important feature of the Minkowski vacuum is that it allows us to employ
Wick’s theorem, which is at the basis of essentially any calculation performed inQFT in flat spacetime.
Due to this, we define a state to be Gaussian (also known as “quasifree”) if its correlation functions
are such that, for any positive integer 𝑛 and any choice of functions 𝑓𝑘 ∈ 𝒞∞

0 (ℳ,ℂ),

𝑊2𝑛−1(𝑓1, … , 𝑓2𝑛−1) = 0, (2.3.21)

and

𝑊2𝑛(𝑓1, … , 𝑓2𝑛) = ∑
pairings

𝑊2(𝑓𝑖1 , 𝑓𝑖2) ⋯𝑊2(𝑓𝑖2𝑛−1 , 𝑓𝑖2𝑛), (2.3.22)

which is just the usual notion we have of Wick’s theorem. This is the definition given by Khavkine
and Moretti (2015, Definition 5.2.22), but alternatively one can do as Hollands and Wald (2015) and
provide a definition in terms of connected correlation functions, which we have not defined.

A convenient property of Gaussian states is that their GNS representations are always Fock spaces,
with the Gaussian state being annihilated by all annihilation operators (Hollands and Wald 2015, Sec.
2; Khavkine and Moretti 2015, Theorem 5.2.24). However, these representations may or may not be
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irreducible. As one knows from group theory, it is always more convenient to work with irreducible
representations for the sake of simplicity. It turns out that a state on a ∗-algebra leads to an irreducible
GNS representation if, and only if, it is pure*.

TheMinkowski vacuum is pure andGaussian. These properties seem to be (and are) fairly general
and applicable to curved spacetimes, and hence they provide us with a convenient notion of what a
vacuum is. A vacuum is a pure Gaussian state. Notice that, by construction of our definition, one can
always find a Fock representation in which the vacuum is annihilated by all annihilation operators,
and hence there is always some sense in which the vacuum is an absence of particles.

Thermal States

While the vacuum is perhaps the most important state in QFT in flat spacetime, another important
class of states are those in thermal equilibrium. In the algebraic approach, the notion of thermal
equilibrium is given bymeans of theKubo–Martin–Schwinger (KMS) condition (Kubo 1957;Martin
and Schwinger 1959). Our discussion is inspired by the one given by Raszeja (2020, Sec. 2.3).

Suppose we have a system with finitely many degrees of freedom in contact with a thermal
reservoir at inverse temperature 𝛽 = 1

𝛵 (we take 𝑘𝛣 = 1). Assuming the system to be in thermal
equilibrium, its state is described by the density matrix (Kardar 2007, Eq. (6.86))

𝜌 = 𝑒−𝛽𝛨

𝑍 , (2.3.23)

where 𝑍 = tr[𝑒−𝛽𝛨] is the partition function for the system and𝐻 its Hamiltonian.
We take a finite system to provide us with some motivation and intuition while avoiding the

difficulties that occur in larger systems (for a discussion, see Witten 2022). In this simplified case we
can work with density matrices, but in field theory we will not always have a privileged Hilbert space.
Therefore, we would like to obtain a purely algebraic condition that expresses thermal equilibrium.

Thermal equilibrium is a notion closely related to the time evolution of a system. For example, it
can be characterized by stating that the entropy production rate of a system—which is a notion of
time variation of entropy—vanishes (Tomé and Oliveira 2015). Hence, it is natural that to discuss
equilibrium we need to consider some sort of time evolution.

In the context of finite quantum systems, this evolution is ruled by the Heisenberg equation of
motion and, for a time-independent Hamiltonian, it is given by (Weinberg 2015, Eq. (3.6.6))

𝐴(𝑡) = 𝑒𝑖𝑡𝛨𝐴(0)𝑒−𝑖𝑡𝛨, (2.3.24)

where 𝐴(𝑡) is some observable at time 𝑡 and we take ℏ = 1. Notice that we can also see this time
evolution as a one-parameter group of automorphisms acting on the algebra𝒜. More specifically, we
can write

𝜃𝑡(𝐴) = 𝑒𝑖𝑡𝛨𝐴𝑒−𝑖𝑡𝛨 (2.3.25)

to denote the time evolution of 𝐴 by an amount 𝑡. While unusual in ordinary QM, this notation will
serve us well in the following.

Notice that the exponentials that occur on the definition of 𝜃𝑡 are similar to the exponential that
occurs in the expression for a densitymatrix in thermal equilibrium, apart from the fact that 𝜌 involves

*In fact, this is the result for 𝐶∗-algebras (see Barata et al. 2021, Sec. 7). For ∗-algebras the result is a bit weaker (see
Khavkine and Moretti 2015, Proposition 5.1.15).
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a real exponential and 𝜃𝑡 involves imaginary exponentials. It is tempting, however, to consider an
analytic continuation of 𝜃𝑡 to the complex 𝑡 plane. If this is possible, then notice that, given 𝐴, 𝐵 ∈ 𝒜,
we have

𝜔𝜌(𝐵𝐴) = tr[𝐵𝐴𝜌], (2.3.26a)

= 1
𝑍 tr[𝐵𝐴𝑒−𝛽𝛨], (2.3.26b)

= 1
𝑍 tr[𝐴𝑒−𝛽𝛨𝐵], (2.3.26c)

= 1
𝑍 tr[𝐴𝑒−𝛽𝛨𝐵𝑒+𝛽𝛨𝑒−𝛽𝛨], (2.3.26d)

= 1
𝑍 tr[𝐴𝜃𝑖𝛽(𝐵)𝑒−𝛽𝛨], (2.3.26e)

= tr[𝐴𝜃𝑖𝛽(𝐵)𝜌], (2.3.26f)
= 𝜔𝜌(𝐴𝜃𝑖𝛽(𝐵)). (2.3.26g)

In the previous expressions, 𝜔𝜌 is the state defined through 𝜔𝜌(𝐴) = tr[𝐴𝜌].
Eq. (2.3.26) leads one to the general expression

𝜔(𝐵𝐴) = 𝜔(𝐴𝜃𝑖𝛽(𝐵)), (2.3.27)

where 𝜃𝑡 can be any one-parameter group of automorphisms in the algebra, as long as it admits
a suitable analytic extension. This property, known as the KMS condition, was used by Haag,
Hugenholtz, and Winnink (1967) as a definition for equilibrium states in an algebraic setting.

It should be pointed out that while Eq. (2.3.27) is sufficient for 𝐶∗-algebras, general ∗-algebras are
more subtle and require other additional conditions for the expectation values of the form 𝜔(𝐴1 ⋯𝐴𝑛)
with 𝑛 > 2 (see Hollands and Wald 2015). Nevertheless, our main focus is on Gaussian states, which
are completely determined by the two-point function. Hence, for our purposes, Eq. (2.3.27) is
enough. We say that a state satisfying Eq. (2.3.27) is a KMS state for the one-parameter group of
automorphisms 𝜃𝑡 at inverse temperature 𝛽.

There is an important difference between how we defined vacua and how we defined KMS states.
Notice that a vacuum for us is a state that is Gaussian and pure. These properties are related exclusively
to the state and the algebra of observables, and are independent of any other choice or input from
the physicist. Hence, given a state on an algebra of observables, one can immediately say whether it
is a vacuum. KMS states, on the other hand, depend on the choice of a group of automorphisms.
In other words, it depends on a choice of time evolution. Two different choices of time evolution
might disagree on whether a given state is a KMS state. Hence, thermal equilibrium depends on
something in addition to the state itself. In QFTCS this is relevant because different observers will
have different definitions of time evolution. Hence, a state might be a KMS state for an observer, but
not for another. Furthermore, two different observers might agree that a state is a KMS state, but
disagree on what is its temperature. This is well illustrated by the Unruh effect, which shows that
different observers can perceive the same vacuum state as having different temperatures depending
on their acceleration.
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2.4 Four Paths to the Unruh Effect
Once the basis of the theory has been outlined, let us consider the case of acceleration-induced
thermality in Minkowski spacetime. We shall do this discussion in four different ways, since each of
them can play different roles in explaining the physics going on. Furthermore, since experimental
probing of the Unruh effect has only recently begun (the first claim of a direct observation has been
made by Lynch et al. 2021), the existence ofmany paths to the same conclusion helps us to understand
why it must be true.

Before we get to the actual calculations, let us explain what we are about to do. The Fulling–
Davies–Unruh effect (Davies 1975; Fulling 1973; Unruh 1976), often called simply the Unruh effect,
is the result that “for a […] quantum field in its vacuum state in Minkowski spacetime, an observer
with uniform acceleration 𝑎 will feel that he is bathed by a thermal distribution of quanta of the
field at temperature 𝑇 given by 𝑘𝛣𝑇 = ℏ𝑎

2𝜋𝑐” (Unruh and Wald 1984). It consists of a prediction made
with QFTCS methods in flat spacetime, and challenges one’s usual understanding of the meaning of
“particles”, since different observers are shown to have different particle interpretations of the same
physical state. More details will be given in the following discussion, and even more can be found in
the review by Crispino, Higuchi, and Matsas (2008).

In all of the following approaches, we consider Minkowski spacetime,ℳ = (ℝ4, 𝜂𝑎𝑏 ). The line
element is given in Cartesian coordinates by

d𝑠2 = − d𝑡2 + d𝑥2 + d𝑦2 + d𝑧2 . (2.4.1)

When analyzing the Unruh effect, our interest will not be in the entire Minkowski spacetime,
but rather on a region known as the right Rindler wedge (Rindler 1966). We will denote it by

𝑅 = {(𝑡, 𝑥, 𝑦, 𝑧) ∈ ℝ4; 𝑥 > |𝑡|}. (2.4.2)

This region can be understood as a globally hyperbolic spacetime in its own right, and it is particularly
useful to mimic some properties found in black hole spacetimes. Many properties of the Rindler
spacetime are reviewed, for example, in the books by Ellis and Williams (2000, Sec. 4.3) and Rindler
(2006, Sec. 12. 4). Since the literature on this spacetime is vast, we shall state some of its properties
without proof.

It is convenient for our purposes to cover the Rindler spacetime using the so-called Rindler
coordinates (Rindler 1966, 2006, Sec. 12.4). We define them through

𝑡 = 𝑟 sinh 𝑎𝜂 and 𝑥 = 𝑟 cosh 𝑎𝜂, (2.4.3)

for constant 𝑎 > 0. They are illustrated on Fig. 2.3 on the next page. This definition leads to the line
element

d𝑠2 = −𝑎2𝑟2 d𝜂2 + d𝑟2 + d𝑦2 + d𝑧2 . (2.4.4)

Radar coordinates (Minguzzi 2005), which use 𝑟 = 𝑎−1𝑒𝑎𝜉, are also common in the literature.
Notice that surfaces of constant 𝜂 are Cauchy surfaces. Furthermore, the spacetime is static with

Killing field ( 𝜕
𝜕𝜂)

𝑎
. Since a four-dimensional spacetime has at most ten Killing fields and this is a

section of Minkowski spacetime—which has its Killing fields as Poincaré transformations—we know
that this Killing field is somehow related to Poincaré transformations. It turns out it is simply the



28 2. Quantum Field Theory in Curved Spacetime

𝑟 =
0

𝜂 =
+∞

𝑟 = 0

𝜂 = −∞

Figure 2.3: Depiction of how the Rindler coordinates given on Eq. (2.4.3) on the previous page cover the
right Rindler wedge. The hyperbolae are curves of constant 𝑟, while the straight lines are curves of
constant 𝜂.

generator of boosts along the 𝑥 direction. It also happens to be proportional to the four-velocities of
observers with constant proper acceleration. In fact, the parameter 𝑎 introduced earlier is the proper
acceleration of the observers moving along the locus with 𝜂𝑎𝑏 (

𝜕
𝜕𝜂)

𝑎
( 𝜕
𝜕𝜂)

𝑏
= −1.

The orbits induced by Lorentz boosts on Minkowski spacetime are illustrated on Fig. 2.4 on the
facing page.

Algebraic Approach

Our first derivation follows the algebraic spirit we have been establishing so far. We follow the
discussion given by Hollands and Wald (2015, Sec. 2.2.a).

To obtain the desired QFT, we can simply consider the algebra of observables𝒜(ℳ), but now
restrict it to only (linear combinations, products, and involutions of) observables of the form 𝜙(𝑓)
with supp𝑓 ⊆ 𝑅 (a condition that implies supp𝑓 ∩ 𝜕𝑅 = ∅). Through this restriction, we get to the
subalgebra𝒜(𝑅) ⊆ 𝒜(ℳ).

If𝜔 is a state on𝒜(ℳ), it is also a state on𝒜(𝑅)—after all, we are simply considering less observables.
Hence, the Minkowski vacuum defines a state on𝒜(𝑅). We desire to characterize it.

For simplicity, let us assume a massless field. In this case, we know that the two-point function is
given by

𝑊2(𝑥1, 𝑥2) = w-lim
𝜀→0+

1
4𝜋2(𝑥𝜇1 − 𝑥

𝜇
2 − 𝑖𝜀𝑇

𝜇)(𝑥1𝜇 − 𝑥2𝜇 − 𝑖𝜀𝑇𝜇 )
, (2.4.5)

which can be derived using the expressions given by Bogoliubov and Shirkov (1982, App. V.2). w-lim
is the weak limit discussed on Appendix A and 𝑇𝑎 stands for any future-directed timelike vector.
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𝑆

Σ𝑅Σ𝐿

𝑅𝐿

𝐹

𝑃

𝔥𝛢

𝔥𝛣

Figure 2.4: Orbits induced by Lorentz boosts on 1 + 1-dimensional Minkowski spacetime. Notice that on
the left and right Rindler wedges (𝐿 and 𝑅, respectively) the orbits are timelike, while they are
spacelike on the remaining wedges. On the null hypersurfaces 𝔥𝛢 = {(𝑡, 𝑥, 𝑦, 𝑧) ∈ ℝ4; 𝑡 = 𝑥} and 𝔥𝛣 =
{(𝑡, 𝑥, 𝑦, 𝑧) ∈ ℝ4; 𝑡 = −𝑥} that separate the wedges the orbits are also null. The spacelike submanifold
𝑆 = 𝔥𝛢 ∩ 𝔥𝛣 is comprised of fixed points of the isometry orbits. Σ𝑅 (resp. Σ𝐿) is a Cauchy surface for
the right (left) Rindler wedge.

Taking it to be ( 𝜕
𝜕𝑡)

𝑎
, we find that, in Cartesian coordinates,

𝑊2(𝑥1, 𝑥2) = w-lim
𝜀→0+

1
4𝜋2[(𝑥1 − 𝑥2)2 + (𝑦1 − 𝑦2)2 + (𝑧1 − 𝑧2)2 − (𝑡1 − 𝑡2 − 𝑖𝜀)2]

. (2.4.6)

These expressions hold for the entire Minkowski spacetime, not only on the right Rindler wedge.
In particular, notice theymean there are correlations between the left and right Rindler wedges, where
the left wedge is defined as 𝐿 = {(𝑡, 𝑥, 𝑦, 𝑧) ∈ ℝ4; 𝑥 < −|𝑡|}. When restricting the Minkowski vacuum
to the right Rindler wedge, we drop these correlations, meaning the state can no longer be pure*.

It turns out the state is not only mixed, but also a KMS state at inverse temperature 𝛽 = 2𝜋
𝑎 for

the isometry 𝜂 ↦ 𝜂 + 𝜏, where 𝜏 is some arbitrary parameter. In other words, it is thermal with
respect to the time-evolution prescribed by accelerated observers, with temperature proportional to
the acceleration.

To see this in the algebraic approach, we must show that the state satisfies the KMS condition.
The Minkowski vacuum is Gaussian, and hence we essentially want to show that (for a more careful
discussion, see Hollands and Wald 2015)

𝜔(𝜙(𝑓)𝜃𝜏+𝑖𝛽(𝜙(𝑔))) = 𝜔(𝜃𝜏(𝜙(𝑓))𝜙(𝑔)), (2.4.7)

where 𝜃 denotes the isometry 𝜂 ↦ 𝜂 + 𝜏. To do so, one can use Eqs. (2.4.3) and (2.4.6) on page 27
and on this page to show that

𝑊2(𝑥1, 𝜃𝜏+𝑖𝛽(𝑥2)) = 𝑊2(𝜃𝜏(𝑥2), 𝑥1). (2.4.8)
*This follows from the Reeh–Schlieder theorem. See, for example, the discussion given by Clifton and Halvorson

(2001, Sec. 3).
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This can be shown by direct calculation.
As noted by Sewell (1982), this is a special case of a more general theorem by Bisognano and

Wichmann (1975, 1976). A discussion on this more technical result is given byHaag (1996, Sec. V.4.1).
Since it holds in themore general context of axiomaticQFT, it also applies to interacting field theories.

Fock Representation Approach

A second approach to deriving the Unruh effect employs the ideas we briefly discuss in Section 2.A on
page 47. Namely, it exploits the fact that there is a natural choice of Fock representation of the CCR
on a stationary spacetime. This also happens to be the most common derivation of the Unruh effect,
and hence I shall only mention it briefly. More details can be found, for example, in the discussions
by Crispino, Higuchi, and Matsas (2008), Mukhanov and Winitzki (2007, Chap. 8), and Wald (1994,
Chap. 5), among others. The general technique is based on the papers by Hawking (1975) and Wald
(1975), which were originally concerned not with the Unruh effect, but rather with the Hawking
effect, which we shall briefly discuss at the end of this section.

The idea is the following. A stationary spacetime admits a natural notion of vacuum, as discussed
in Section 2.A and references therein. The GNS representation of this vacuum gives rise to a Fock
space. Hence, in spacetimes where two stationary Killing fields are available, we can try to relate these
two Fock representations. This is the case for Minkowski spacetime, since we can choose to work in
the Fock spaceℱ𝛭 induced by the Minkowski vacuum or in the Fock spaceℱ𝐿 ⊗ℱ𝑅 induced by the
Rindler vacuum (see Section 2.A) on each of the Rindler wedges.

In this situation it is possible to relate the creation and annihilation operators in the different Fock
spaces. This is known as a Bogoliubov transformation (Bogoliubov 1947). Using this Bogoliubov
transformation it is possible to formally obtain an 𝑆-matrix 𝑆∶ ℱ𝛭 → ℱ𝐿 ⊗ℱ𝑅, which translates one
representation into the other. After expressing the Minkowski vacuum inℱ𝐿 ⊗ℱ𝑅 one can trace out
themodes inℱ𝐿. This leaves a state inℱ𝑅 formally described as a thermal densitymatrix at temperature
𝑇 = 𝑎

2𝜋 .
This derivation is particularly interesting because it provides a first glance on how the notion

of particle depends on the particular choice of representation. In the presence of more than one
admissible representation, there is more than one admissible notion of particle and they will not
coincide in general. The same state might have none or infinitely many particles depending on the
chosen representation.

The approach sketched above was introduced by Wald (1975) when working on the Hawking
effect, before the Unruh effect was actually discovered. The earlier work by Hawking (1975) was able
to conclude thermality by simply computing the expectation value of the number of particles in the
new representation without actually computing the full state.

Euclidean Path Integral Approach

Given thatmuchof the remaining chapters of this thesiswill rely onEuclideanpath integral techniques,
it is instructive for us to also discuss the Unruh effect in this formulation. Our calculation mostly
follows the original one due toUnruh andWeiss (1984), but Crispino, Higuchi, andMatsas (2008, Sec.
II.I) also present a summarized version. We shall postpone a more technical discussion of Euclidean
path integral techniques to Section 2.5.
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Using Euclidean path integrals, we intend to show that the equality*

⟨0𝛭|𝒯𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛)|0𝛭⟩ =
Tr[𝑒−𝛽𝛨𝑅𝒯𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛)]

Tr[𝑒−𝛽𝛨𝑅]
(2.4.9)

holds for all events 𝑥1, … , 𝑥𝑛 ∈ 𝑅when 𝛽 = 2𝜋
𝑎 . In the previous expression,𝐻𝑅 is the Rindler Hamilto-

nian, i.e., the generator of translations with respect to proper time for an accelerated observer with
acceleration 𝑎. This is a different way of saying that𝐻𝑅 generates translations with respect to 𝜂, or
alternatively that it is 𝑎 times the boost generator.

Let us begin by writing𝐻𝑅 down explicitly. The general action for a scalar field in Minkowski
spacetime is

𝑆[𝜙] = −∫[12∇𝑎 𝜙∇
𝑎𝜙 + 𝑉(𝜙)]√−𝑔 d4𝑥 , (2.4.10)

where 𝑔 is the determinant of the metric—we don’t write it as 𝜂 to avoid confusion with the Rindler
coordinate 𝜂. We chose to write the action in this way because it allows us to simply see how it will
occur in non-inertial coordinates. Notice also that this time we added a general interaction potential
𝑉(𝜙), and hence this derivation is not restricted to free or massless fields.

Using Eq. (2.4.4) on page 27, we can see that the action can be written in Rindler coordinates as

𝑆[𝜙] = ∫
𝑟>0

[ 1
2(𝑎𝑟)2

(
𝜕𝜙
𝜕𝜂 )

2

− 1
2(

𝜕𝜙
𝜕𝑟 )

2

−
(∇⃗⟂𝜙)

2

2 − 𝑉(𝜙)]𝑎𝑟 d𝜂 d𝑟 d2𝑥⟂ , (2.4.11)

where we are writing �⃗�⟂ = (𝑦, 𝑧).
There is a difference between Eqs. (2.4.10) and (2.4.11) that should be pointed out. While

Eq. (2.4.10) is integrating over modes over the entire Minkowski spacetime, Eq. (2.4.11) is written in a
coordinate system that is only defined on the right Rindler wedge. Hence, in writing Eq. (2.4.11), we
are already assuming we are only paying attention to what happens on the right Rindler wedge.

In Rindler coordinates, the momentum canonically conjugate to 𝜙 is given by

𝜋 = 𝛿𝑆
𝛿(𝜕𝜂𝜙)

=
𝜕𝜂𝜙
𝑎𝑟 ≡ 1

𝑎𝑟
𝜕𝜙
𝜕𝜂 . (2.4.12)

Therefore, we get to the Hamiltonian

𝐻𝑅 = ∫
𝑟>0

[𝜋
2

2 + 1
2(

𝜕𝜙
𝜕𝑟 )

2

+
(∇⃗⟂𝜙)

2

2 + 𝑉(𝜙)]𝑎𝑟 d𝑟 d2𝑥⟂ . (2.4.13)

We then consider the partition function

𝑍𝑅(𝛽) ≡ Tr[𝑒−𝛽𝛨𝑅]. (2.4.14)

As a path integral, it can be written as (Năstase 2020, Chap. 71)

𝑍𝑅(𝛽) = ∫
𝜙(0)=𝜙(𝛽)

exp (−∫
𝑟>0

∫
𝛽

0
𝑎𝑟[𝜋

2

2 + 1
2(

𝜕𝜙
𝜕𝑟 )

2

+
(∇⃗⟂𝜙)

2

2 + 𝑉(𝜙)] − 𝑖𝜋
𝜕𝜙
𝜕𝜏 d𝜏 d𝑟 d2𝑥⟂)𝒟𝜙𝒟𝜋 ,

(2.4.15)
*Notice that the time ordering operator 𝒯 can be regarded as a coordinate-independent object. If 𝑥 ∈ 𝐽+(𝑦), this

happens in all coordinate systems, and hence the action of𝒯 on 𝜙(𝑥)𝜙(𝑦) also does. If 𝑥 and 𝑦 are spacelike related, then
𝜙(𝑥) and 𝜙(𝑦) commute and their ordering is irrelevant.



32 2. Quantum Field Theory in Curved Spacetime

where𝜙(0) = 𝜙(𝛽)means the integral runs over field configurationswith periodic boundary conditions
in 𝜏with period 𝛽.

The integral over 𝜋 is Gaussian. It can be solved by noticing that

𝑎𝑟𝜋2

2 − 𝑖𝜋
𝜕𝜙
𝜕𝜏 = 𝑎𝑟

2 (𝜋 −
𝑖
𝑎𝑟

𝜕𝜙
𝜕𝜏 )

2

+ 1
2𝑎𝑟(

𝜕𝜙
𝜕𝜏 )

2

. (2.4.16)

Therefore, up to a superfluous normalization factor, one has

𝑍𝑅(𝛽) = ∫
𝜙(0)=𝜙(𝛽)

exp (−∫
𝑟>0

∫
𝛽

0

1
2𝑎𝑟(

𝜕𝜙
𝜕𝜏 )

2

+ 𝑎𝑟[12(
𝜕𝜙
𝜕𝑟 )

2

+
(∇⃗⟂𝜙)

2

2 + 𝑉(𝜙)] d𝜏d𝑟 d2𝑥⟂)𝒟𝜙 .

(2.4.17)
Notice this expression can be understood in terms of the Euclidean, finite-temperature version of

Eq. (2.4.11) on the preceding page. Namely,

𝑍𝑅(𝛽) = ∫
𝜙(0)=𝜙(𝛽)

𝑒−𝑆
𝛽
𝑅𝛦[𝜙]𝒟𝜙 , (2.4.18)

where the subscripts “𝑅𝐸” stand for “Rindler” and “Euclidean”. Notice that if we had chosen other
coordinate systems—such as an inertial coordinate system—the Euclidean action could be different
(see the discussion in Section 2.5).

We are free to perform the integral in the exponent of Eq. (2.4.17) in whichever way we see fit. In
particular, we can perform a change of variables according to

𝑡𝛦 = 𝑟 sin 𝑎𝜏 and 𝑥𝛦 = 𝑟 cos 𝑎𝜏. (2.4.19)

While these are inspired by our definition of Rindler coordinates, notice we are not changing to a
new coordinate chart on the manifold. We are only making a change of variables in the integral. One
can then show that

∫
𝑟>0

∫
𝛽

0

1
2𝑎𝑟(

𝜕𝜙
𝜕𝜏 )

2

+ 𝑎𝑟[12(
𝜕𝜙
𝜕𝑟 )

2

+
(∇⃗⟂𝜙)

2

2 + 𝑉(𝜙)] d𝜏d𝑟d2𝑥⟂

= ∫
𝛢

1
2(

𝜕𝜙
𝜕𝑡𝛦

)
2

+ 1
2(

𝜕𝜙
𝜕𝑥𝛦

)
2

+ 1
2(∇⃗⟂𝜙)

2 + 𝑉(𝜙) d𝑡𝛦 d𝑥𝛦 d2𝑥⟂ , (2.4.20)

where the integration region 𝐴 is illustrated on Fig. 2.5 on the facing page. Notice that Eq. (2.4.19)
can only be single-valued if 𝛽𝑎 ≤ 2𝜋.

Consider now the case 𝛽 = 2𝜋
𝑎 . We can then write

𝑍𝑅(
2𝜋
𝑎 ) = ∫ exp (−∫ 1

2(∇⃗4𝜙)
2
+ 𝑉(𝜙) d4𝑥𝛦)𝒟𝜙 , (2.4.21)

where we dropped the condition 𝜙(0) = 𝜙(𝛽), because it is now automatically implemented by the
new variables. Notice, however, that the RHS of Eq. (2.4.21) is merely the generating functional at
zero source for the theory in inertial coordinates. Hence,

𝑍𝑅(𝛽) = ∫𝑒−𝑆𝑖𝛦[𝜙]𝒟𝜙 , (2.4.22)
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𝜏 = 𝛽

𝜏 = 0 𝑟

𝜏

𝐴0

(a)

𝑎𝛽
𝑥𝛦

𝑡𝛦

𝐴

(b)

Figure 2.5: Integration region before (𝐴0) and after (𝐴) the coordinate transformation done on Eq. (2.4.19) on
the preceding page. Based on Figure 1 of the paper by Unruh and Weiss (1984).

where “𝑖𝐸” stands for “inertial” and “Euclidean”.
These ideas can be generalized in a straightforward manner to a generating functional in the

presence of a source, 𝑍[𝐽]. In this case, functional derivatives with respect to the source allow us to
obtain the 𝑛-point correlation functions. We then find that

⟨0𝛭|𝜙(𝑥1𝛦) ⋯ 𝜙(𝑥
𝑛
𝛦 )|0𝛭⟩ =

Tr[𝑒−𝛽𝛨𝑅𝜙(𝑥1𝛦) ⋯ 𝜙(𝑥𝑛𝛦 )]
Tr[𝑒−𝛽𝛨𝑅]

. (2.4.23)

Notice this is not Eq. (2.4.9) on page 31. Eq. (2.4.23) is an equality among correlation functions on a
spacetime of Euclidean signature. However, the RHS of Eq. (2.4.9) on page 31 can be obtained from
the RHS of Eq. (2.4.23) by means of the analytic continuation 𝜏 = 𝑖𝜂—this is how we went from
Eq. (2.4.14) on page 31 to Eq. (2.4.15) on page 31. Similarly, the LHS of Eq. (2.4.9) on page 31 can be
obtained from the LHS of Eq. (2.4.23) under 𝑡𝛦 = 𝑖𝑡 (see Section 2.5). Nevertheless, as one might
notice from Eqs. (2.4.3) and (2.4.19) on page 27 and on the facing page, it turns out that 𝜏 = 𝑖𝜂 and
𝑡𝛦 = 𝑖𝑡 are actually the same analytic continuation. Hence, Eq. (2.4.23) implies Eq. (2.4.9) on page 31,
concluding our proof.

Particle Detector Approach

Another interesting approach for deriving theUnruh effect is to employ a particle detector. This allows
us to obtain a different point of view on the effect, and will also provide us with useful experience for
when we start working more closely with particle detectors in Chapter 4.

We shall consider an Unruh–DeWitt detector (DeWitt 1979; Unruh 1976). This is a two-level
detector that can be excited or de-excited through interactions with the quantum field, similar to how
an ammonia molecule can flip states upon interaction with an external electric field (see Feynman,
Leighton, and Sands 2011, Chap. 9). Intuitively, the detector will flip from the ground state to the
excited state when it absorbs a “particle”, and will decay when it emits a “particle”. Pictorially, we are
considering a “particle in a box” that can interact with the field. For example, we are carrying around
an electron in a box and use it to measure properties of the electromagnetic field. Further details are
given by Unruh and Wald (1984) and Wald (1994, Sec. 3.3). Our discussion follows the review given
by Burbano, Perche, and Torres (2021) and also draws from the seminal works by DeWitt (1979) and
Unruh (1976).
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We have already discussed at length how to describe a quantum field. For the detector, we shall
consider a two-level quantum system—i.e., a qubit— with free Hamiltonian

𝐻Ω = Ω
2 𝜎

𝑧, (2.4.24)

where 𝜎𝑧 is the Pauli matrix andΩ is a constant with dimension of energy. It represents the energy
gap between the ground and excited states of the detector. Since we want the excited state to have an
energy larger than that of the ground state, we assumeΩ > 0. Notice that𝐻Ω generates translations
with respect to the detector’s proper time.

We shall also introduce an interaction between the quantum field and the detector. We write, in
the interaction picture,

𝐻int = 𝜖𝜎𝑥(𝜏) ⊗ 𝜙(𝑧(𝜏)), (2.4.25)

where 𝜖 is a coupling constant, 𝜎𝑥(𝜏) is the Pauli matrix (which evolves in the interaction picture), 𝜙 is
the quantum field, and 𝑧(𝜏) denotes the detector’s worldline. Hence, we are prescribing a pointlike
interaction between detector and field along the detector’s worldline. This interaction could be more
complex to allow us to turn the detector on and off, or to allow for the detector to have spatial degrees
of freedom. We shall illustrate these more elaborate choices in Chapter 4, but this simple model is
sufficient for our present purposes.

The quantum field also evolves with some Hamiltonian𝐻𝜙. This Hamiltonian evolves the field
along inertial time, and hence we need to introduce a correction factor to account for the evolution
with respect to the detector’s proper time. This is merely a factor of d𝑡

d𝜏 , since

𝑖 d
d𝜏 = 𝑖 d𝑡d𝜏

d
d𝑡 =

d𝑡
d𝜏𝐻𝜙. (2.4.26)

At the end of the day, we have the Hamiltonian

𝐻 = d𝑡
d𝜏𝐻𝜙 +

Ω
2 𝜎

𝑧 + 𝜖𝜎𝑥(𝜏) ⊗ 𝜙(𝑧(𝜏)). (2.4.27)

Let us then compute the excitation probability for the detector. Consider the system’s initial state
is ∣𝑔, 0⟩ = ∣𝑔⟩ ⊗ |0⟩, where ∣𝑔⟩ denotes the detector’s ground state and |0⟩ denotes the vacuum. We are
mainly interested in the Minkowski vacuum, but most of our calculation also works for other states
and spacetimes. We want to compute the probability that the system undergoes a transition to some
state ∣𝑒, 𝜙⟩ = |𝑒⟩ ⊗ ∣𝜙⟩, where |𝑒⟩ is the detector’s excited state and ∣𝜙⟩ is an arbitrary field state. Hence,
we are first trying to compute the amplitude

𝐴𝑔→𝑒(𝜙) = ⟨𝑒, 𝜙∣𝑈int∣𝑔, 0⟩ , (2.4.28)

where𝑈int is the time-evolution operator in the interaction picture.
To compute this expression, we begin by writing the time-evolution operator as a Dyson series

(Weinberg 2015, Eq. (8.7.13))

𝑈int(𝜏
′, 𝜏) = 𝒯 exp (−𝑖∫

𝜏′

𝜏
𝐻int(𝜏1) d𝜏1), (2.4.29a)

= 1 +
+∞
∑
𝑛=1

(−𝑖)𝑛

𝑛! ∫
𝜏′

𝜏
⋯∫

𝜏′

𝜏
𝒯(𝐻int(𝜏1) ⋯𝐻int(𝜏𝑛)) d𝜏1 ⋯ d𝜏𝑛 , (2.4.29b)
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where𝒯 is the time-ordering operator.
Using Eq. (2.4.25) on the preceding page on the Dyson series, we find that

𝑈int(𝜏
′, 𝜏) = 1 +

+∞
∑
𝑛=1

(−𝑖𝜖)𝑛

𝑛! ∫
𝜏′

𝜏
⋯∫

𝜏′

𝜏
𝒯[(𝜎𝑥(𝜏1) ⋯ 𝜎

𝑥(𝜏𝑛)) ⊗ (𝜙(𝜏1) ⋯ 𝜙(𝜏𝑛))] d𝜏1 ⋯ d𝜏𝑛 , (2.4.30)

where we have now adopted the simplified notation 𝜙(𝜏) ≡ 𝜙(𝑧(𝜏)).
Let us then consider the amplitude we are interested in. When computing ⟨𝑒, 𝜙∣𝑈int∣𝑔, 0⟩, we can

immediately see the identity drops out, since the two states are orthogonal. Hence, we are left with

𝐴𝑔→𝑒(𝜙; 𝜏, 𝜏
′) =

+∞
∑
𝑛=1

(−𝑖𝜖)𝑛

𝑛! ∫
𝜏′

𝜏
⋯∫

𝜏′

𝜏
⟨𝑒, 𝜙∣𝒯[(𝜎𝑥(𝜏1) ⋯ 𝜎

𝑥(𝜏𝑛)) ⊗ (𝜙(𝜏1) ⋯ 𝜙(𝜏𝑛))]∣𝑔, 0⟩ d𝜏1 ⋯d𝜏𝑛 .

(2.4.31)
Notice that

⟨𝑒, 𝜙∣𝒯[(𝜎𝑥(𝜏1) ⋯ 𝜎
𝑥(𝜏𝑛)) ⊗ (𝜙(𝜏1) ⋯ 𝜙(𝜏𝑛))]∣𝑔, 0⟩ = ⟨𝑒∣𝒯(𝜎𝑥(𝜏1) ⋯ 𝜎

𝑥(𝜏𝑛))∣𝑔⟩ ⟨𝜙∣𝒯(𝜙(𝜏1) ⋯ 𝜙(𝜏𝑛))∣0⟩ .
(2.4.32)

At this stage, we cannot simplify the 𝑛-point function, but we can proceed with our calculation for
the detector factor.

Let us begin by noticing that we can write 𝜎𝑥 in terms of ladder operators as

𝜎𝑥 = 𝜎+ + 𝜎−, (2.4.33)

where
𝜎± = 𝜎𝑥 ± 𝑖𝜎𝑦

2 . (2.4.34)

The advantage of noticing this is that

𝜎+ ∣𝑔⟩ = |𝑒⟩ , 𝜎+ |𝑒⟩ = 0, 𝜎− ∣𝑔⟩ = 0, and 𝜎− |𝑒⟩ = ∣𝑔⟩ , (2.4.35)

which imply
𝜎𝑥 ∣𝑔⟩ = |𝑒⟩ and 𝜎𝑥 |𝑒⟩ = ∣𝑔⟩ . (2.4.36)

We then consider the slightly more complicated case where the Pauli matrix is being evolved in
time, since we are working in the interaction picture. We then have

𝜎𝑥(𝜏) ∣𝑔⟩ = exp (𝑖𝜏𝐻Ω)𝜎
𝑥 exp (−𝑖𝜏𝐻Ω) ∣𝑔⟩ , (2.4.37a)

= exp (𝑖𝜏𝐻Ω)𝜎
𝑥 exp (+𝑖𝜏Ω2 ) ∣𝑔⟩ , (2.4.37b)

= exp (+𝑖𝜏Ω2 ) exp (𝑖𝜏𝐻Ω)𝜎
𝑥 ∣𝑔⟩ , (2.4.37c)

= exp (+𝑖𝜏Ω2 ) exp (𝑖𝜏𝐻Ω) |𝑒⟩ , (2.4.37d)

= exp (+𝑖𝜏Ω2 ) exp (+𝑖𝜏Ω2 ) |𝑒⟩ , (2.4.37e)

= exp (+𝑖𝜏Ω) |𝑒⟩ . (2.4.37f)

An analogous calculation leads to

𝜎𝑥(𝜏) |𝑒⟩ = exp (−𝑖𝜏Ω) ∣𝑔⟩ . (2.4.38)
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Therefore, we find that

⟨𝑒∣𝜎𝑥(𝜏1) ⋯ 𝜎
𝑥(𝜏𝑛)∣𝑔⟩ = {

𝑒𝑖Ω(𝜏1−𝜏2+𝜏3−⋯+𝜏𝑛), if 𝑛 is odd,
0, if 𝑛 is even.

(2.4.39)

In the time-ordered case, we get a similar result, but we must order the terms in the exponential
correctly. Hence, we shall simply denote

⟨𝑒∣𝒯(𝜎𝑥(𝜏1) ⋯ 𝜎
𝑥(𝜏2𝑛+1))∣𝑔⟩ = 𝒯𝑒𝑖Ω(𝜏1−𝜏2+𝜏3−⋯+𝜏2𝑛+1), (2.4.40)

and the expression vanishes if there is an even number of insertions.
Bringing all of this back to the Dyson series, we find that

𝐴𝑔→𝑒(𝜙; 𝜏, 𝜏
′) = ∑

𝑛 odd

(−𝑖𝜖)𝑛

𝑛! ∫
𝜏′

𝜏
⋯∫

𝜏′

𝜏
⟨𝜙∣𝒯(𝜙(𝜏1) ⋯ 𝜙(𝜏𝑛))∣0⟩𝒯𝑒

𝑖Ω(𝜏1−⋯+𝜏𝑛) d𝜏1 ⋯ d𝜏𝑛 . (2.4.41)

The probability for the transition happening between the instants 𝜏 and 𝜏′ is then

𝑝𝑔→𝑒(𝜏, 𝜏
′) = ∫ ∣𝐴𝑔→𝑒(𝜙; 𝜏, 𝜏

′)∣
2
𝒟𝜙 , (2.4.42)

where we are integrating the field’s state out, since we are looking only at the detector. Using the
resolution of the identity written as∫∣𝜙⟩⟨𝜙∣𝒟𝜙 = 1, we find that

𝑝𝑔→𝑒(𝜏, 𝜏
′) = ∑

𝑛,𝑚 odd
𝜖𝑛+𝑚 (−𝑖)

𝑛−𝑚

𝑛!𝑚! ∫
𝜏′

𝜏
⋯∫

𝜏′

𝜏
⟨0∣𝒯(𝜙(𝜏′1) ⋯ 𝜙(𝜏

′
𝑚))

†𝒯(𝜙(𝜏1) ⋯ 𝜙(𝜏𝑛))∣0⟩ ×

× 𝒯𝑒𝑖Ω(𝜏1−⋯+𝜏𝑛)𝒯𝑒−𝑖Ω(𝜏
′
1−⋯+𝜏

′
𝑚) d𝜏1 ⋯d𝜏𝑛 d𝜏′1 ⋯ d𝜏′𝑚 . (2.4.43)

Up to leading order, we have

𝑝𝑔→𝑒(𝜏, 𝜏
′) = 𝜖2∫

𝜏′

𝜏
∫

𝜏′

𝜏
⟨0∣𝜙(𝜏′1)𝜙(𝜏1)∣0⟩ 𝑒

−𝑖Ω(𝜏′1−𝜏1) d𝜏1 d𝜏′1 . (2.4.44)

Notice this expression means the probability of excitation is given by a Fourier transform of the
two-point function.

So far, we did not need to specify the details of the state |0⟩, the worldline of the detector, and not
even the spacetime we are working in. This exhibits how useful particle detectors can be in a myriad
of situations. Our case of interest concerns the Minkowski vacuum in Minkowski spacetime. For
an inertial detector, the proper time 𝜏would coincide with inertial time. In this case, we know the
two-point function only has contributions due to positive frequencies (this follows from Eq. (2.4.6)
on page 29), and hence the probability will vanish forΩ > 0, which is our case of interest. Hence, an
inertial detector will not detect any particles in the Minkowski vacuum, as expected. Nevertheless,
notice that accelerated detectors have different frequency decompositions and, as a consequence, may
lead to non-vanishing excitation probabilities.

Let us then specify the detector’s worldline. This can be done naturally in Rindler coordinates,
with which we specify the worldline as

𝑧𝜇(𝜏) = (𝜏; 1𝑎 , 0, 0). (2.4.45)
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We took 𝑟 = 1
𝑎 because this corresponds to the worldline of the observer with proper acceleration 𝑎

defining Rindler coordinates (Rindler 1966, 2006, Sec. 12.4). We also took the coordinates 𝑦(𝜏) =
𝑧(𝜏) = 0 for simplicity, but they could have been given any other constant value without altering the
following results.

Using Eqs. (2.4.3), (2.4.5) and (2.4.45) on page 27, on page 28 and on the preceding page, we
find that

⟨0𝛭∣𝜙(𝜏′1)𝜙(𝜏1)∣0𝛭⟩ = w-lim
𝜀→0+

𝑎2

4𝜋2[(cosh(𝑎𝜏′1) − cosh(𝑎(𝜏1 − 𝑖𝜀)))2 − (sinh(𝑎𝜏′1) − sinh(𝑎(𝜏1 − 𝑖𝜀)))2]
,

(2.4.46)
where we chose to align the arbitrary future-directed timelike vector 𝑇𝑎 of Eq. (2.4.5) on page 28
along the ( 𝜕

𝜕𝜂)
𝑎
direction, for this simplifies the expression. The previous equation can then be further

simplified using the properties of hyperbolic functions to get to

⟨0𝛭∣𝜙(𝜏′1)𝜙(𝜏1)∣0𝛭⟩ = w-lim
𝜀→0+

−𝑎2

16𝜋2 sinh2( 12𝑎(𝜏′1 − 𝜏1 − 𝑖𝜀))
. (2.4.47)

We can then notice that the probability of excitation is

𝑝𝑔→𝑒(𝜏, 𝜏
′) = − 𝑎2𝜖2

16𝜋2
lim
𝜀→0+

∫
𝜏′

𝜏
∫

𝜏′

𝜏

exp (−𝑖Ω(𝜏′1 − 𝜏1))
sinh2( 𝑎2 (𝜏′1 − 𝜏1 − 𝑖𝜀))

d𝜏′1 d𝜏1 , (2.4.48a)

= − 𝑎𝜖
2

8𝜋2
lim
𝜀→0+

∫
𝜏′

𝜏
∫

𝑎(𝜏′−𝜏1)/2

𝑎(𝜏−𝜏1)/2

exp (− 2𝑖Ω𝜂
𝑎 )

sinh2(𝜂 − 𝑖𝜀)
d𝜂 d𝜏1 , (2.4.48b)

where we defined 𝜂 = 𝑎(𝜏′1−𝜏1)
2 .

Let us then define the rate of excitation through

𝑅𝑔→𝑒 = lim
𝜏′→+∞
𝜏→−∞

𝑝𝑔→𝑒(𝜏, 𝜏
′)

𝜏′ − 𝜏 , (2.4.49a)

= − 𝑎𝜖
2

8𝜋2
lim
𝜀→0+

∫
+∞

−∞

exp (− 2𝑖Ω𝜂
𝑎 )

sinh2(𝜂 − 𝑖𝜀)
d𝜂 . (2.4.49b)

This Fourier transform can be computed using the residue theorem. One finds

𝑅𝑔→𝑒 =
𝜖2Ω

2𝜋(𝑒 2𝜋Ω𝑎 − 1)
. (2.4.50)

If we did the same calculations for the ∣𝑒, 𝜙⟩ → ∣𝑔, 0𝛭⟩ transition, we would get

𝑅𝑒→𝑔 =
𝜖2Ω

2𝜋(1 − 𝑒− 2𝜋Ω𝑎 )
, (2.4.51)

which is the same result withΩ → −Ω. Notice then that this implies

𝑅𝑔→𝑒

𝑅𝑒→𝑔
= 𝑒−

2𝜋Ω
𝑎 , (2.4.52)
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meaning the detector satisfies the detailed balance (see Tomé andOliveira 2015) at inverse temperature
𝛽 = 2𝜋

𝑎 . This is a hallmark of a system in thermal equilibrium.
Given how abstract our previous approaches can be, it is interesting to notice how “experimental”

this derivation is. While we used a simplified model for a particle detector, many physical systems can
be understood as detectors. For example, a thermometer. One can even take it further and understand
a steak as a particle detector, in which case the Unruh effect will present itself as a cooking method.

Hawking Effect

Historically, the Unruh effect was preceded by a similar prediction in a completely different scenario:
the Hawking effect (Hawking 1974, 1975).

In the Hawking effect, one considers a spacetime in which a star collapses to a black hole, as
illustrated on Fig. 2.6 on the next page. For simplicity, we will consider only the case of spherically
symmetric, uncharged collapse, although Hawking also treated the case in which the final black hole
is a general Kerr–Newman black hole.

It was found that a static observer at infinity would see particles coming from the Schwarzschild
black hole with a thermal spectrum at a temperature given by

𝑇𝛨 = 1
8𝜋𝑀. (2.4.53)

At the time, it was already expected that some sort of radiation would be emitted by rotating black
holes, but it was surprising that Hawking’s calculation also predicted the emission of radiation by
Schwarzschild black holes (a historical account is given by Almeida 2021).

Soon after Hawking’s calculation, Unruh (1976) investigated other aspects of the Hawking effect,
with two of his conclusions being

i. the previously discussed Unruh effect;

ii. that the Hawking effect could be derived in empty Schwarzschild spacetime, rather than on a
collapse spacetime, allowing for a simpler analysis. The presence of the star is exchanged by the
imposition of boundary conditions for the field in the past horizon of Schwarzschild spacetime.

In quantum parlance, “imposing boundary conditions on the quantum field” means to select a
quantum state. Hence, the state of the quantum field in Schwarzschild spacetime required for the
observation of the Hawking effect is known as the Unruh vacuum.

It is particularly interesting that the Unruh vacuum presents a singular behavior near the past
event horizon of Schwarzschild spacetime* (see Birrell and Davies 1982, Chap. 8, and references
therein). This might seem troublesome at first, but notice there is no issue: the region in which
the vacuum is singular does not exist physically. The presence of a collapsing star means there is no
actual past event horizon, and hence the state is indeed nonsingular throughout the whole physical
spacetime.

One might, however, wonder whether there is a state that is nonsingular throughout the whole
maximally-extended Schwarzschild spacetime. There is indeed, and it is known as the Hartle–
Hawking vacuum (Hartle and Hawking 1976). This state is stationary and leads to a prediction

*In the language of Section 2.B, it fails to be Hadamard due to its behavior near the past event horizon.
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ℐ+

ℐ−

𝑟
=
0

(o
rig

in
)

𝑟 = 0
(singularity)

Figure 2.6: Penrose diagram for a spacetime with a collapsing star (shaded area), as considered by Hawking
(1975). ℐ+ (resp. ℐ−) denotes the future (past) null infinity. It must be mentioned that this is a
classical diagram—quantum effects would lead the black hole to evaporate, as discussed in more
detail on the book by Wald (1994, Chap. 7).

similar to the Hawking effect. Namely, a static observer will see particles coming from the black hole
and from infinity with a thermal spectrum. This is an instance of the so-called Unruh effect in curved
spacetimes (see Wald 1994, Sec. 5.3, for a discussion).

Some QFTCS discussions will derive these predictions in curved spacetime by considering the
behavior of a static observer and argue with the equivalence principle that, since the observer has an
uniform acceleration, the Unruh effect should apply, and hence the static observer should see the
emission of particles with a thermal spectrum. While this argument does, e.g., lead to the correct
expression for the temperature, it leaves some important conceptual gaps unaddressed. For example, it
does not account for the difference between the predictions given by the Unruh andHartle–Hawking
vacua, and it also makes it difficult to understand why one expects to see thermal radiation coming
from a black hole, but not from regular spherical bodies, such as planets.

The argument is problematic because it fails to take into account important global properties. For
example, theHartle–Hawking vacuum is not physically acceptable in a collapsing star spacetime, for it
predicts the emergence of modes from a white hole region. If this region does not exist in the physical
spacetime, the Hartle–Hawking vacuum is not a reasonable model of physical reality. Similarly, the
Unruh vacuum is unacceptable in empty Schwarzschild spacetime because it is singular at the past
event horizon. Both of these vacua are inadmissible in a planetary spacetime because they predict field
modes falling down a future event horizon which simply does not exist if a planet is present. Hence,
in a planetary spacetime, a physically reasonable state would be, e.g., the Boulware vacuum (Boulware
1975). The Boulware vacuum is singular on both the future and past event horizons—which is
irrelevant in a planetary spacetime—but predicts no particles will be seem by a static observer (see
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Birrell and Davies 1982, Chap. 8, and references therein).
This example showcases two important aspects of the Hawking and Unruh effects. Firstly, that

the presence of a horizon plays a relevant role. In Minkowski spacetime, the horizon is also present,
for accelerated observers experience an event horizon similar to that of a black hole (see Ellis and
Williams 2000, Sec. 4.3; Rindler 2006, Sec. 12.4). In full generality, the relevant structure is known
as a bifurcate Killing horizon (see Wald 1994, Chap. 5, for details). Secondly, it shows our choice of
vacuum in curved spacetime might lead to strikingly different predictions. Just as in ordinary QM
and in the entirety of physics, in QFTCS it is meaningless to make any predictions without specifying
the physical states to which they apply.

Some more discussion about the properties of the different vacua of Schwarzschild spacetime
can be found on the books by Birrell and Davies (1982, Chap. 8) and Frolov and Novikov (1998, Sec.
11.2).

2.5 Euclidean Approach

In discussing the Unruh effect, we have also performed a calculation using an Euclidean path integral.
In the following chapters, we shall also make extensive use of Euclidean path integrals. How does this
approach relate to the algebraic approach we have been favoring so far?

As mentioned in the first few paragraphs of this chapter, the algebraic approach seems natural to
formulate QFTCS in full generality. It does not assume preferred vacuum states, observers, CCR
representations, special symmetries, and so on. Euclidean path integrals, on the other hand, consist of
performing path integral computations on a Riemannian manifold that should be understood as an
analytic continuation of a Lorentzian spacetime. One then analytically continues the results back to
the physical spacetime. These procedures might not be possible for all spacetimes. Furthermore, path
integrals assume a preferred state with respect to which the path integral is computed, and hence it is
important for us to wonder about which states can be represented by a path integral.

The simplest case is, of course, given by the Minkowski vacuum in Minkowski spacetime. In this
case, the Euclidean path integral approach can be formulated in a mathematically rigorous manner (at
least in some cases) and then shown to recover other approaches inMinkowski spacetime, as discussed
by Glimm and Jaffe (1987, Chaps. 6 and 19). At least on a formal level, the idea is the following. Using
an Euclidean path integral, one can write correlation functions, such as

𝑆𝑛(𝑥1, … , 𝑥𝑛) = ∫ exp (−𝑆[𝜙])𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛)𝒟𝜙 . (2.5.1)

The Euclidean 𝑛-point functions are sometimes referred to as “Schwinger functions” (Schwinger
1958). These functions can then be analytically continued back to Lorentzian signature to obtain
the time-ordered 𝑛-point functions. The analytic continuations happen by means of a procedure
often called “Wick rotation”: one first defines Euclidean (or imaginary) time 𝑡𝛦 through 𝑡 = −𝑖𝑡𝛦, and
later returns to Lorentzian signature by replacing 𝑡𝛦 = 𝑖𝑡 back. To illustrate it, consider a scalar field in
Minkowski spacetime. We have

𝑆𝑛(𝑥1, … , 𝑥𝑛) = ∫ exp (−∫ 1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝑉(𝜙) d4𝑥𝛦)𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛)𝒟𝜙 , (2.5.2a)

→∫ exp (−𝑖∫ 1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝑉(𝜙) d4𝑥)𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛)𝒟𝜙 , (2.5.2b)
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= ⟨0𝛭|𝒯𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛)|0𝛭⟩ . (2.5.2c)

The sign on the specification 𝑡 = −𝑖𝑡𝛦 is particularly important. It is related to the fact that the
Gaussian integrals used to evaluate the Lorentzian path integral on Eq. (2.5.2) on the facing page
assume that time has a small imaginary part, i.e., one makes the replacement 𝑡 → 𝑡(1 − 𝑖𝜀) and takes
the limit 𝜀 → 0+ at the end of the calculation to ensure the Gaussian formulae apply (Peskin and
Schroeder 1995, p. 286). Incidentally, this very same 𝑖𝜀 prescription is what ensures we are computing
the Feynman propagator rather than, e.g., the two-point function. Hence, it is essential that we
perform the Wick rotation according to 𝑡 = −𝑖𝑡𝛦, or we could get other time-orderings for the 𝑛-point
functions (for more details, see Hartman, Jain, and Kundu 2016). Notice the replacement 𝑡𝛦 = 𝑖𝑡 is
meant to be understood as 𝑡𝛦 = lim𝜃→ 𝜋

2
− 𝑒𝑖𝜃𝑡, or one will get the wrong 𝑖𝜀 prescription.

The first alarming issue of this prescription arises due to GR alone, without the need to consider
quantum theory. We wish to make an analytic continuation by considering a notion of “imaginary
time”, but not even “real time” has a straightforward definition in a general curved spacetime. Hence,
our first goal is to understand under which conditions we can give meaning to such a procedure.

Imaginary Time in Curved Spacetime

Let us attempt at making an Euclidean continuation of De Sitter spacetime, for the sake of having
an example (Percacci 2017, Sec. 5.2; Visser 2017). De Sitter spacetime can be covered with many
different coordinates, some of which are reviewed by Spradlin, Strominger, and Volovich (2001). Let
us mention a few possibilities with the cosmological constant set to Λ = 3 for simplicity. We can use
global coordinates, which have

d𝑠2 = − d𝑡2 + cosh2 𝑡( d𝑟2

1 − 𝑟2
+ 𝑟2 dΩ2), (2.5.3)

where dΩ2 is the usual line element on the 2-sphere. These coordinates have spherical spatial sections.
Alternatively, we could use planar spatial sections, which yield

d𝑠2 = − d𝑡2 + 𝑒−2𝑡(d𝑟2 + 𝑟2 dΩ2). (2.5.4)

We can also choose to use hyperbolic spatial sections, which lead to

d𝑠2 = − d𝑡2 + sinh2 𝑡( d𝑟2

1 + 𝑟2
+ 𝑟2 dΩ2). (2.5.5)

Lastly, a fourth interesting choice is to employ static coordinates, in which case the line element is

d𝑠2 = −(1 − 𝑟2) d𝑡2 + d𝑟2

1 − 𝑟2
+ 𝑟2 dΩ2 . (2.5.6)

Naively, we would expect to be able to obtain an Euclidean manifold “analytically related” to
De Sitter space by simply applying the prescription 𝑡 = −𝑖𝑡𝛦. If we carry this out with Eqs. (2.5.3)
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to (2.5.6) on the previous page, we find

d𝑠2 = d𝑡𝛦
2 + cos2 𝑡𝛦(

d𝑟2

1 − 𝑟2
+ 𝑟2 dΩ2), (2.5.7)

d𝑠2 = d𝑡𝛦
2 + 𝑒2𝑖𝑡𝛦(d𝑟2 + 𝑟2 dΩ2), (2.5.8)

d𝑠2 = d𝑡𝛦
2 − sin2 𝑡𝛦(

d𝑟2

1 + 𝑟2
+ 𝑟2 dΩ2), (2.5.9)

d𝑠2 = (1 − 𝑟2) d𝑡𝛦
2 + d𝑟2

1 − 𝑟2
+ 𝑟2 dΩ2 . (2.5.10)

Eqs. (2.5.7) and (2.5.10) are indeedRiemannianmetrics—in fact, they are just different coordinate
choices on the 4-sphere. Nevertheless, Eq. (2.5.9) is Lorentzian with the opposite sign convention,
and Eq. (2.5.8) is not even a real metric. If our naive prescription leads to these strange results, then
how can we know when we will be able to make such a continuation procedure and whether it will
work?

One way of dealing with this issue in a lot of generality is to give up on making a continuation on
time and instead making an analytic continuation of the metric itself. In essence, the idea starts with
the fact that, while any manifold admits a Riemannian metric, the existence of a Lorentzian metric
is equivalent to the existence of a non-vanishing (timelike) vector field 𝑡𝑎 (Hawking and Ellis 1973,
pp. 38–40). Using such a timelike vector field, we can then define an Euclidean metric 𝑔(𝛦)𝑎𝑏 from the
Lorentzian metric 𝑔(𝐿)𝑎𝑏 through

𝑔(𝛦)𝑎𝑏 = 𝑔(𝐿)𝑎𝑏 − 2
𝑡𝑎 𝑡𝑏

𝑔(𝐿)𝑐𝑑 𝑡𝑐𝑡𝑑
. (2.5.11)

This is guaranteed to provide a Riemannian metric for any choice of everywhere timelike vector field
𝑡𝑎. This approach is discussed in more detail by Candelas and Raine (1977), Gray (2016), Percacci
(2017), and Visser (2017), and it is particularly important within quantum gravity. It is important to
mention that this is not only an algebraic definition: the metric is being analytically continued to a
complex metric. This is essential for us to be able to analytically continue the quantum theory back
to Lorentzian signature later on. For further detail, see the previously mentioned references.

A problem with the prescription of Eq. (2.5.11) is that while it always yields a Riemannian metric
and it is coordinate-independent, there is no guarantee that it will yield the same metric for different
choices of vector field 𝑡𝑎. Nevertheless, our purposes are sufficiently restricted for this to not be
a problem. Our interest is within QFTCS, which is usually concerned with globally hyperbolic
spacetimes. This means we can exploit the fact that the spacetimes we are interested in always have the
topologyℝ × Σ for some spatial manifold Σ (Hawking and Ellis 1973, Proposition 6.6.8; Wald 1984,
Theorem 8.3.14). Hence, the spacetime topology already picks up a preferred notion of time that we
can use to define an Euclidean continuation. More specifically, the existence of a global time function
𝑡 is assured (Wald 1984, Theorem 8.3.14), and hence we have a preferred time direction given by
𝑡𝑎 = ∇𝑎 𝑡. Notice that in our example with De Sitter spacetime this notion of time corresponds to the
one on Eq. (2.5.3) on the preceding page, which employs coordinates covering the whole manifold.

Static coordinate charts will also always yield a Riemannian metric. Indeed, if we have a static
spacetime and are employing static coordinates, the line element will have the general form (Wald



2.5. Euclidean Approach 43

1984, Eq. (6.1.2))

d𝑠2 = −𝑉2(𝑥1, 𝑥2, 𝑥3) d𝑡2 +
3
∑
𝜇,𝜈=1

ℎ𝜇𝜈(𝑥
1, 𝑥2, 𝑥3) d𝑥𝜇 d𝑥𝜈 . (2.5.12)

Notice the prescription 𝑡 = −𝑖𝑡𝛦 will always lead to a Riemannian metric in this case. More specifically,
it leads to

d𝑠2 = +𝑉2(𝑥1, 𝑥2, 𝑥3) d𝑡𝛦
2 +

3
∑
𝜇,𝜈=1

ℎ𝜇𝜈(𝑥
1, 𝑥2, 𝑥3) d𝑥𝜇 d𝑥𝜈 . (2.5.13)

Notice that, in the language of Eq. (2.5.11) on the preceding page, this means we are picking 𝑡𝑎 to be
the static Killing field.

Therefore, when working with globally hyperbolic spacetimes and with static spacetimes we
are able to perform analytic continuations in a safe manner. It is also interesting to remark that the
perspective of Eq. (2.5.11) on the facing page becomes particularly important in spacetimes that are
stationary, but not static. Indeed, the naive prescription 𝑡 = −𝑖𝑡𝛦 would lead to imaginary off-diagonal
terms—as can be seen on the Kerr metric, for example—but the metric continuation procedure still
works.

As the upshot of this discussion, we see that there is some subtleties when attempting to analyti-
cally continue a spacetime. Nevertheless, we have a clear prescription for our goals. For example, we
are capable of “Euclideanizing” Schwarzschild, De Sitter, and Rindler spacetimes.

Analytic Continuation of Quantum States

Let us then assumewe areworking on a spacetimewhichdoes admit a reasonable analytic continuation.
We then proceed to write Eq. (2.5.1) on page 40 in this spacetime. Once we analytically continue
the Schwinger functions back to Lorentzian signature, we will end up with time-ordered 𝑛-point
functions. A question arises: with respect to which quantum state are these 𝑛-point functions
computed? This question can be overlooked when working with inertial observers in Minkowski
spacetime, for it assumes the existence of a privileged Poincaré invariant state—the Minkowski
vacuum—which is always the state of interest. Nevertheless, this need not be the case in curved
spacetime, where a preferred state cannot be taken for granted. Recall, for example, our discussion
about the Hawking effect in Section 2.4. We mentioned there are three particularly interesting
vacuum choices in Schwarzschild spacetime: the Unruh vacuum, the Hartle–Hawking vacuum, and
the Boulware vacuum. How can we distinguish among these states on a path integral?

Firstly, let us notice that to characterize a Gaussian state in a previously chosen spacetime it suffices
to prescribe its Feynman propagator. Indeed, the spacetime structure fixes the expectation value of
the commutator of fields (Eq. (2.3.14) on page 23), while the Feynman propagator can be used to
obtain the expectation value of the anticommutator (as one can conclude from the formulae given
by Fulling 1989, pp. 74–81; Wald 1994, Sec. 5.3). Using both expectation values, one obtains the
two-point function, which is enough to fully characterize a Gaussian state.

Therefore, our goal is to distinguish among the possible Feynman propagators. In the Euclidean
approach, the Feynman propagator is obtained from an analytic continuation of the two-point
Schwinger function, meaning we want to understand how different two-point Schwinger functions
might arise in the Euclidean spacetime.

The Feynman propagator 𝐹 relates to the time-ordered product of fields through

𝐹(𝑥, 𝑦) = 𝑖𝜔(𝒯𝜙(𝑥)𝜙(𝑦)) (2.5.14)
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and it solves the equation
Δ𝑥𝐹(𝑥, 𝑦) = 𝛿(𝑥, 𝑦), (2.5.15)

where the subindex 𝑥 denotes the variable with respect to which the derivatives are to be carried out
and Δ = −∇𝑎 ∇

𝑎 + 𝑚2. As a consequence, the two-point Schwinger function will satisfy*

Δ𝛦
𝑥 𝑆(𝑥, 𝑦) = 𝛿(𝑥, 𝑦), (2.5.16)

whereΔ𝛦 is the Euclidean analogue ofΔ. 𝑆 is still merely a Green’s function. Hence, to understand the
different possible vacua is to understand the possible Green’s functions for the operatorΔ𝛦. However,
just as we need the metric to be real analytic to perform an analytic continuation, we also need the
states to be sufficiently well-behaved. On intuitive grounds, we can expect that stationary states in
stationary spacetimes can be analytically continued to imaginary time, but there is no a priori reason
to expect this to be possible for every state.

As discussed by Wald (1979), the uniqueness of two-point Schwinger functions can then be
understood in terms of whether the operator Δ𝛦 ∶ 𝒞∞

0 (ℳ) → 𝐿2(ℳ) is essentially self-adjoint†, where
𝐿2(ℳ)denotes the space of square-integrable functions‡ onℳ. This property holds formanifoldswith
“negligible boundary” (Gaffney 1951). Among other examples, this includes complete Riemannian
manifolds (Gaffney 1954; see also Grigor’yan 2009, Sec. 11.3, for a direct proof). Hence, the two-point
Schwinger function is unique for complete Riemannian manifolds.

To understand this, let us consider the case of Minkowski spacetime. Its natural Euclideanization
in inertial coordinates is given byℝ4. Hence, the operator Δ𝛦 is given by

Δ𝛦 = −
4
∑
𝜇=1

𝜕2

𝜕(𝑥𝜇)2
+ 𝑚2. (2.5.17)

For simplicity, let us consider the massless case. Then the equation for the Schwinger function is

∇2
4 𝑆(𝑥, 𝑦) = −𝛿(𝑥, 𝑦), (2.5.18)

which means we simply desire to find the Green’s function for Poisson’s equation in 𝑑 = 4. This is
similar to an Electrostatics problem in𝑑 = 4 and hencewe can use arguments common in Electrostatics
(see, e.g.,Wald 2022, pp. 15–16) to argue that there is a unique function𝑆(𝑥) such that𝑆(𝑥, 𝑦) = 𝑆(𝑥−𝑦)
(ensured by translation symmetry) that solves Eq. (2.5.18) and vanishes at infinity sufficiently fast.
This unique solution is given by

𝑆(𝑥) = 1
4𝜋2𝑥𝜇𝑥𝜇

. (2.5.19)

*The coefficient on the RHS of Eq. (2.5.16) might seem wrong at first glance, but one should also remember to
analytically continue the Dirac delta. This procedure is more easily done if one writes Eq. (2.5.16) as∫Δ𝛦𝑆(𝑥, 𝑦) d4𝑥𝛦 = 1 to
get rid of the delta and notice the difference in coefficients comes from the Jacobian due to the Wick rotation.

†While physicists often just call an operator with the formal property 𝛢 = 𝛢† “Hermitian”, mathematicians are more
careful about the domain in which such an equality holds. “Essential self-adjointness” is one of the definitions that occur
and it is discussed by essentially any book on functional analysis. See the book by Reed and Simon (1980, Sec. VIII.2) for
further discussion.

‡The action for a free field involves the integral of the square of the field, often with operator insertions. We expect at
least the classical action to be finite, and hence it is reasonable to work with square-integrable functions. Otherwise, we
could run into classical configurations with infinite energy.



2.5. Euclidean Approach 45

The Wick rotation of this expression matches the expressions for ⟨0𝛭|𝒯𝜙(𝑥)𝜙(𝑦)|0𝛭⟩ given by Bo-
goliubov and Shirkov (1982, App. V.2).

ℝ4 is complete as a Riemannian manifold, and hence the results due to Gaffney (1951, 1954)
and Wald (1979) ensure the Schwinger function is unique. However, we can also interpret this by
making an analogy with Electrostatics. 𝑆(𝑥, 𝑦) can be understood as if it was the scalar potential at the
Euclidean event 𝑥 due to a point charge at 𝑦. Since we are considering Δ𝛦 as an operator on 𝐿2(ℳ),
we want∫𝑆(𝑥, 𝑦)𝑓(𝑦) d4𝑦 to be square-integrable when 𝑓 is square-integrable, and hence 𝑆(𝑥)must
vanish at infinity. This means we cannot add a solution of Laplace’s equation to 𝑆(𝑥) to obtain a
different possible solution, because solutions to the harmonic equation can only vanish at infinity if
they vanish everywhere. Furthermore, since we are considering the problem in the whole Euclidean
spacetime, we cannot use “image charges” outside of the region of interest to modify the solution.

The situation would change if we were interested in working with Rindler spacetime, for example.
It can be shown that the Euclideanization of the metric given on Eq. (2.4.4) on page 27 still describes
a piece of ℝ4, but not the whole ℝ4. Hence, we no longer have a complete manifold. From the
Electrostatics perspective, this means there are other regions where we can put “image charges” and
hence obtain other possible choices of Schwinger functions. This will then, of course, change the
boundary conditions on the Schwinger functions. If we want to consider Rindler spacetime with the
Minkowski vacuum, we are supposed to work with the Schwinger function given on Eq. (2.5.19) on
the preceding page. If we were to add “image charges” outside of the analytically continued Rindler
spacetime, we would be able to change the Schwinger function and obtain a different state upon
analytic continuation back to Lorentzian signature.

This is the essential feature of howone can select differentGaussian states on Euclidean spacetimes:
by selecting different boundary conditions on the two-point Schwinger function.

States Expressible as Path Integrals

We then get to the most important question of this section: which states can be written in terms of
an Euclidean path integral? In other words, for which states can the expression

𝜔(𝒯𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛))
𝑡→−𝑖𝑡𝛦= ∫ exp (−𝑆[𝜙])𝜙(𝑥1) ⋯ 𝜙(𝑥𝑛)𝒟𝜙 (2.5.20)

be given meaning?
From our previous discussions, we expect to be capable of Euclideanizing a spacetime when it

presents some sort of distinguished timelike vector. For example, a timelike Killing field, or ∇𝑎𝑡
for some global time function 𝑡. Since the Euclideanization procedure is, at its essence, an analytic
continuation, we do not expect to gain much information about regions of spacetime that are not
already real-analytic.

We also expect to be able to continue states that are somehow analytic in the time parameter being
analytically continued. Hence, it is expected that we will manage to obtain sensible results for station-
ary states in static spacetimes, for example. In fact, Wald (1979) has shown the equivalence between
the Euclidean definition of the Feynman propagator using the Schwinger function continuation and
the natural definition under some conditions.

Hence, it seems reasonable that we can write expressions such as Eq. (2.5.20) at least for stationary
states in static spacetimes. Based on our discussions about the analytic continuation of quantum states,
we expect the selection of different possible stationary states to happen by means of the imposition of
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different boundary conditions on the fields being integrated over. Hence, at least in principle, one
could distinguish the Minkowski and Rindler vacua, or the Unruh, Hartle–Hawking, and Boulware
vacua, by their boundary conditions.

Whether the integral on Eq. (2.5.20) on the previous page is actually capable of reproducing the
correct results in arbitrary spacetimes is far from obvious. While the weight exp (−𝑆[𝜙]) is adequate
for the Minkowski vacuum, it could happen that other states require more complicated expressions.
Indeed, for interacting theories, Eq. (2.5.20) on the preceding page is a consequence of the Gell-
Mann–Low formula (Gell-Mann and Low 1951; Peskin and Schroeder 1995, Eq. (4.31)), which allows
one to relate Wightman functions in the free and interacting theories. As mentioned by D’Angelo
et al. (2022, Remark 2.1) and Fredenhagen and Rejzner (2015), this formula is a property of the
Minkowski vacuum, but there is no guarantee it will apply in more generality. As a consequence, the
path integral expression of correlation functions might also fail.

Indeed, consider the derivation of the expression for correlation functions in terms of path
integrals given by Peskin and Schroeder (1995, pp. 283–284). To obtain Eq. (2.5.1) on page 40 (or
rather its Lorentzian version), the authors explicitly make use of the fact that the Minkowski vacuum
is the state ofminimum energy. This is not always available in general spacetimes, but it is in stationary
spacetimes.

Our main interests in this thesis are to consider effects that can be attributed to free fields in
stationary spacetimes. For example, we did not need to consider interacting fields to discuss the
Unruh and Hawking effects, apart from coupling it to a Unruh–DeWitt detector. Hence, it seems
reasonable that we can treat the quantum field as if it was completely free, and hence be able to write
expressions such as Eq. (2.5.20) on the preceding page. Our calculations in Chapter 4 will ultimately
be carried out only in Minkowski spacetime, where these limitations do not occur. Nevertheless, they
can be relevant for future generalizations.

Advantages of the Euclidean Approach

Given the limitations we just presented for the Euclidean approach in comparison with the algebraic
approach, one might wonder why we still plan on using it on the following chapters.

As mentioned in this chapter’s introduction, the main point is that different approaches have
different strengths. For example, one will have a hard time searching for a GR book that writes the
Riemann tensor using Dirac notation, just like one will have difficulty to find a QM textbook writing
states using the abstract index notation that is common in relativity. None of the two choices of
notation is inferior to the other. Rather, they possess different strengths and are particularly useful in
different contexts even though, deep down, they are simply different notations for writing linear and
multilinear algebra.

The difference between the algebraic and the Euclidean approaches can be thought in the same
manner. The algebraic approach has the advantage of being abstract, which implies two things:

i. it allows for one to formulate QFTCS in a very general language, in which it is possible to
think about many theories at the same time while focusing only on the essential features of the
framework;

ii. it mightmake actual computationsmore difficult, since describing specific cases involves adding
much more detail to the formalism.
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Hence, it is an extremely useful approach to understand what QFTCS is, but it is not particularly
convenient for carrying out computations. Other techniques, such as the use of Fock spaces or particle
detectors, might provide easier methods.

The Euclidean approach, on the other hand, lacks on generality. We could only make sense of it
for a handful of spacetimes and states. Nevertheless, it is extremely similar to well-known methods of
QFT in flat spacetime and allows for more convenient ways of performing computations. While path
integrals are oftenmathematically ill-defined, they are awonderful device to perform calculations easily.
Furthermore, the use of Euclidean signature makes the study of thermal phenomena particularly
natural, since thermal equilibrium is mapped into periodicity in imaginary time.

In summary, we decided to employ the algebraic approach thus far because it allowed us to keep
track of what are the essential features of the system being studied and other questions of relevance.
We could clearly see that choices of coordinates, preferred observers, or the notion of “particle” are
completely irrelevant from a fundamental point of view, while also noticing some importance that
should be given to other properties that could go easily unnoticed. If our discussions used path
integrals from the start, we might not have noticed the important matter of asking ourselves what is
the actual physical state of the quantum field we are considering in our computations.

Now that our conceptual discussion of QFTCS is done and we plan on performing calculations,
the algebraic approach is no longer so convenient. We can keep it in mind when interpreting results,
but it will be easier to employ Euclidean methods when calculating renormalization group flows. In
particular, when probing the Unruh effect, for example, we would be able to naturally consider the
parameters of the detector at the scale determined by the Unruh temperature.

At the risk of contradicting the first statement in this chapter, it is relevant to notice that in doing
physics the most appropriate approach is always relative to the physicist’s goal.

2.A Fock Representations in Stationary Spacetimes

Many spacetimes of interest end up being stationary or asymptotically stationary. For example, the
Kerr–Newman family, De Sitter spacetime, Minkowski spacetime and many more are stationary.
When working in these spacetimes, one can exploit the available stationary symmetry when doing
QFTCS. In this appendix, we will describe a qualitative and “handwaving” understanding of the role
of symmetry. More detailed expositions can be found in the discussions by Khavkine and Moretti
(2015, Sec. 5.2.7), Panangaden (2013), andWald (1994, Sec. 4.3) and in the original papers byAshtekar
and Magnon (1975) and Kay (1978).

Let us begin by considering quantum fields in Minkowski spacetime. In Minkowski spacetime,
it is common to discuss about creating and annihilating particles on a given state by using ladder
operators. These operators are defined by means of the Fourier decomposition of the Klein–Gordon
field. Namely, one can write

𝜙(𝑥) = 1
(2𝜋)

3
2
∫(𝑎�⃗�𝑒

𝑖𝑝⋅𝑥 + 𝑎†�⃗�𝑒
−𝑖𝑝⋅𝑥)

d3𝑝
√2𝜔�⃗�

, (2.A.1)

where

𝜔�⃗� = +√∥�⃗�∥2 + 𝑚2 (2.A.2)
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and we choose conventions such that

[𝑎�⃗�, 𝑎
†
�⃗�] = 𝛿(3)(�⃗� − �⃗�). (2.A.3)

Notice that Eq. (2.A.1) on the previous page decomposes the field 𝜙 in terms of positive and
negative frequencies. In other words, in terms of solutions associated with positive and negative
energies. This difference between positive and negative energies is then used to define the creation
and annihilation operators.

It should be remarked that ortochronous Poincaré transformations never flip the sign of the
time-component of a four-vector. Hence, all inertial observers in Minkowski spacetime always agree
on the sign of the energy of a given particle. As a consequence, all inertial observers agree on the
decomposition given on Eq. (2.A.1) on the preceding page. It follows that they all agree that all
annihilation operators annihilate the Minkowski vacuum and they all agree on how many particles
there are in a given state of the quantum field.

From this discussion, we can already conclude that, in some sense, particles are an “energy-
dependent concept”. The separation between positive and negative energy is literally the way we
usually define the ladder operators used in QFT in flat spacetime to create and annihilate particles.
Loosely speaking, if two observers have different notions of what is energy, they might have two
different notions of what is a particle.

The natural question to ask is then: what is energy? Intuitively, we can understand energy as
being the Noether charge associated with time-translation symmetry—i.e., energy is the conserved
quantity induced by a timelike Killing field.

We now know what to expect. In a stationary spacetime, we have a timelike Killing field. Hence,
in some sense we have an available notion of energy. This notion of energy can then be used to induce
a preferred notion of particles, which leads us to a natural choice of Fock space. Formally, one defines
the vacuum |0⟩ by imposing it is annihilated by all annihilation operators and defines every other
state in the Fock space by applying creation operators. See the previously mentioned references for a
more rigorous approach.

There is, however, an interesting issue with this discussion. Consider Minkowski spacetime once
again. The Minkowski vacuum is the unique Poincaré invariant state. Nevertheless, if we chose to
restrict our attention to the right Rindler wedge as we often did in Section 2.4, then we would also be
dealing with a different stationary spacetime andwould be able to construct a vacuum that is invariant
under the boost symmetry. This is known as the Rindler vacuum. Do these two states coincide?

They do not. By construction, the notion of time employed in the definition of the Rindler
vacuum is the notion of proper time of an accelerated observer. On the other hand, Minkowski
vacuum is built upon the notion of time as defined by inertial observers. Hence, the Rindler vacuum
corresponds to the quantum state of the field in which an accelerated observer would see no particles.
The Minkowski vacuum corresponds to the state of the field in which an inertial observer would see
no particles. The Unruh effect proves that these two states do not coincide.

There are still more striking differences. The boost symmetries of Minkowski spacetime have
a geometric structure known as a “bifurcate Killing horizon”. Roughly speaking, this means the
Killing field becomes null on a pair of crossing hypersurfaces, as depicted on Fig. 2.4 on page 29. More
detailed definitions can be found, e.g., in the discussions by Kay and Wald (1991, Sec. 2) and Wald
(1994, Sec. 5.2). Other examples of spacetimes with Killing horizons are Schwarzschild, De Sitter,
Schwarzschild–De Sitter, and Kerr spacetimes, among others. It was shown by Kay and Wald (1991)
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that spacetimes with such a structure admit at most one quasifree state that is both stationary and
Hadamard. A Hadamard state is a state which allows the renormalization of nonlinear observables,
such as the stress-energy-momentum tensor, and hence all physical states must be Hadamard states
(see Section 2.B for more details).

Since both the Minkowski and Rindler vacua are stationary quasifree states, one of them must
fail to be Hadamard. It does happen that the Rindler vacuum has an unphysical build up of energy
near the null hypersurfaces 𝔥𝛢 and 𝔥𝛣 (see Birrell and Davies 1982, Eq. (6.157)).

Notice that this uniqueness result does not imply existence, and our earlier statement about
existence of stationary states does not imply they are Hadamard. In fact, Kay and Wald (1991) have
also shown there are no stationary Hadamard states on Kerr or Schwarzschild–De Sitter spacetimes.

2.B Introducing Nonlinear Observables

Stress-Energy-Momentum Tensor

As we noted when constructing the algebra for free fields in Section 2.3, there is a mathematical diffi-
culty in dealing with products of fields at the same point in spacetime, such as 𝜙(𝑥)𝜙(𝑥). Nevertheless,
one often wants to consider these expressions. For example, the stress-energy-momentum tensor for a
minimally coupled scalar field is given by (Wald 1984, Eq. (4.3.10))

𝑇𝑎𝑏 = ∇𝑎 𝜙∇𝑏 𝜙 −
1
2𝑔𝑎𝑏 (∇𝑐 𝜙∇

𝑐𝜙 + 𝑚2𝜙2), (2.B.1)

which involves the product of fields at the same point. Hence, if we desire to make sense of the very
physical quantity that is the stress tensor, we must find a way of dealing with these issues.

This “bad behavior” in the ultraviolet (UV) is not exclusive to curved spacetimes. QFT in flat
spacetimes also has these same difficulties. For example, let us consider the Hamiltonian as defined by
an inertial observer in Minkowski spacetime. From Eq. (2.B.1) we see it is given by

𝐻 =
�̇�2

2 +
(∇⃗𝜙)2

2 +
𝑚2𝜙2

2 , (2.B.2)

where the dot denotes a time derivative in the inertial observer’s Cartesian coordinate system. Suppose
we want to compute the expectation value of this Hamiltonian at some state ∣𝜓⟩. We desire to
compute the quantity

⟨𝜓∣𝐻∣𝜓⟩ = 1
2 ⟨𝜓∣�̇�

2 + (∇⃗𝜙)2 + 𝑚2𝜙2∣𝜓⟩ . (2.B.3)

Nevertheless, thiswill lead to the presence of an infinite constant. Weinberg (2015, Sec. 11.6)writes this
constant explicitly for the case of the electromagnetic field and attributes it to the vacuum fluctuations
of the field. This is the main idea behind the concept of normal ordering, in which one decides to
consider the quantity

⟨𝜓∣∶𝐻∶∣𝜓⟩ ≡ ⟨𝜓∣𝐻∣𝜓⟩ − ⟨0|𝐻|0⟩ , (2.B.4)

which intuitively means that one is interested not in the absolute energy of the field in the state ∣𝜓⟩,
but only on the difference in energy between this state and the vacuum |0⟩. The operator ∶𝐻∶ is said to
be normal-ordered, and this term can also be defined in terms of manually moving the annihilation
operators that occur in the expression for𝐻 to the right (Weinberg 1995, p. 200). In many books,



50 2. Quantum Field Theory in Curved Spacetime

including the one by Weinberg (2015), this presentation is shortly followed by the comment that this
treatment is reasonable as long as gravitation is not being taken into account. This, however, is not
our case.

Wald (1977) dealt with this issue by introducing an axiomatic prescription to renormalize the
stress energy tensor. One lists the properties desired for the expectation value of the stress tensor and
then proceeds to discuss the existence and uniqueness of a prescription satisfying these properties.
The original axioms given byWald (1977) have later been adapted, for one of them cannot be satisfied
(Wald 1978) and another one (the causality axiom) could eventually be generalized for a larger class
of spacetimes by employing an algebraic philosophy. Our discussion will consider the axioms as
presented by Wald (1994).

Firstly, notice that we can write the stress tensor in terms of a product of fields 𝜙(𝑥)𝜙(𝑥′). Namely,
we may write Eq. (2.B.1) on the preceding page in the form

𝑇𝑎𝑏 = lim
𝑥′→𝑥

{[∇𝑎 ∇
′
𝑏 −

1
2𝑔𝑎𝑏 (∇𝑐 ∇

′𝑐 + 𝑚2)]𝜙(𝑥)𝜙(𝑥′)}. (2.B.5)

Therefore, we can relate the problem of computing 𝜔(𝑇𝑎𝑏 ) to the simpler task of computing 𝜔(𝜙2).
Our first requirement of a renormalized stress tensor is that this is consistent in a sense similar to how
normal ordering works in flat spacetime—namely, our renormalization prescription allows one to
compute the difference in energy (and so on) between any two “well-behaved” states.

Next, the stress tensor is local, and hence so should be its expectation value. Wald (1977) originally
implemented this requirement by assuming the existence of natural Hilbert spaces in the far future
and past—an assumption that is reasonable when the spacetime is asymptotically stationary, for
example. Nevertheless, it is possible to provide a more general statement by employing the parlance
of the algebraic approach.

In addition to these, we expect the expectation value of the stress tensor to be locally conserved,
just like its classical counterpart. Hence, it should respect a continuity equation.

Lastly, the renormalized stress tensor in the Minkowski vacuum should vanish identically.
With these ideas in mind, we get to the four Wald axioms:

i. whenever𝐷(𝑥, 𝑥′) = 𝜔1(𝜙(𝑥)𝜙(𝑥
′)) − 𝜔2(𝜙(𝑥)𝜙(𝑥

′)) is a smooth function, the expression

𝜔1(∶𝑇𝑎𝑏 ∶) − 𝜔2(∶𝑇𝑎𝑏 ∶) = lim
𝑥′→𝑥

{[∇𝑎 ∇
′
𝑏 −

1
2𝑔𝑎𝑏 (∇𝑐 ∇

′𝑐 + 𝑚2)]𝐷(𝑥, 𝑥′)} (2.B.6)

holds;

ii. the expectation value 𝜔(∶𝑇𝑎𝑏 ∶) depends locally on 𝜔 (see Wald 1994, p. 89, for details);

iii. ∇𝑎𝜔(𝑇𝑎𝑏 ) = 0 holds for all states;

iv. in Minkowski spacetime, ⟨0𝛭|∶𝑇𝑎𝑏 ∶|0𝛭⟩ = 0.

These axioms are enough to provide a unique renormalization prescription up to local curvature
terms. Indeed, suppose one has two renormalization prescriptions, which we shall denote through
∶𝑇𝑎𝑏 ∶𝛢 and ∶𝑇𝑎𝑏 ∶𝛣, both of them satisfying the four Wald axioms. The first axiom ensures that given
two states 𝜔1 and 𝜔2 with 𝜔1(𝜙(𝑥)𝜙(𝑥′)) − 𝜔2(𝜙(𝑥)𝜙(𝑥′)) being smooth, we have

𝜔1(∶𝑇𝑎𝑏 ∶𝛢) − 𝜔1(∶𝑇𝑎𝑏 ∶𝛣) = 𝜔2(∶𝑇𝑎𝑏 ∶𝛢) − 𝜔2(∶𝑇𝑎𝑏 ∶𝛣), (2.B.7)
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which implies the difference
𝑡𝑎𝑏 = 𝜔(∶𝑇𝑎𝑏 ∶𝛢) − 𝜔(∶𝑇𝑎𝑏 ∶𝛣) (2.B.8)

is independent of the particular state of the field. The second axiom then ensures that 𝑡𝑎𝑏 can depend
only on the local geometry, and hence it must be constructed out of local curvature terms and of the
metric tensor.

The third and fourth axioms then play the role of getting this prescription to a more convenient
form. The third axiom implies 𝑡𝑎𝑏 has to be conserved, hence restricting the allowed curvature terms.
The fourth axiom takes care of an eventual cosmological constant term by setting it to Λ = 0, but
could be modified to allow other possibilities.

The only natural length scale that we can consider at this stage is given by the field’s mass, 𝑚.
Assuming the ambiguities are continuous as𝑚 → 0, we then have, on dimensional terms, that the
possible contributions to the stress tensor are either𝑚2𝐺𝑎𝑏 or the terms obtained by differentiating
the Lagrangians* 𝑅2 and 𝑅𝑎𝑏𝑅

𝑎𝑏. The first term can be absorbed in Newton’s constant, while the
other terms are ambiguities that cannot be resolved without further input from a theory of quantum
gravity. Notice this is the same ambiguity that renders quantum GR one-loop non-renormalizable in
the presence of matter (Percacci 2017, Sec. 3.5).

Hadamard States

While the Wald axioms provide an uniqueness result on the renormalization of the stress tensor, we
still could not establish existence. To do so, we can try to make sense of 𝜔(𝜙(𝑥)𝜙(𝑥′)) and then use
Eq. (2.B.5) on the preceding page to obtain the stress tensor. Due to the fact that quantum fields are
operator-valued distributions, this means we must still find a way of getting away with the issue of
multiplying distributions.

When trying to multiply distributions, we know there are impossible cases. For example, one has

𝛿(𝑥)𝛿(𝑥) = 𝛿(0)𝛿(𝑥), (2.B.9)

which leads to meaningless expressions whenever we try to integrate it against a smooth function.
Nevertheless, there are situations in which we can multiply distributions. For example, any smooth
function 𝑓 can be considered as a distribution, but we can still write

𝑓(𝑥)𝛿(𝑥) = 𝑓(0)𝛿(𝑥) (2.B.10)

and get a sensible expression. We can even get two distributions that are not smooth functions and
multiply them together, such as

𝛿(𝑥)𝛿(𝑥 − 1) = 𝛿(1)𝛿(𝑥 − 1) = 0. (2.B.11)

One could argue that the only reason we have been able to give these examples is that they are
cleverly designed to avoid getting two singularities at the samepoint. However, while that is a sufficient
condition, it is not necessary. Consider the distributions

𝜑±(𝑥) = w-lim
𝜀→0+

1
𝑥 ± 𝑖𝜀 . (2.B.12)

*One could also consider the Lagrangian 𝑅𝑎𝑏𝑐𝑑𝑅𝑎𝑏𝑐𝑑 , but it turns out that in four dimensions one can write this term in
function of 𝑅2, 𝑅𝑎𝑏𝑅

𝑎𝑏 and a topological invariant (see Percacci 2017, Sec. 2.4). However, topological invariants do not
depend on the metric, only on the topology, and hence they will not contribute to the equations of motion.
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Let us consider these distributions on (−1, 1) and apply it to the function 𝑏(𝑥) = 1. Then we have

𝜑±(𝑏) = lim
𝜀→0+

∫
+1

−1

1
𝑥 ± 𝑖𝜀 d𝑥 = lim

𝜀→0+
[Log(1 ± 𝑖𝜀) − Log(−1 ± 𝑖𝜀)] = ∓𝑖𝜋, (2.B.13)

and hence we see 𝜑± indeed diverge only in a distributional sense. Curiously, though, they admit
being squared. Indeed, if we write

𝜑2±(𝑥) = w-lim
𝜀→0+

1
(𝑥 ± 𝑖𝜀)2

, (2.B.14)

which is the expected definition of “square” in this case, then we have

𝜑2±(𝑏) = lim
𝜀→0+

∫
+1

−1

1
(𝑥 ± 𝑖𝜀)2

d𝑥 = lim
𝜀→0+

[− 2
1 + 𝜀2

] = −2, (2.B.15)

which is finite. Since the divergent behavior only occurs at 𝑥 = 0 and our test function is finite there,
we know we would get a finite result for any other test function that remains well-defined at 𝑥 = 0.

One might then imagine 𝜑± have some property that allows us to multiply them by other distri-
butions. However, that is not quite the case. For example,

(𝜑+𝜑−)(𝑥) = w-lim
𝜀→0+

1
𝑥2 + 𝜀2

(2.B.16)

fails to define a distribution. Indeed,

(𝜑+𝜑−)(𝑏) = lim
𝜀→0+

∫
+1

−1

1
𝑥2 + 𝜀2

d𝑥 = lim
𝜀→0+

2
𝜀 arctan 𝜀 → ∞. (2.B.17)

What is happening here? The trick is that 𝜑2± can be defined because we are also choosing dis-
tributions such that their singularities avoid each other, but now in a more subtle manner. While
we are multiplying two distributions that are singular at the same point in space, their behaviors in
Fourier space are compatible. An interesting property of Fourier transforms is that they are capable
of translating singularities and smoothness into decay properties. Smooth functions have Fourier
transforms that decay rapidly, faster than any polynomial. The Dirac delta—the stereotypical singular
“function”—has a constant Fourier transform. This is exploited in the mathematical field of microlo-
cal analysis to characterize the singularities of distributions in a more detailed manner, allowing one
to identify in which directions of Fourier space a distribution is singular. Two distributions might
happen to have “compatible” singular directions, in which case we are still able to give meaning to
their product. More specifically, if the Fourier transform of one of the distributions does not decay
rapidly in the direction 𝑘 in Fourier space, then the other distribution must decay sufficiently fast
in the −𝑘 direction to compensate it. This is known as Hörmander’s criterion (Hörmander 2003,
Theorem 8.2.10; Strohmaier 2009, Corollary 3).

To get a grasp of Hörmander’s criterion, recall that the Fourier transform of a product is related
to a convolution through a formula of the form

ℱ[𝑓𝑔](𝜉) ∝ ∫ℱ[𝑓](𝑘)ℱ[𝑔](𝜉 − 𝑘) d𝑑𝑘 , (2.B.18)
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where the proportionality constant depends on the choice of normalization of the Fourier transform
ℱ. Hence, forℱ[𝑓𝑔](𝜉) to remain finite,ℱ[𝑓](𝑘) has to balance out the growth ofℱ[𝑔](𝜉 − 𝑘) and
vice-versa*. In our previous example using the distributions 𝜑± one has

ℱ[𝜑±](𝑘) ∝ ∓𝑖Θ(∓𝑘), (2.B.19)

and hence Hörmander’s criterion was exactly what allowed or forbid us from multiplying them
together. The constant of proportionality once again depends on the conventions taken for the
Fourier transform.

These techniques also admit generalizations tomanifolds (see Campos 2018, Sec. 2.3; Hörmander
2003, Chap. 8; Strohmaier 2009), even though Fourier analysis itself is not often available in curved
spacetimes. The trick is that we can alwaysmultiply any distribution by a smooth function of compact
support, which allows us to focus on a compact region. In this small region, we can use the fact that
spacetime is locally flat to employ Fourier methods as if in flat space.

Using these techniques, one can summarize the divergence structure of distributions in an object
known as the wavefront set. It is comprised of pairs (𝑥, 𝑘), where 𝑥 is a point in the manifold where
the distribution is singular and 𝑘 is a singular direction in Fourier space. To determine the singular
directions, onemultiplies the distribution by smooth functions of compact support to employ Fourier
analysis and check the decay properties. At the end of the day, we are left with an objectWF(𝜙) ⊆ 𝑇∗ℳ
encoding the singularities of the distribution. More details are given in the review by Strohmaier
(2009), for example.

As an example, let us consider thewavefront set of the two-point function inMinkowski spacetime.
This is a bi-distribution (for it includes two fields), and hence it will be an object of the formWF(𝑊2) ⊆
𝑇∗ℳ × 𝑇∗ℳ. It is given by (Strohmaier 2009, p. 118)

WF(𝑊2) = {(𝑥, 𝑘𝑎 ; 𝑦, −𝑘𝑎 ); 𝑘𝑎 ≠ 0, 𝑘𝑎 𝑘
𝑎 = 0, (𝑥 − 𝑦)𝜇 = 𝜆𝑘𝜇, 𝜆 ∈ ℝ, 𝑘0 < 0}. (2.B.20)

The first thing we can see from this wavefront set is that it violates Hörmander’s criterion if
we take 𝑦 → 𝑥. In that case, we will have singularities along opposite directions ±𝑘𝑎 , and hence
we will end up with an ill-defined object. Therefore, we cannot consider𝑊2(𝑥, 𝑥) = 𝜔(𝜙(𝑥)𝜙(𝑥)) in
this naive manner. However, as we know from QFT in flat spacetime, we are still able to perform
normal-ordering. This comes by defining the object

∶𝜙(𝑥)2∶≡ lim𝑦→𝑥 [𝜙(𝑥)𝜙(𝑦) −𝑊2(𝑥, 𝑦)1]. (2.B.21)

Notice we are carefully removing the singularities as we take the limit (although a rigorous treatment
would require one to explain in which manner the limit should be taken).

The key behavior of the Minkowski vacuum and its wavefront set comes when we study what
happens once we start playing around with ∶𝜙(𝑥)2∶. Notice, for example, that

𝜔(∶𝜙(𝑥)2∶∶𝜙(𝑦)2∶) = 2𝑊2(𝑥, 𝑦)
2, (2.B.22)

as one can findwith an explicit calculation by employing the usual normal-ordering prescription—i.e.,
by writing the fields using a Fourier decomposition and manually moving all annihilation operators

*If 𝑓 and 𝑔 are distributions of compact support, then their Fourier transforms are ensured to be smooth functions of
polynomial growth (Strohmaier 2009, Theorem 5). As we will soon notice, distributions of compact support are sufficient
for what we are interested in.



54 2. Quantum Field Theory in Curved Spacetime

to the right. We then see that to get an algebraic structure with the normal-ordered products we need
it to be possible to square the two-point function. Eq. (2.B.20) on the preceding page is such that
this is possible away from the coincidence limit*. Hence, the singularities of the Minkowski two-
point function, while existent, are sufficiently well-behaved to allow us to deal with normal-ordered
operators.

We then want to impose that physical states in general spacetimes should mimic these properties
of the Minkowski vacuum. This is due to the following facts:

i. spacetime is locally flat, and hence it is reasonable to expect the UV behavior of physical states
should somehow resemble the Minkowski vacuum;

ii. we desire to be able to extend the algebra of observables to nonlinear observables, and this can
be done if the two-point functions are singular “in the right way”.

This leads us to the microlocal spectrum condition (µSC). A state is said to satisfy the µSC—or,
equivalently, to be a Hadamard state—if the wavefront set of its two-point function has the form
(Khavkine and Moretti 2015, Eq. (5.76))

WF(𝑊2) = {(𝑥, 𝑝𝑎 ; 𝑦, −𝑞𝑎 ) ∈ 𝑇
∗ℳ × 𝑇∗ℳ; (𝑥, 𝑝𝑎 ) ∼ (𝑦, 𝑞𝑎 ), 𝑝𝑎 � 0}. (2.B.23)

In the previous expression, (𝑥, 𝑝𝑎 ) ∼ (𝑦, 𝑞𝑎 ) means there is a null geodesic 𝛾 from 𝑥 to 𝑦 which is
cotangent to 𝑝𝑎 at 𝑥 and 𝑞𝑎 is the parallel transport of 𝑝𝑎 from 𝑥 to 𝑦 along 𝛾 with respect to the
Levi-Civita connection. Furthermore, 𝑝𝑎 � 0 means 𝑝𝑎 is non-vanishing and future-directed, i.e.,
𝑝𝑎 𝑣

𝑎 ≤ 0 for all future-directed vectors 𝑣𝑎. Finally, we admit there are infinitely many null geodesics
satisfying these requirements from 𝑥 to itself, corresponding to different covectors 𝑝𝑎 ∈ 𝑇∗

𝑥 𝑀. Hence,
the two-point function is singular along all future-directed null directions in the coincidence limit.

The µSC was introduced by Radzikowski (1992, 1996) and Radzikowski and Verch (1996) as
an adaptation to the language of microlocal analysis of a previous local condition. The reviews by
Campos (2018), Khavkine and Moretti (2015), and Strohmaier (2009) discuss in more details both
approaches, how they relate to each other, and some of the historical advances made possible by
employing methods from microlocal analysis.

The fact thatwe are restricting our interest to states with awell-defined singularity structuremeans
we are capable of finding a bidistribution with a similar singularity structure, know as a Hadamard
parametrix 𝐻(𝑥, 𝑥′). This uses techniques introduced by Hadamard (1923), which explains the
terms “Hadamard parametrix” and “Hadamard states”. Using such a bidistribution, one can then
get a notion of state-independent normal-ordering in curved spacetime: instead of subtracting the
expectation value in a preferred vacuum state, one subtracts the Hadamard parametrix to obtain
physically meaningful expressions. Further details can be found, e.g., in the review by Khavkine and
Moretti (2015).

Only Hadamard states allow us to compute nonlinear observables, and hence they are the physi-
cally relevant states. Other states present singular behavior and will lead, for example, to the impossi-
bility of computing physically sensible expressions for the stress-energy-momentum tensor.

Notice, however, that the region in which the state is singular might happen to be unphysical.
This is the case for the Unruh and Boulware vacua on Schwarzschild spacetime mentioned at the end
of Section 2.4. While they are not Hadamard states—the only Hadamard state on Schwarzschild

*At the coincidente limit, we need to renormalize the operator.
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spacetime is the Hartle–Hawking vacuum—their singular regions are unphysical for the situations in
which they are interesting. The Unruh vacuum models a quantum field in a collapsing star spacetime
and is singular on the non-existing past event horizon. Similarly, the Boulware vacuum is singular on
the past and future event horizons, but this is not an issue since it is useful for modelling the quantum
field in a stable star or planetary spacetime. Therefore, while only Hadamard states are physical, there
is no issue if the state turns out to be singular at an unphysical region of spacetime. This is an issue
with the simplifications we make when describing the spacetime, not with the state itself.

g 0 G





Three

Functional Renormalization Group
We shall understand the general notions behind the renormalization group through the solutions
of an ordinary differential equation. The case of field theory is introduced in its nonperturbative
formulation, including a derivation of the Wetterich equation for arbitrary families of fields of
arbitrary statistics. Methods for extracting information from the Wetterich equation are discussed in
the end.

Therefore, conclusions based on the renormalization group arguments
concerning the behavior of the theory summed to all orders are dangerous
and must be viewed with due caution.
So is it with all conclusions from local relativistic field theories.

Bjorken and Drell (1965, p. 376).

The set of transformations (50.22)–(50.24) is called the renormalization
group. Rarely has there been a more pretentious name in the history of
physics. It’s like calling classical dynamics “the study of the Hamiltonian
group of time translations”. Nevertheless, that’s what it’s called.

Coleman (2018, p. 1100).

Thebeauty andusefulness of theoretical physics lie in the fact that it allows for a fewmeasurements
to yield a myriad of predictions. By testing these new predictions against new measurements, one can
then test the theory itself. The more the theory gets these predictions right, the more we trust it, and
the more reasonable it is to assume it is an accurate model for how the Universe behaves. This is the
most basic purpose of a physical theory: to gather, from a few inputs, sufficient information to make
a plethora of predictions related to a certain class of phenomena. For example, the standard model
(SM) takes 27 experimental inputs (Schwartz 2014, p. 641), but once these are fixed, one can make
new predictions that can then be used to test the SM itself.

Interestingly, we are even able to use measurements at a certain scale and obtain results at other
scales. In here, “scale” has a really wide meaning. In classical physics, we can use initial conditions to
predict what happens at arbitrarily long times. Within high energy physics (HEP), one often uses
measurements of the fine structure constant at low energies as inputs in precision tests of the SM
(Particle DataGroup et al. 2022, p. 178), a theory that works at far higher energies. There are, however,
some caveats that one should consider.

One of the caveats has to do with the breakdown of perturbation theory. As pointed out in the
book by Weinberg (1996, Chap. 18), 𝑛-loop amplitudes in quantum field theory (QFT) involving
external momenta of order 𝑞 typically involve factors of the form 𝛼𝑛∣log( 𝑞

2

𝑚2 )∣
𝑛
, where𝑚 is the char-
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acteristic mass or energy scale of the theory and 𝛼 is the perturbative parameter. This means that
if 𝑞2 ≫ 𝑚2, perturbation theory may become inconsistent even if 𝛼 ≪ 1. Therefore, going to high
energies can lead to issues.

The second caveat is more technical and can be understood as we investigate the first. As it
turns out, regardless of perturbation theory, the behavior of a QFT under change of scale is far less
trivial than what one has in classical theories. As pointed out in the pedagogical review by Delamotte
(2004), the merge of quantum mechanics (QM) and special relativity leads to a new length scale in
theories with mass scales: the Compton length ℏ𝑚

𝑐 , which vanishes both for ℏ → 0 and 𝑐 → +∞. As a
consequence, for length scales smaller than the Compton length, particle production and annihilation
effects can kick in and significantly alter the behavior of the theory. These quantum fluctuations
render a QFT harder to analyze than a classical theory would be.

3.1 Renormalization Group for a Differential Equation

Let us begin with the first caveat: the breakdown of perturbation theory at large scales. To do so,
instead of using a field theoretical model, we shall consider a toy model presented by Delamotte
(2004). Consider the initial value problem

{
�̇�(𝑡) = 𝜖𝑦(𝑡),
𝑦(𝑡0) = 𝑟0,

(3.1.1)

where 𝜖 ≪ 1 is a small parameter playing the role of a coupling constant. We know how to solve such
a system exactly. The exact solution is given by

𝑦(𝑡) = 𝑒𝜖(𝑡−𝑡0)𝑟0. (3.1.2)

Nevertheless, suppose we did not know this. After all, we often cannot solve QFT calculations so
easily. We could then try a “Dyson series approach”. We notice that Eq. (3.1.1) implies

𝑦(𝑡) = 𝑟0 +∫
𝑡

𝑡0
�̇�(𝑡′) d𝑡′ , (3.1.3a)

= 𝑟0 + 𝜖∫
𝑡

𝑡0
𝑦(𝑡′) d𝑡′ , (3.1.3b)

= 𝑟0 + 𝜖∫
𝑡

𝑡0
[𝑟0 + 𝜖∫

𝑡′

𝑡0
𝑦(𝑡″) d𝑡″]d𝑡′ , (3.1.3c)

= 𝑟0 + 𝑟0𝜖(𝑡 − 𝑡0) + 𝜖
2∫

𝑡

𝑡0
∫

𝑡′

𝑡0
𝑦(𝑡″) d𝑡″ d𝑡′ , (3.1.3d)

= 𝑟0 + 𝑟0𝜖(𝑡 − 𝑡0) +
𝑟0𝜖

2(𝑡 − 𝑡0)
2

2 + 𝜖3∫
𝑡

𝑡0
∫

𝑡′

𝑡0
∫

𝑡″

𝑡0
𝑦(𝑡‴) d𝑡‴ d𝑡″ d𝑡′ , (3.1.3e)

and so on. We could proceed writing the series explicitly and eventually notice it is just an exponential,
but since we are interested in a perturbative approach, let us truncate the expression at order 𝜖. We
learn that

𝑦(𝑡) = 𝑟0 + 𝜖(𝑡 − 𝑡0) + 𝒪(𝜖
2). (3.1.4)
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Figure 3.1: Comparison between the solutions to Eq. (3.1.1) on the facing page for 𝑟0 = 1, 𝜖 = 0.2, and 𝑡0 = 0.
Notice that the exact solution (top) grows faster than both the order 𝜖2 approximation (middle)
and the order 𝜖 approximation (bottom). Even though 𝜖 is small and the perturbative approach
works at first, for long times there is a secular behavior that destroys the approximation.

This approximation is compared to the exact solution in Fig. 3.1, which also displays the solution up
to order 𝜖2. In both cases, one notices that the approximation departs considerably from the exact
solution at large values of 𝑡.

The issue at hand is that the perturbative expansion is not only on 𝜖, but rather on 𝜖(𝑡 − 𝑡0). At
every order in perturbation theory 𝜖 is accompanied by a term that diverges as 𝑡 → +∞. Hence, at late
times, the perturbative expansion will break down.

We then learn that a perturbative approach may become problematic if we attempt at using it to
compute observables (such as 𝑦(𝑡)) on scales too different from the experimental inputs we give (such
as 𝑦(𝑡0) = 𝑟0). While in principle we can pick an initial condition at whatever value of 𝑡we desire, in
practice one can improve approximation methods by keeping the scales close to each other.

Notice that this issue is similar to what can happen when solving a differential equation numeri-
cally using Euler’s method (Burden, Faires, and Burden 2016, Sec. 5.2; Vesely 2001, Sec. 4.1.1), for
example. While any initial condition is good in principle, in practice the approximations lead to an
error build-up as one considers the behavior at late times.

Beta Function

To improve our procedure, we would like to give 𝑟𝜏 = 𝑦(𝜏) as input, where 𝜏 is some other finite time
value intended to represent a different scale than 𝑡0.

Up to order 𝜖, we know

𝑦(𝜏) = 𝑟𝜏 = 𝑟0[1 + 𝜖(𝜏 − 𝑡0)] + 𝒪(𝜖
2). (3.1.5)

We can then solve for 𝑟0 in terms of 𝑟𝜏 up to order 𝜖. We find

𝑟0 =
𝑟𝜏

1 + 𝜖(𝜏 − 𝑡0)
+ 𝒪(𝜖2), (3.1.6a)

= 𝑟𝜏[1 − 𝜖(𝜏 − 𝑡0)] + 𝒪(𝜖
2). (3.1.6b)
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Hence, notice that

𝑦(𝑡) = 𝑟0[1 + 𝜖(𝑡 − 𝑡0)] + 𝒪(𝜖
2), (3.1.7a)

= 𝑟𝜏[1 − 𝜖(𝜏 − 𝑡0)][1 + 𝜖(𝑡 − 𝑡0)] + 𝒪(𝜖
2), (3.1.7b)

= 𝑟𝜏[1 + 𝜖(𝑡 − 𝜏)] + 𝒪(𝜖
2), (3.1.7c)

and we can now express 𝑦(𝑡) directly in terms of 𝑟𝜏. This is useful if we are interested in values of 𝑡
closer to 𝜏 than to 𝑡0. Nevertheless, this still leaves an issue: computing 𝑟𝜏 from 𝑟0 still leads to an error
that grows as the time difference 𝜏 − 𝑡0 increases.

A trick is to then use this procedure in infinitesimal steps. Instead of skipping from 𝑡0 to 𝜏, we
slide from 𝑡0 to 𝑡0 + d𝑡. Or, more generally, we go from 𝑡 to 𝑡 + d𝑡, where 𝑡 can be any particular time
instant. We then have

𝑟𝑡+d𝑡 = 𝑟𝑡(1 + 𝜖 d𝑡) + 𝒪(𝜖2). (3.1.8)

Since we are doing this sliding of scale continuously, we can represent it as a differential equation.
Notice that

d𝑟𝑡 = 𝑟𝑡+d𝑡 − 𝑟𝑡 = 𝜖 d𝑡 + 𝒪(𝜖2), (3.1.9)

and hence we can write the flow of 𝑟𝑡 as

𝛽(𝑟𝑡) ≡
d𝑟𝑡
d𝑡 = 𝜖𝑟𝑡 + 𝒪(𝜖

2). (3.1.10)

𝛽(𝑟𝑡) is then said to be the beta function for the parameter 𝑟𝑡.
Incidentally, this is the differential equation we started with. For this simplified example, the

sliding scale approach ends upbeing so good it leads us back to the exact solution. In aQFTcalculation,
the original problem would be more difficult and the beta function would provide a considerable
simplification. Notice that Eq. (3.1.10) admits an expansion in 𝜖 only, without influence of 𝑡 − 𝑡0. As
a consequence, it can be used to correct our difficulties with perturbation theory in more complex
problems.

Renormalization Group Improvement

Another way of improving the behavior at a particular order is to notice that, at least in principle, the
scale at which we give our experimental input should not really matter. For example, in the case of
Eq. (3.1.1) on page 58, it is assured by the theory of ordinary differential equations that the initial value
problem admits a unique solution. As a consequence, we can interpret the solution 𝑦(𝑡) in terms of
a more general function 𝑓∶ ℝ × ℝ → ℝ. 𝑓 is the function that takes the initial condition 𝑟0 and the
time elapsed since the initial condition 𝑡 − 𝑡0, and gives the solution at 𝑡. Hence, 𝑦(𝑡) = 𝑓(𝑟0, 𝑡 − 𝑡0). In
other words, 𝑓(𝑟0, 𝑡 − 𝑡0) “propagates” 𝑟0 to 𝑟𝑡 = 𝑦(𝑡).

This strange reformulation is useful because we can now notice that

𝑓(𝑟0, 𝑡 − 𝑡0) = 𝑓(𝑓(𝑟0, 𝜏 − 𝑡0), 𝑡 − 𝜏), for any 𝜏, (3.1.11)

which is just a fancy way of saying that the solution 𝑦(𝑡) could also be determined by imposing its
value at 𝑡 = 𝜏 rather than at 𝑡 = 𝑡0. Therefore, while Eq. (3.1.11) can be checked with the exact solution,
notice that it holds as a matter of principle, not as a particular property of the exact solution. In fact,
it must hold for any well-posed initial value problem, not only the one we are studying.
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Eq. (3.1.11) on the facing page leads to a group structure. The elements are given by the functions
𝑔𝑡(⋅) = 𝑓(⋅, 𝑡). They have the composition law 𝑔𝑡∘𝑔𝑡′ = 𝑓(𝑓(⋅, 𝑡′), 𝑡), which is associative as a consequence
of associativity of the composition of functions. The neutral element is 𝑔0, and the inverse of 𝑔𝑡 is 𝑔−𝑡.

From the point of view of the theory of differential equations, this is essentially a curiosity, and
Eq. (3.1.11) on the preceding page may even be regarded as a trivial statement. However, we can use it
to improve our perturbative solution.

At order 𝜖, we can approximate 𝑓 by the function

𝑓1(𝑟0, 𝑡 − 𝑡0) = 𝑟0 + 𝑟0𝜖(𝑡 − 𝑡0), (3.1.12)

and we then have 𝑦(𝑡) = 𝑓1(𝑟0, 𝑡 − 𝑡0) + 𝒪(𝜖
2). Nevertheless, notice that, given 𝜏 ∈ ℝ,

𝑓1(𝑓1(𝑟0, 𝜏 − 𝑡0), 𝑡 − 𝜏) = 𝑓1(𝑟0 + 𝑟0𝜖(𝜏 − 𝑡0), 𝑡 − 𝜏), (3.1.13a)
= 𝑟0 + 𝑟0𝜖(𝜏 − 𝑡0) + (𝑟0 + 𝑟0𝜖(𝜏 − 𝑡0))𝜖(𝑡 − 𝜏), (3.1.13b)
= 𝑟0 + 𝑟0𝜖(𝑡 − 𝑡0) + 𝑟0𝜖

2(𝜏 − 𝑡0)(𝑡 − 𝜏), (3.1.13c)
= 𝑓1(𝑟0, 𝑡 − 𝑡0) + 𝑟0𝜖

2(𝜏 − 𝑡0)(𝑡 − 𝜏), (3.1.13d)

and hence 𝑓1 fails to satisfy Eq. (3.1.11) on the facing page at order 𝜖2.
We know Eq. (3.1.11) on the preceding page must hold as a matter of principle. If it fails, this is

due to perturbation theory. Hence, let us improve perturbation theory by imposing the validity of
Eq. (3.1.11) on the facing page. We write

𝑓imp
1 (𝑟0, 𝑡 − 𝑡0) ≡ 𝑟0 + 𝑟0𝜖(𝑡 − 𝑡0) + 𝑟0𝜖

2𝐺(𝑡 − 𝑡0) (3.1.14)

for some function 𝐺 that we wish to obtain. Notice that 𝐺(0) = 0 to ensure the initial condition
𝑦(𝑡0) = 𝑟0. The superscript “imp” stands for “improved”.

We now impose 𝑓imp
1 satisfies Eq. (3.1.11) on the preceding page up to order 𝜖2. Then it follows

that
𝐺(𝑡 − 𝑡0) = 𝐺(𝜏 − 𝑡0) + (𝜏 − 𝑡0)(𝑡 − 𝜏) + 𝐺(𝑡 − 𝜏) + 𝒪(𝜖). (3.1.15)

To solve this functional equation, we differentiate both sides with respect to 𝑡0 and then set 𝑡0 = 𝜏.
We get

− 𝐺′(𝑡 − 𝜏) = −𝐺′(0) − (𝑡 − 𝜏). (3.1.16)

Denote 𝑥 ≡ 𝑡 − 𝜏. Then
𝐺′(𝑥) = 𝑥 + 𝐺′(0). (3.1.17)

This differential equation can be solved using the initial condition 𝐺(0) = 0—which 𝐺must satisfy
by hypothesis. We get

𝐺(𝑥) = 𝑥2

2 + 𝑎𝑥, (3.1.18)

for some constant 𝑎. One can then verify by direct substitution that this is a solution to Eq. (3.1.15).
Using this result, we find that

𝑦(𝑡) = 𝑟0 + 𝑟0𝜖(𝑡 − 𝑡0) +
𝑟0𝜖

2(𝑡 − 𝑡0)
2

2 + 𝑎𝑟0𝜖
2(𝑡 − 𝑡0) + 𝒪(𝜖

2), (3.1.19)



62 3. Functional Renormalization Group

which gets the term of highest degree in 𝑡 − 𝑡0 correctly at the next order in perturbation theory. This
is, of course, the most relevant term at order 𝜖2, and hence it represents an improvement over our
previous solution.

We can once again make a comparison with the Euler method for solving differential equations
numerically. Our present procedure in to impose that, as a matter of principle, Eq. (3.1.11) on page 60
must hold. Any violations of it are due to our approximationmethods, and hence imposing its validity
can improve our results. Similarly, the Euler method often fails to conserve energy, or to describe
the system’s evolution by means of a canonical transformation. Forcing the numerical method to
respect the symplectic nature of time evolution can lead to improvements when solving Hamilton’s
equations numerically (see Vesely 2001, Sec. 4.2.5; Yoshida 1993).

3.2 Functional Renormalization Group

As with the differential equation we used as an example, in field theory calculations one often faces
the issue of a perturbative expansion breaking down as the scale differences grow. Just as with the
differential equation, a trick to obtain sensible results is toworkwith quantities at the correct scale. For
example, while the fine structure constant is measured at low energies, when it enters SM calculations
it is corrected to the right scale (Particle Data Group et al. 2022, p. 178). This corresponds to partially
resumming the perturbative series (see Delamotte 2004), and hence provides an improvement to
perturbation theory. WithinQFT and statistical physics, the renormalization group (RG) is the name
given to the idea of adapting a theory to different scales.

The fact the RG improves perturbation theory is one of our main motivations to study the
functional renormalization group (FRG) and later apply it to Unruh–DeWitt detectors in Chapter 4.
As we shall discuss, we want to perform a perturbative calculation involving the detector, but we
are interested in nonperturbative regimes in the sense that we aim at considering detectors strongly
coupled to a quantum field. Hence, instead of performing a perturbative expansion in the coupling
between detector and field, one can perform an expansion in the detector’s energy gap. A nonper-
turbative formulation of the RG will then be useful to allow us to improve the results by allowing
them to flow to some scale of interest, such as the Unruh temperature for a detector probing the
Unruh effect as described in Section 2.4. Since we want to consider strongly-coupled detectors, a
perturbative formulation of the RG would not be adequate.

The perturbative RG is discussed in many references—such as the books by Hollowood (2013),
Peskin and Schroeder (1995), Schwartz (2014), and Weinberg (1996)—and is not of much relevance
to us. Therefore, we shall introduce the ideas directly by means of a nonperturbative approach. It
is common to refer to a nonperturbative formulation of the RG as the FRG. It is also interesting
to mention that, while our initial motivation for studying the RG was in improving perturbation
theory, we shall arrive at a different formulation of QFT that allows us to study nonperturbative
physics in an efficient manner.

Our discussion is mainly inspired by those due to Percacci (2017), Pereira (2016), and Reuter
and Saueressig (2018). Nevertheless, our goal is to eventually describe a particle detector, which
requires the use of anticommuting variables. Pegagogical references about the FRG usually derive the
Wetterich equation assuming the fields to be bosonic, with an exception being the book by Kopietz,
Bartosch, and Schütz (2010), which is a bit more oriented towards applications in condensed matter.
Hence, we shall promptly introduce the concepts for a general field content that can include both
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Figure 3.2: Diagrams for muon decay 𝜇− → 𝑒− + �̄�𝑒 + 𝜈𝜇. (a): in the Fermi theory of weak interactions; (b): in
the SM. For the Fermi theory, the interaction between the four fermions happens at a single point,
while for the SM it is mediated by the𝑊− boson.

bosonic and fermionic fields. While this may be a bit more difficult at first contact, it fills a pedagogical
gap in the FRG literature from the HEP point of view.

Cutoffs and Effective Degrees of Freedom

The first description of weak interactions was given by Fermi (1933, 1934a,b). It consists of a four-
fermion interaction and can be used to model decays such as 𝑛0 → 𝑝+ + 𝑒− + �̄�𝑒 and 𝜇− → 𝑒− + �̄�𝑒 + 𝜈𝜇.
The muon decay, for example, is represented by the diagram on Fig. 3.2a. On the SM, however, the
process is modelled differently. In this case, the theory describes the decay as being mediated by the
𝑊− boson, as depicted on the diagram given in Fig. 3.2b.

The𝑊 boson has a mass𝑚𝑊 = 80.377(12)GeV (Particle Data Group et al. 2022). At energies
well below this threshold, it is not expected that the details of the interactions with the𝑊 boson will
be of any relevance, just like the detailed interactions in a water molecule are irrelevant when one is
modeling the motion of the ocean. Hence, when performing calculations at low energies, we can
simply use the Fermi theory, which provides a simpler description.

This is the point of view behind effective field theories (Burgess 2020). One can describe physics
at a certain scale by considering only the degrees of freedom at that scale, without needing to bother
about all of the details that happen at more fundamental scales. This decoupling of scales is the reason
we can do classical physics without taking QM into account, and it lies at the heart of the RG.

To understand why, let us consider the general idea of ignoring the 𝑊 boson. How can we
implement that in a field theory? By integrating out the undesired modes. For example, consider the
generating functional for the sector of the SM we are interested in. It is given by

𝑍[𝐽,𝐾+, 𝐾−] = ∫ exp (𝑖𝑆[Φ̂,𝑊+,𝑊−] + ⟨𝐽, Φ̂⟩ + ⟨𝐾+,𝑊
+⟩ + ⟨𝐾−,𝑊

−⟩)𝒟Φ̂𝒟𝑊+𝒟𝑊− , (3.2.1)

where Φ̂ denotes all other fields being considered (the muon, the electron, their neutrinos, etc), 𝐽
and𝐾± denote classical sources, and 𝑆 denotes the theory’s classical action. The relevant integrals and
tensor contractions are understood in the inner products ⟨⋅, ⋅⟩ between field and classical sources. We
used a hat to clarify which fields are being integrated over. See Appendix A on page 137 for more
information on this notation.
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Suppose we are interested in probing only energy scales much smaller than𝑚𝑊. In this case, the
classical sources𝐾± should be set to zero, for there is no sufficient energy around to excite on-shell𝑊
bosons. Hence, we get

𝑍[𝐽, 0, 0] = ∫ exp (𝑖𝑆[Φ̂,𝑊+,𝑊−] + ⟨𝐽, Φ̂⟩)𝒟Φ̂𝒟𝑊+𝒟𝑊− . (3.2.2)

We may now perform the integral over the𝑊 bosons and get to the generating functional

𝑍[𝐽, 0, 0] = ∫ exp (𝑖𝑆eff.[Φ̂] + ⟨𝐽, Φ̂⟩)𝒟Φ̂ , (3.2.3)

where 𝑆eff. is an effective action. Rather than implementing the effects of the𝑊 boson by means of
the boson itself, we have “stored” the effects it could have on lower energy parameters. For example,
integrating out 𝑊 leads to the occurrence of a term leading to the Fermi interaction depicted on
Fig. 3.2a on the previous page (see Schwartz 2014, Sec. 29.4). In fact, the coupling constant of the
Fermi interaction can be computed in terms of𝑚𝑊 and other SM parameters (see Schwartz 2014, Eq.
(29.73)).

It would be interesting to always work with a theory at the correct scale. Can we find a method to
integrate out high energy modes without the need to integrate out a whole field at a time? In other
words, is there a “continuous” way of doing this procedure?

Yes, there is. It lies at the basis of the formulation of the FRG that we shall implement. Never-
theless, to implement it, we will need to perform a Wick rotation and work in Euclidean spacetimes.
The reason behind this necessity is technical convenience: we want to be able to have a clear way
of defining whether a given four-vector 𝑝𝑎 lies above or below the scale we are interested in, and
this is not possible in a straightforward manner in a Lorentzian manifold, since large energies might
make up for large momenta and yield small values of 𝑝𝑎𝑝𝑎 *. Nevertheless, as discussed in Section 2.5,
asking for an Euclidean spacetime means we are restricting the available spacetimes, so this technical
advantage does not come for free. Still, since the Unruh and Hawking temperatures often provide
an adequate temperature scale at which we should consider a detector, it seems natural to use an
Euclidean formulation for a particle detector.

We now wish to integrate out the modes above a certain scale 𝑘. How can that be achieved? With
the𝑊 boson, the basic idea was that its mass term would suppress the low-energy contributions. We
can then generalize this idea by introducing an “artificial mass term”. For example, for a scalar field in
𝑑 dimensions in Euclidean Minkowski spacetime, we can adapt the action 𝑆[𝜙] by adding to it a term

Δ𝑆𝑘[𝜙] =
1
2 ∫𝑘2𝜙2(𝑥)d𝑑𝑥 . (3.2.4)

Using this strategy, we can define a generating functional at the scale 𝑘 through

𝑍𝑘[𝐽] = ∫ exp (−𝑆[�̂�] − Δ𝑆𝑘[�̂�] + ⟨𝐽, �̂�⟩)𝒟�̂� , (3.2.5)

where
⟨𝐽, �̂�⟩ ≡ ∫𝐽(𝑥)�̂�(𝑥) d𝑑𝑥 . (3.2.6)

*In spite of this comment, D’Angelo et al. (2022) have recently proposed a variant of the Wetterich equation on
Lorentzian manifolds by employing methods coming from perturbative algebraic quantum field theory (pAQFT). Nev-
ertheless, the Euclidean formulation seems more adequate to study the systems in thermal equilibrium that one usually
considers in QFTCS.
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𝑍𝑘 is then defined through an integral that only takes into consideration the degrees of freedom at
scales above 𝑘. Using this object, we shall soon be able to define an action suitable to be used at the
scale 𝑘.

Using 𝑘2 is actually not our only option. Instead of Eq. (3.2.4) on the facing page we can be
somewhat more elaborate and work with

Δ𝑆𝑘[𝜙] =
1
2 ∫𝜙(𝑥)𝑅𝑘(−𝜕

2)𝜙(𝑥) d𝑑𝑥 ∝ ∫ℱ[𝜙](−𝑝)𝑅𝑘(𝑝
2)ℱ[𝜙](𝑝) d𝑑𝑝 , (3.2.7)

whereℱ[𝜙] is the Fourier transform of 𝜙 and 𝑅𝑘 is a function of momentum that has some useful
properties. It is typical to require that this function, often referred to as a cutoff or regulator, satisfies
the following conditions (Percacci 2017, p. 130):

i. for fixed 𝑘, 𝑅𝑘(𝑧) decays monotonically with 𝑧;

ii. for fixed 𝑧, 𝑅𝑘(𝑧) grows monotonically with 𝑘;

iii. lim𝑘→0 𝑅𝑘(𝑧) = 0, for any 𝑧;

iv. for 𝑧 > 𝑘2, 𝑅𝑘(𝑧) vanishes sufficiently fast (usually exponentially fast);

v. 𝑅𝑘(0) = 𝑘2.

These conditions can be modified depending on the particular applications being considered.
Let us discuss why one typically wants these requirements. 𝑅𝑘(𝑧) should decay with 𝑧 because we

want to suppress only the low-energy modes in the functional integral, but the high-energy modes
should contribute as usual. This is also why we want𝑅𝑘(𝑧) to vanish fast for 𝑧 > 𝑘2—the cutoff should
not affect the high-energy modes. This will later protect the Wetterich equation from ultraviolet
(UV) divergences.

𝑘 determines the scale we are interested in. If we want to look at scales of larger 𝑘, the suppression
must be stronger because we need to get rid of more modes. Hence, 𝑅𝑘(𝑧) is expected to grow with
𝑘. On the other hand, if 𝑘 = 0, we want to integrate over all modes, and hence lim𝑘→0 𝑅𝑘(𝑧) = 0 is a
reasonable requirement.

At last, 𝑅𝑘(0) = 𝑘2 provides a normalization convention and protects the theory from infrared
(IR) divergences.

Since both 𝑅𝑘(𝑧) and 𝑧 have dimension of mass squared, we can also define a dimensionless
function 𝑟 through

𝑅𝑘(𝑧) = 𝑘2𝑟( 𝑧
𝑘2
). (3.2.8)

In this manner, one can specify a cutoff by providing a “cutoff profile” 𝑟(𝑥). A few common choices
are depicted in Fig. 3.3 on the next page.

We shall give particular emphasis to the cutoff profile

𝑟(𝑥) = (1 − 𝑥)Θ(1 − 𝑥), (3.2.9)

which is known as the Litim cutoff (Litim 2001). It is particularly convenient because it often allows
to evaluate expressions explicitly.

When dealing with theories involvingmultiple fields we need to add cutoffs to all of them, but the
general idea stays the same: we add quadratic terms to suppress low-energy modes. When working
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Figure 3.3: A few common cutoff profile choices.

with multiple fields, or with fields that transform under some representation of a group, we will
denote the cutoff matrix byℛ𝑘. Hence, 𝑅𝑘 is always a scalar function, whileℛ𝑘 is a matrix in some
suitable space. For example, the Litim cutoff for Dirac fermions is taken to be proportional to the 𝛾𝜇
matrices (Litim 2001). Using DeWitt’s condensed notation (see Appendix A), we can write the cutoff
term Δ𝑆𝑘[Φ] for a general collection of fieldsΦ as

Δ𝑆𝑘[Φ] =
1
2Φ𝛼ℛ𝑘,𝛼𝛽Φ𝛽, (3.2.10)

where the indices 𝛼 and 𝛽 run over field space, internal spaces, and spacetime. Alternatively, we shall
often also write this expression as

Δ𝑆𝑘[Φ] =
1
2 ⟨Φ,ℛ𝑘Φ⟩ . (3.2.11)

This discussion can also be promptly generalized to curved spacetime. Details can be found, for
example, in the book by Percacci (2017, Sec. 6.6)

Effective Average Action

With a clear concept of 𝑍𝑘[𝐽], let us move on to obtain a notion of action appropriate to the scale 𝑘.
To do this, we will exploit the other generating functionals available in QFT. Furthermore, from this
point onward we will be working with a theory with a generic field contentΦ, which may include
bosonic and fermionic fieldsΦ𝑖. We shall extensively use the notation and results given in Section 3.A.

𝑍𝑘[𝐽] is often an unnecessarily complicated object. In full analogy with how we defined the
connected generating functional in Section 3.A, we define𝑊𝑘[𝐽] as

𝑍𝑘[𝐽] = exp𝑊𝑘[𝐽]. (3.2.12)

𝑊𝑘[𝐽] is an unusual object to work with in field theory, since it is a functional of the classical
sources. As we did with the quantum action in Section 3.A, we now define a new object through

Γ̃𝑘[Φ] ≡ sup
𝐽
[⟨𝐽, Φ⟩ −𝑊𝑘[𝐽]]. (3.2.13)
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This object resembles the quantum action as we defined in Section 3.A, but notice it still carries the
regulator we added earlier when building 𝑍𝑘[𝐽]. Therefore, we now remove it by defining

Γ𝑘[Φ] ≡ Γ̃𝑘[Φ] − Δ𝑆𝑘[Φ]. (3.2.14)

Γ𝑘 is referred to as the effective average action (EAA). It still depends on our choice of cutoff, but this
dependence is analogous to the regularization scheme dependence that is usual in QFT. To discuss
the EAA’s meaning, let us first show a few of its properties that will be useful in order to understand
it.

Firstly, consider the 𝑘 → 0 limit. In this case, by hypothesis, we will have Δ𝑆𝑘 → 0. Hence, we get
𝑍[𝐽], and our definition of the EAA will reduce to the definition of the quantum action. Therefore,

lim
𝑘→0

Γ𝑘 = Γ. (3.2.15)

In other words, when we are not suppressing any modes, the EAA is simply the quantum action.
Next let us consider the other remarkable limit: 𝑘 → ΛUV, where ΛUV is the UV cutoff for the

theory. Let us denote by �̄� the classical source 𝐽 that maximizes the expression in Eq. (3.2.13) on the
facing page—notice it depends onΦ. We can then write

𝑍𝑘[�̄�] = exp𝑊𝑘[�̄�], (3.2.16a)
= exp (⟨�̄�, Φ⟩ − Δ𝑆𝑘[Φ] − Γ𝑘[Φ]). (3.2.16b)

Therefore,

exp (⟨�̄�, Φ⟩ − Δ𝑆𝑘[Φ] − Γ𝑘[Φ]) = ∫ exp (−𝑆[Φ̂] − Δ𝑆𝑘[Φ̂] + ⟨�̄�, Φ̂⟩)𝒟Φ̂ , (3.2.17a)

exp (−Γ𝑘[Φ]) = ∫ exp (−𝑆[Φ̂] − Δ𝑆𝑘[Φ̂] + Δ𝑆𝑘[Φ] + ⟨�̄�, Φ̂ − Φ⟩)𝒟Φ̂ . (3.2.17b)

Let us make a change of variables in the functional integral. We define Ξ̂ ≡ Φ̂ − Φ and get

exp (−Γ𝑘[Φ]) = ∫ exp (−𝑆[Φ + Ξ̂] − Δ𝑆𝑘[Φ + Ξ̂] + Δ𝑆𝑘[Φ] + ⟨�̄�, Ξ̂⟩)𝒟Ξ̂ . (3.2.18)

Remember now that we defined Δ𝑆𝑘 as a term that is quadratic in the fields. Since it is only a
quadratic term, we can express it as a Taylor expansion with the certainty that the series terminates,
i.e.,

Δ𝑆𝑘[Φ + Ξ̂] = Δ𝑆𝑘[Φ] + Ξ̂𝛼
𝛿Δ𝑆𝑘
𝛿Φ𝛼

+ 1
2Ξ̂𝛼

→
𝛿Δ𝑆𝑘

←
𝛿

𝛿Φ𝛼𝛿Φ𝛽
Ξ̂𝛽, (3.2.19a)

= Δ𝑆𝑘[Φ] + Ξ̂𝛼ℛ𝑘,𝛼𝛽Φ𝛽 + Δ𝑆𝑘[Ξ̂], (3.2.19b)

= Δ𝑆𝑘[Φ] + ⟨Ξ̂,ℛ𝑘Φ⟩ + Δ𝑆𝑘[Ξ̂], (3.2.19c)

where the implicit sums and integrals over 𝛼 and 𝛽 account for internal indices—such as spinorial
or tensor indices, indices on a gauge group representation, etc—and for the spacetime dependency,
just like in Section 3.A and Appendix A. The eventual fermionic character of the fields requires us to
be careful with the sides from which we are differentiating each expression (for more on calculus of
anticommuting variables, see DeWitt 2003, App. A).
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We then get to

exp (−Γ𝑘[Φ]) = ∫ exp (−𝑆[Φ + Ξ̂] − ⟨Ξ̂,ℛ𝑘Φ⟩ − Δ𝑆𝑘[Ξ̂] + ⟨�̄�, Ξ̂⟩)𝒟Ξ̂ . (3.2.20)

Had we done the same calculation for the quantum action, we would have found

exp (−Γ[Φ]) = ∫ exp (−𝑆[Φ + Ξ̂] + ⟨�̄�, Ξ̂⟩)𝒟Ξ̂ , (3.2.21)

which is another route to seeing that lim𝑘→0 Γ𝑘 = Γ.
We could follow the same arguments we did in Section 3.A when obtaining Eq. (3.A.16) on

page 84 to conclude that

�̄� = ℤ
𝛿Γ̃𝑘
𝛿Φ, (3.2.22)

where ℤ is the diagonal matrix with entries +1 for bosonic indices and −1 for fermionic indices defined
on Eq. (3.A.12) on page 83. Notice Eq. (3.2.22) involves Γ̃𝑘, not Γ𝑘, for the EAA is not related to the
connected generating functional simply by a Legendre transform: we also subtract the cutoff Δ𝑆𝑘 to
get to it.

The general form of the cutoff Δ𝑆𝑘 is given on Eq. (3.2.11) on page 66. Notice then that

�̄� = ℤ
𝛿Γ𝑘
𝛿Φ + ℤℛ𝑘Φ. (3.2.23)

If we use this expression on Eq. (3.2.20) alongside Eq. (3.A.14) on page 83, we find that

exp (−Γ𝑘[Φ]) = ∫ exp (−𝑆[Φ + Ξ̂] − ⟨Ξ̂,ℛ𝑘Φ⟩ − Δ𝑆𝑘[Ξ̂] + ⟨ℤ
𝛿Γ𝑘
𝛿Φ + ℤℛ𝑘Φ, Ξ̂⟩)𝒟Ξ̂ , (3.2.24a)

= ∫ exp (−𝑆[Φ + Ξ̂] − ⟨Ξ̂,ℛ𝑘Φ⟩ − Δ𝑆𝑘[Ξ̂] + ⟨ℤ
𝛿Γ𝑘
𝛿Φ, Ξ̂⟩ + ⟨Ξ̂,ℛ𝑘Φ⟩)𝒟Ξ̂ , (3.2.24b)

= ∫ exp (−𝑆[Φ + Ξ̂] − Δ𝑆𝑘[Ξ̂] + ⟨ℤ
𝛿Γ𝑘
𝛿Φ, Ξ̂⟩)𝒟Ξ̂ , (3.2.24c)

= ∫ exp (−𝑆[Φ + Ξ̂] − 1
2 ⟨Ξ̂,ℛ𝑘Ξ̂⟩ + ⟨ℤ

𝛿Γ𝑘
𝛿Φ, Ξ̂⟩)𝒟Ξ̂ . (3.2.24d)

Let us now take the limit 𝑘 → ΛUV. In this case, we expect to haveℛ𝑘 ∼ 𝑘2 up to some matrix
structure. Indeed, in the scalar case we demanded that 𝑅𝑘(0) = 𝑘2, and in the limit 𝑘 → ΛUV we can
safely assume 𝑧 ≪ 𝑘2 for all modes, leading us to the behavior 𝑅𝑘(𝑧) ∼ 𝑘2. The same idea applies to the
more complicated case in which we are working with a matrixℛ𝑘. This means we get to

lim
𝑘→ΛUV

exp (−Γ𝑘[Φ]) = lim
𝑘→ΛUV

∫ exp (−𝑆[Φ + Ξ̂] − 𝑘2

2 ⟨Ξ̂, Ξ̂⟩ + ⟨ℤ
𝛿Γ𝑘
𝛿Φ, Ξ̂⟩)𝒟Ξ̂ . (3.2.25)

Notice exp (− 𝑘2
2 ⟨Ξ̂, Ξ̂⟩) is approaching a Dirac delta. Hence, in the limit we can write

exp (−ΓΛUV
[Φ]) = exp (−𝑆[Φ]), (3.2.26)

ΓΛUV
[Φ] = 𝑆[Φ]. (3.2.27)
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Figure 3.4: Integrated modes for the classical action 𝑆, for the EAA Γ𝑘, and for the quantum action Γ. The
black thin lines illustrate all possible modes, while the thick purple lines illustrate which ones
are integrated over in the path integrals defining each of the actions. The classical action can be
understood as being at the UV cutoff ΛUV in the sense that it does not include corrections due to
modes at any scales. On the other hand, the quantum action is associated with the IR cutoff at
𝑘 = 0 because it includes the corrections from all quantum modes. The EAA interpolates between
them by considering modes from the scale 𝑘 up to the UV cutoff ΛUV.

Therefore, if we take 𝑘 → 0, the EAA becomes the quantum action. If we take 𝑘 → ΛUV, the
EAA becomes the classical action. We then see that the EAA is an interpolation between the classical
and quantum actions.

This sheds some light on the meaning of the EAA: it is an action adequate for working at the
scale 𝑘. This might seem counterintuitive at first, for it is unusual to think of the classical action as
being a high-energy object, while the quantum action is a low-energy object. Why is this so?

This can be understood by thinking about our previous example concerning muon decay. If we
want to deal with the theory at low energies, then we need to take the high-energy quantum effects
into consideration by integrating them out. We are then left with an effective action adapted to work
at low energies.

If we are working at 𝑘 ∼ 0, then all modes must be integrated out. In this case, we get to an
action—the quantum action—that already accounts for all quantum corrections already at tree level.
The effects of loops are now translated as new vertices, just like the effect of the𝑊 boson had been
accounted for by a new four-fermion vertex. On the other hand, if we are working at 𝑘 ∼ ΛUV, we
cannot integrate any modes out. Hence, we need to work with our bare action andmanually consider
all effects we are interested in. Similarly, Γ𝑘 is to be understood as an action suited for working at the
scale 𝑘. This is illustrated in Fig. 3.4.

This should also explain the seemingly unusual choice of working with an arbitrary IR cutoff
and integrating up rather than working with an UV cutoff and integrating down, as is usual in
perturbative formulations of the Wilsonian RG. The reason is that to consider the full quantum
theory we have to integrate over all modes up to the UV anyway. The FRG philosophy we are using
is that if we are working at the scale 𝑘, we can first integrate over the modes with energies larger than 𝑘
and then use the resulting EAA on the path integral over lower energy modes.

Wetterich Equation

To actually describe the RG flow, it is not convenient to work with this integral formulation. Instead,
we can derive a differential equation describing how the EAA changes as one smoothly changes the
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scale of interest 𝑘. This will be a functional renormalization group equation (FRGE).
There are many possible FRGEs (for a review, see Kopietz, Bartosch, and Schütz 2010, Chap. 7).

We are interested in working with the Wetterich equation. It was originally derived by Wetterich
(1993), Bonini, D’Attanasio, and Marchesini (1993), and Morris (1994). However, Kopietz, Bartosch,
and Schütz (2010, p. 193) mention other “essentially equivalent” expressions had been given earlier
by Nicoll and Chang (1977), Nicoll, Chang, and Stanley (1974), and Weinberg (1978). The Wetterich
equation is a functional differential equation for the EAA.Other FRGEsmay involve other generating
functionals or use different definitions for the effective action.

We begin with the definition of the EAA. Letting �̄� be the classical source that maximizes the
supremum on Eq. (3.2.13) on page 66 we have

Γ𝑘[Φ] = ⟨�̄�, Φ⟩ −𝑊𝑘[�̄�] − Δ𝑆𝑘[Φ], (3.2.28a)
𝜕𝑘Γ𝑘[Φ] = −𝜕𝑘𝑊𝑘[�̄�] − 𝜕𝑘Δ𝑆𝑘[Φ]. (3.2.28b)

Let us then compute each of these derivatives.
For the cutoff term we have

𝜕𝑘Δ𝑆𝑘[Φ] =
1
2 ⟨Φ, 𝜕𝑘ℛ𝑘Φ⟩ , (3.2.29a)

= 1
2 STr[𝜕𝑘ℛ𝑘(Φ ⊗ Φ)], (3.2.29b)

= 1
2 STr[(Φ ⊗ Φ)𝜕𝑘ℛ𝑘], (3.2.29c)

where STr denotes the supertrace (see DeWitt 2003, p. 989). This is similar to a regular trace, but it
takes into account a negative sign in front of fermionic entries. One can write Tr[ℤ𝐴] = STr[𝐴], for
example. It occurs on Eq. (3.2.29) because we had to exchange the positions of the two occurrences
ofΦwhen writing the inner product as a trace. This is essentially a fancier version of the trick

⟨𝜓∣𝐴𝜓⟩ = tr[𝐴 ∣𝜓⟩⟨𝜓∣] (3.2.30)

commonly performed in QM.
Since the classical field respectsΦ = 𝜔(Φ̂), where 𝜔 is the field’s state, we can write Eq. (3.2.29) as

𝜕𝑘Δ𝑆𝑘[Φ] =
1
2 STr[(𝜔(Φ̂) ⊗ 𝜔(Φ̂))𝜕𝑘ℛ𝑘]. (3.2.31)

For the connected generating functional, we have

𝜕𝑘𝑊𝑘[𝐽] = 𝜕𝑘 log𝑍𝑘[𝐽], (3.2.32a)

= 1
𝑍𝑘[𝐽]

𝜕𝑘𝑍𝑘[𝐽], (3.2.32b)

= 1
𝑍𝑘[𝐽]

𝜕𝑘∫ exp (−𝑆[Φ̂] − Δ𝑆𝑘[Φ̂] + ⟨𝐽, Φ̂⟩)𝒟Φ̂ , (3.2.32c)

= − 1
𝑍𝑘[𝐽]

∫ exp (−𝑆[Φ̂] − Δ𝑆𝑘[Φ̂] + ⟨𝐽, Φ̂⟩)𝜕𝑘Δ𝑆𝑘[Φ̂]𝒟Φ̂ , (3.2.32d)

= −12
1

𝑍𝑘[𝐽]
∫ exp (−𝑆[Φ̂] − Δ𝑆𝑘[Φ̂] + ⟨𝐽, Φ̂⟩) STr[(Φ̂ ⊗ Φ̂)𝜕𝑘ℛ𝑘]𝒟Φ̂ , (3.2.32e)

= −12𝜔(STr[(Φ̂ ⊗ Φ̂)𝜕𝑘ℛ𝑘]), (3.2.32f)
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= −12 STr[𝜔(Φ̂ ⊗ Φ̂)𝜕𝑘ℛ𝑘], (3.2.32g)

where we used Eq. (3.2.29) on the preceding page.
Eqs. (3.2.28), (3.2.31) and (3.2.32) on the facing page now yield

𝜕𝑘Γ𝑘[Φ] =
1
2 STr[(𝜔(Φ̂ ⊗ Φ̂) − 𝜔(Φ̂) ⊗ 𝜔(Φ̂))𝜕𝑘ℛ𝑘], (3.2.33)

where we now identify the connected two-point function. We can then write this equation as

𝜕𝑘Γ𝑘[Φ] =
1
2 STr[( 𝛿𝛿𝐽 ⊗

𝛿
𝛿𝐽𝑊𝑘)𝜕𝑘ℛ𝑘]. (3.2.34)

Eq. (3.A.21) on page 85 implies

( 𝛿𝛿𝐽 ⊗
𝛿
𝛿𝐽𝑊𝑘) = (

→
𝛿Γ̃𝑘

←
𝛿

𝛿Φ𝛿Φ)
−1

, (3.2.35a)

= (
→
𝛿Γ𝑘

←
𝛿

𝛿Φ𝛿Φ +
→
𝛿Δ𝑆𝑘

←
𝛿

𝛿Φ𝛿Φ )
−1

, (3.2.35b)

= (Γ(2)𝑘 +ℛ𝑘)
−1
, (3.2.35c)

where in the last line we defined

Γ(2)𝑘 ≡
→
𝛿Γ𝑘

←
𝛿

𝛿Φ𝛿Φ. (3.2.36)

Eqs. (3.2.34) and (3.2.35) now yield

𝜕𝑘Γ𝑘 =
1
2 STr[(Γ(2)𝑘 +ℛ𝑘)

−1
𝜕𝑘ℛ𝑘]. (3.2.37)

It is conventional and convenient to multiply this equation by 𝑘, and to define the adimensional RG
time 𝑡 through 𝑡 = log 𝑘. This implies 𝜕𝑡 = 𝑘𝜕𝑘 and we find, at last,

𝜕𝑡Γ𝑘 =
1
2 STr[(Γ(2)𝑘 +ℛ𝑘)

−1
𝜕𝑡ℛ𝑘]. (3.2.38)

Eq. (3.2.38) is the Wetterich equation. From this point onward, whenever we talk about the
FRGE, Eq. (3.2.38) is the expression being referred to.

Notice that this derivation was exact. At no point have we performed any sort of approximation.
Therefore, Eq. (3.2.38) is an exact expression. Furthermore, our derivation did not assume any
background spacetime structure or similar structure, the exception being that we did assumewe could
write the generating functional in accordance with the Gell-Mann–Low formula. This implies the
possible limitations we mentioned at the end of Section 2.5.

Since we assumed the cutoffℛ𝑘(𝑧) to vanish at large 𝑧, Eq. (3.2.38) is an expression involving UV
finite terms. Note, however, that the FRGE provides the expression for 𝜕𝑡Γ𝑘, not the EAA directly. If
we integrate the FRGE to obtain the full effective action, we will run into the usual UV divergences
common in field theory.

It is also interesting to notice that the FRGE can be understood as a new formulation of QFT
that is equivalent to the path integral formulation. It has, however, the advantage that a classical
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action would enter the formalism only by means of a boundary condition at 𝑘 = ΛUV. Apart from
this, the theory is “local in scale”, with the “degree of locality” being determined by how well the
cutoffℛ𝑘 can screen the undesired modes.

It is interesting to compare the Wetterich equation to its one-loop analogue. In Euclidean signa-
ture, the one-loop approximation for the quantum action, Γone-loop, is given by (see Eq. (3.A.33) on
page 86)

Γone-loop = 𝑆 + 1
2 STr[log𝑆(2)]. (3.2.39)

If we use this result with the EAA we get to (cf. Codello 2010, Eq. (2.20))

Γone-loop
𝑘 = 𝑆 + 1

2 STr[log(𝑆(2) +ℛ𝑘)]. (3.2.40)

Differentiating with respect to 𝑡 = log 𝑘 leads to

𝜕𝑡Γ
one-loop
𝑘 = 1

2 STr[(𝑆(2) +ℛ𝑘)
−1
𝜕𝑡ℛ𝑘]. (3.2.41)

This expression has the same form as the Wetterich equation, up to the fact that the Wetterich
equation writes Γ(2)𝑘 instead of 𝑆(2) on the right-hand side (RHS). Hence, the FRGE improves the
one-loop result to an exact result by imposing the action to flow with scale. This also means the exact
flows computed with the Wetterich equation will resemble one-loop results, although they are now
considering contributions from all orders.

3.3 Computing Nonperturbative Renormalization Flows

Beta Functions

Let us prescribe a general expression for the EAA. Suppose it is given by

Γ𝑘[Φ] = ∑
𝑖
𝑔𝑖(𝑘)𝒪𝑖[Φ], (3.3.1)

where the 𝒪𝑖 are local operators, meaning they can involve only finitely many positive powers of
derivatives. Notice that this ansatz then implies

𝜕𝑡Γ𝑘[Φ] = ∑
𝑖
𝜕𝑡𝑔𝑖(𝑘)𝒪𝑖[Φ], (3.3.2)

where we assumed the operators not to depend on the scale 𝑘.
The quantities

𝛽𝑖 = 𝜕𝑡𝑔𝑖(𝑘) = 𝑘𝜕𝑘𝑔𝑖(𝑘) (3.3.3)

are the beta functions for the theory. Therefore, knowing 𝜕𝑡Γ𝑘 allows us to read off the beta functions,
which earns 𝜕𝑡Γ𝑘 the name “beta functional”.

Typically, each of the couplings 𝑔𝑖 will have a different mass dimension* 𝑑𝑖. It is then convenient
to define the dimensionless couplings �̃�𝑖 ≡ 𝑘−𝑑𝑖𝑔𝑖. Notice then that the dimensionless beta functions
will be given by

�̃�𝑖 ≡ 𝜕𝑡�̃�𝑖, (3.3.4a)
*We take 𝐺 to be dimensional in this chapter.
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= 𝑘𝜕𝑘(𝑘
−𝑑𝑖𝑔𝑖), (3.3.4b)

= −𝑑𝑖𝑘
−𝑑𝑖𝑔𝑖 + 𝑘𝜕𝑘(𝑔𝑖)𝑘

−𝑑𝑖 , (3.3.4c)
= −𝑑𝑖�̃�𝑖 + 𝑘

−𝑑𝑖𝛽𝑖, (3.3.4d)

where no summation is implied.
As one would expect, the dimensionless beta functions are dimensionless. Since they can only

depend on the couplings, and we have also written the couplings in terms of a single scale 𝑘 and of
the dimensionless couplings, we can conclude that the dimensionless beta functions do not depend
explicitly on 𝑘. Indeed, they must remain dimensionless, but there are no other scales around to
cancel the dimensions of 𝑘. Hence, the dimensionless beta functions describe an autonomous system
of differential equations for the couplings. By solving this system we can then obtain the RG flow of
the theory.

The focus on dimensionless couplings was explained by Weinberg (1979). Suppose we desire to
compute some reaction rate 𝑅with mass dimension𝐷. 𝑅 could be a cross section, or a decay rate, for
example. We expect, on dimensional grounds, that it will be given by an expression of the form

𝑅 = 𝑘𝐷𝑓(𝐸𝑘 ,𝑋, �̃�(𝑘)), (3.3.5)

where 𝑘 is the renormalization scale, 𝐸 is some physical energy scale characterizing the process, 𝑋
denotes the collection of all dimensionless quantities characterizing the process (energy ratios, angles,
etc), and �̃�(𝑘) denotes the collection of all dimensionless renormalized couplings at scale 𝑘.

The core idea of the RG is that the theory should be independent of the renormalization scale.
Hence, we can pick whichever 𝑘we prefer. Picking 𝑘 = 𝐸we get to

𝑅 = 𝐸𝐷𝑓(1,𝑋, �̃�(𝐸)). (3.3.6)

We then see that if the dimensionless couplings diverge at a finite energy scale 𝐸—i.e., if the theory
has a Landau pole—this will likely lead to a divergence in measurable quantities. Had we used the
dimensionful couplings, then their divergences would not need to mean anything, since it could be
simply due to a high enough energy.

The fact thatwe assumed the operators𝒪𝑖 to be independent of scale can seemunusual if compared
to expositions of the Wilsonian RG. In the Wilsonian approach, one often keeps the kinetic term
always normalized by redefining the fields upon a change of scale (see, e.g., Peskin and Schroeder 1995,
Sec. 12.1). When working with the FRGE, though, it is more convenient to refrain from rescaling the
fields and instead allow the kinetic term to have its own coupling constant. For example, we would
write the EAA for a scalar field with a quartic interaction as

Γ𝑘 = ∫
𝑍𝑘
2 𝜕𝑎 𝜙𝜕

𝑎𝜙 +
𝑚2𝑍𝑘
2 𝜙2 +

𝜆𝑘𝑍
2
𝑘

4! 𝜙4 d𝑑𝑥 . (3.3.7)

This new coupling 𝑍𝑘 can then be used to account for the wavefunction renormalization of the field 𝜙.
Since it can be absorbed by a field redefinition, it is said to be “inessential”, as opposed to “essential”
couplings that cannot be redefined away (for further discussion, see Weinberg 1979, Sec. 16.3).
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Truncations

With the FRGE at hand, we would like to start computing nonperturbative RG flows. Nevertheless,
recall that the FRGE can be understood as a formulation of QFT equivalent to the path integral
formalism. Hence, exactly computing the flow should be about as easy as exactly computing the
generating functional.

The reason we are working with the FRG is not because it will provide exact results—it will not.
Rather, we choose to work with it because it provides a formulation of QFTwith which we can work
nonperturbatively. We still need to make approximations to actually be able to solve the equations,
but these approximations do not need to assume the coupling constants to be small. Therefore, our
results will be approximate, but nonperturbative.

We expect the EAA to have a form such as the one given in Eq. (3.3.1) on page 72. This typically
involves infinitely many terms that are generated by the RG flow. As we shall shortly see in the
example of a scalar theory—and later in Chapter 4 with a particle detector—even if we start with only
a couple of couplings, the RG flow tends to generate infinitely many interactions (see Eq. (3.3.26) on
page 78 and the discussion following it). This is similar to how integrating out the𝑊 boson leads to
the appearance of a quartic fermion interaction in the theory of weak interactions—as we integrate
out the high-energy modes, new vertices appear to compensate for their effects.

Given that an infinite-dimensional theory space is fairly complicated, we shall approximate the
EAA by truncating it. This truncation may or may not have only finitely many terms. Its main
purpose is to offer a compromise between the infinitely difficult exact problem and the simplicity
of possibly unrealistic theories. Ideally, the truncation will be able to keep the main features of the
exact theory while still allowing us to perform computations. Approximating an infinitely difficult
reality by a convenient simplification that keeps its main features is, perhaps, an excellent description
of the entirety of theoretical physics. “Truncation” is merely the name we give to this procedure in
the context we are working on.

Once we truncate the expression for the EAA, we can compute the beta functions by using it as
an ansatz on the RHS of the FRGE. We can then compute the supertrace and obtain an expression
for the beta functional 𝜕𝑡Γ𝑘. Nevertheless, this expression will typically not lie on the truncated theory
space. Hence, we will need to also truncate the results and ignore the beta functions for couplings
that lie outside of our original truncation.

As an example, consider an interacting scalar field in Minkowski spacetime. We shall calculate its
RG flow soon. Suppose we start our computations assuming it has a 𝜙4 interaction, but no other
interaction terms. Then using the FRGE will lead to terms contributing to beta functions of other
couplings, such as 𝜙6 (see Eq. (3.3.26) on page 78). However, since our original truncation ignored
the 𝜙6 term, our calculations are incapable of predicting how this term affects its own RG flow or
even the RG flows of the other couplings we were already considering. This means our results for this
term are not reliable. Hence, we choose to drop this term entirely and consider only the flow of the
terms that were in our original truncation. If we want to consider the flow of more terms, we should
take those terms into consideration from the very beginning.

A good truncation will be able to mimic the main features of a theory, despite being considerably
simpler. Ideally, the RG flow computed with the truncated ansatz will be similar to what one would
obtain from the full theory space followed by a projection onto the truncated space, as illustrated in
Fig. 3.5 on the next page.

It is not trivial to tell whether a given truncation is good or not. Since the actual theory does not
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𝑔1

𝑔2

𝑔 3
exact

projection
truncation

Figure 3.5: Illustration of a truncation of a three-dimensional theory space to a two-dimensional theory space.
Ideally, the truncated trajectory, which is calculated with the approximate EAA, will be similar
to the projected trajectory, which is computed with the full EAA and then projected onto the
truncated theory space. This figure is based on Figure 2.3 of the book by Reuter and Saueressig
(2018).

depend on the choice of cutoff, a good sanity check to test the validity of a truncation is to use a few
different cutoffs and see whether they lead to similar results. Another possibility is to use increasingly
more complex truncations and test whether the results are stable under the addition of new terms.
As an example, one might add different terms to the Einstein–Hilbert action to obtain different
truncations for a quantum gravity (QG) theory and see whether the results are stable (see Eichhorn
2019, Table 2).

Further discussion about approximation schemes for the FRGE can be found in the review by
Delamotte (2012, Sec. 2.2.3) and in the book by Reuter and Saueressig (2018, Sec. 2.2).

Nonperturbative Flow of a Scalar Theory in Flat Spacetime

As an example, we can carry out the calculations for the nonperturbative RG flow for a theory with a
single scalar field in flat spacetime. In this manner, we can get a feeling for the general procedure we
shall follow for computing beta functions. We follow the discussion in the book by Percacci (2017,
Sec. 6.4), but see also the book by Reuter and Saueressig (2018, Sec. 2.2.4).

We begin by prescribing an ansatz for the EAA. We shall work with the expression

Γ𝑘[𝜙] = ∫ 1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝑉𝑘(𝜙) d𝑑𝑥 , (3.3.8)

which is known as the local potential approximation (LPA). In this approximation, we are ignoring
the wavefunctiion renormalization—which could be considered by adding a variable coupling 𝑍𝑘 to
the kinetic term—and any derivative terms. 𝑑 denotes the spacetime dimension. Notice that we are
already writing the Euclidean action.

For this theory, which includes a single bosonic field, the FRGE is simplified to the form

𝜕𝑡Γ𝑘 =
1
2 Tr[(Γ(2)𝑘 + 𝑅𝑘)

−1
𝜕𝑡𝑅𝑘]. (3.3.9)

We can keep the cutoff 𝑅𝑘 unspecified for the time being.
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Let us begin by computing the Hessian Γ(2)𝑘 . Since there is only one bosonic field, it is simply
given by

𝛿2Γ𝑘
𝛿𝜙(𝑥)𝛿𝜙(𝑦) = −𝜕2𝛿(𝑑)(𝑥 − 𝑦) + 𝑉″

𝑘 (𝜙)𝛿
(𝑑)(𝑥 − 𝑦), (3.3.10)

which is obtained by differentiating Eq. (3.3.8) on the preceding page. We shall denote the operator
−𝜕2 byΔ in order to simplify notation and tomatch the formulae given in Section 3.B.TheDirac deltas
in Eq. (3.3.10) are simply identities on the functional matrices labelled by the spacetime coordinates 𝑥
and 𝑦. As an operator, we can simply write

Γ(2)𝑘 = Δ + 𝑉″
𝑘 (𝜙). (3.3.11)

Therefore, we get to

𝜕𝑡Γ𝑘 =
1
2 Tr[ 𝜕𝑡𝑅𝑘(Δ)

Δ + 𝑅𝑘(Δ) + 𝑉″
𝑘 (𝜙)

]. (3.3.12)

It is useful to define 𝑃𝑘(𝑧) ≡ 𝑧 + 𝑅𝑘(𝑧) so that we may write

𝜕𝑡Γ𝑘 =
1
2 Tr[ 𝜕𝑡𝑃𝑘(Δ)

𝑃𝑘(Δ) + 𝑉″
𝑘 (𝜙)

]. (3.3.13)

To compute this functional trace, we shall resort to the heat kernel techniques described on
Section 3.B. Using Eq. (3.B.20) on page 89 we can see that

𝜕𝑡Γ𝑘 =
1
2 Tr[ 𝜕𝑡𝑃𝑘(Δ)

𝑃𝑘(Δ) + 𝑉″
𝑘 (𝜙)

], (3.3.14a)

= 1
2(4𝜋)

𝑑
2

+∞
∑
𝑛=0

𝑄 𝑑
2 −𝑛

[
𝜕𝑡𝑃𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

]∫ tr[𝕒𝑛(𝑥)] d𝑑𝑥 , (3.3.14b)

= 1
2(4𝜋)

𝑑
2
𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
𝑃𝑘 + 𝑉″

𝑘 (𝜙)
]∫ tr[𝕒0(𝑥)] d𝑑𝑥 , (3.3.14c)

=
𝑉𝑑

2(4𝜋)
𝑑
2
𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
𝑃𝑘 + 𝑉″

𝑘 (𝜙)
], (3.3.14d)

where 𝑉𝑑 is the (infinite) volume of 𝑑-dimensional spacetime. It is cancelled by a similar infinite
volume on the definition of 𝜕𝑡Γ𝑘, as we soon shall see*. Since we are working in flat spacetime with
Δ = −𝜕2 (i.e., without an endomorphism) the objects 𝕒𝑛 vanish for 𝑛 > 0.

On Eq. (3.3.14) we have written the potential term outside of the spacetime integral. We could
do this because in the LPA we are ignoring any derivative terms, and hence the spatial dependence of
𝜙 is irrelevant. This allowed us to treat it as a constant. This is similar to how one would compute the
one-loop effective potential, for example (see Peskin and Schroeder 1995, Sec. 11.3; Weinberg 1996,
Sec. 16.2).

*To avoid the weirdness of dealing with these infinite volumes one could mimic what is done in pAQFT and use a
spacetime cutoff to the action that makes it an integral over a compact region of spacetime (see Rejzner 2016, Sec. 4.1). This
would limit us to a finite spacetime volume and we could still argue that the effective potential flows as it does, since the
final results would need to be independent of the choice of spacetime cutoff.
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Notice our ansatz for the EAA implies

𝜕𝑡Γ𝑘[𝜙] = 𝜕𝑡(∫
1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝑉𝑘(𝜙) d𝑑𝑥), (3.3.15a)

= ∫𝜕𝑡𝑉𝑘(𝜙) d𝑑𝑥 , (3.3.15b)

= 𝑉𝑑𝜕𝑡𝑉𝑘(𝜙), (3.3.15c)

where we once again used the hypothesis of a constant field 𝜙 to pull the potential out of the integral.
This spacetime volume 𝑉𝑑 cancels the one on Eq. (3.3.14) on the facing page and leads us to

𝜕𝑡𝑉𝑘(𝜙) =
1

2(4𝜋)
𝑑
2
𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
𝑃𝑘 + 𝑉″

𝑘 (𝜙)
]. (3.3.16)

To proceed, let us consider a general even potential given by

𝑉𝑘(𝜙) =
+∞
∑
𝑛=0

𝜆2𝑛𝜙
2𝑛

(2𝑛)! . (3.3.17)

It follows that
𝛽2𝑛 = 𝜕𝑡𝜆2𝑛 =

d2𝑛(𝜕𝑡𝑉𝑘(𝜙))
d𝜙2𝑛 ∣

𝜙=0
, (3.3.18)

which means, under the light of Eq. (3.3.16), that

𝛽2𝑛 =
1

2(4𝜋)
𝑑
2

d2𝑛
d𝜙2𝑛𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
𝑃𝑘 + 𝑉″

𝑘 (𝜙)
]∣
𝜙=0

, (3.3.19a)

= 1
2(4𝜋)

𝑑
2

d2𝑛
d𝜙2𝑛𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
𝑃𝑘 + 𝜆2 +∑

+∞
𝑛=1

𝜆2𝑛+2𝜙2𝑛

(2𝑛)!

]∣

𝜙=0

. (3.3.19b)

The first few beta functions will be given by (Percacci 2017, Eqs. (6.35) to (6.38))

𝛽0 =
1

2(4𝜋)
𝑑
2
𝑄 𝑑

2
[
𝜕𝑡𝑃𝑘

𝑃𝑘 + 𝜆2
], (3.3.20a)

𝛽2 =
1

2(4𝜋)
𝑑
2
[−𝜆4𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)

2 ]], (3.3.20b)

𝛽4 =
1

2(4𝜋)
𝑑
2
[−𝜆6𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)

2 ] + 6𝜆
2
4𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)

3 ]], (3.3.20c)

𝛽6 =
1

2(4𝜋)
𝑑
2
[−𝜆8𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)

2 ] + 30𝜆4𝜆6𝑄 𝑑
2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)

3 ] − 90𝜆
3
4𝑄 𝑑

2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)

4 ]]. (3.3.20d)

If we wish to proceed, wemust compute the𝑄-functionals, which depend on the choice of cutoff.
However, this is similar to the dependence on renormalization scheme that occurs on perturbative
treatments, so there is nothing to worry about.
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The Litim cutoff (see Eqs. (3.2.8) and (3.2.9) on page 65) is particularly convenient because it
allows us to obtain analytic results. Otherwise, we could have to resort to numerical methods. With
the Litim cutoff we have

𝑃𝑘(𝑧) = 𝑧 + 𝑅𝑘(𝑧), (3.3.21a)
= 𝑧 + (𝑘2 − 𝑧)Θ(𝑘2 − 𝑧) (3.3.21b)

and
𝜕𝑡𝑃𝑘(𝑧) = 2𝑘2Θ(𝑘2 − 𝑧). (3.3.22)

Therefore,

𝑄 𝑑
2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)𝑙

] = 1
Γ(𝑑2 )

∫
𝑘2

0

2𝑘2𝑧
𝑑
2 −1

(𝑘2 + 𝜆2)𝑙
d𝑧 , (3.3.23a)

= 2𝑘2

Γ(𝑑2 )(𝑘2 + 𝜆2)𝑙
∫

𝑘2

0
𝑧
𝑑
2 −1 d𝑧 , (3.3.23b)

= 4𝑘𝑑+2

𝑑Γ(𝑑2 )(𝑘2 + 𝜆2)𝑙
, (3.3.23c)

= 2𝑘𝑑+2

Γ(𝑑2 + 1)(𝑘2 + 𝜆2)𝑙
. (3.3.23d)

For spacetime dimension 𝑑, the coupling 𝜆2𝑛 has mass dimension 𝑑2𝑛 = 2𝑛 − (𝑛 − 1)𝑑. Therefore,
we may define the dimensionless couplings through

�̃�2𝑛 = 𝑘−2𝑛+(𝑛−1)𝑑𝜆2𝑛. (3.3.24)

Using this definition, we get

𝑄 𝑑
2
[

𝜕𝑡𝑃𝑘
(𝑃𝑘 + 𝜆2)𝑙

] = 2𝑘𝑑+2−2𝑙

Γ(𝑑2 + 1)(1 + �̃�2)𝑙
. (3.3.25)

Once we employ Eq. (3.3.4) on page 72 and take all of these formulae into consideration, we get
to the dimensionless beta functions for the Litim cutoff. The first few of them are (Percacci 2017, Eq.
(6.46))

�̃�0 = −𝑑�̃�0 + 𝑐𝑑
1

1 + �̃�2
, (3.3.26a)

�̃�2 = −2�̃�2 − 𝑐𝑑
�̃�4

(1 + �̃�2)2
, (3.3.26b)

�̃�4 = (𝑑 − 4)�̃�4 + 𝑐𝑑[−
�̃�6

(1 + �̃�2)2
+

6�̃�24
(1 + �̃�2)3

], (3.3.26c)

�̃�6 = (2𝑑 − 6)�̃�6 + 𝑐𝑑[−
�̃�8

(1 + �̃�2)2
+

30�̃�4�̃�6
(1 + �̃�2)3

−
90�̃�34

(1 + �̃�2)4
], (3.3.26d)
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with
𝑐𝑑 =

1
(4𝜋)

𝑑
2 Γ(𝑑2 + 1)

. (3.3.27)

Notice that we were able to easily compute the contributions of infinitely many couplings to
the RG flow without the need to ever make a perturbative approximation. In particular, we notice
the occurrence of denominators with factors of 1 + �̃�2. This is a nonperturbative contribution, for it
corresponds to infinitely many powers of �̃�2.

Eq. (3.3.26) on the facing page implies that if a single coupling 𝜆2𝑛 with 𝑛 > 1 is non-vanishing,
then all other terms are going to be generated by the RG flow. Due to this, the quantum action for
interacting theories will typically involve infinitely many terms—all the possible ones that respect the
theory’s symmetries.

Recalling the fact that �̃�2 = 𝑘−2𝜆2, it is interesting to notice that the denominators with powers
of 1 + �̃�2 tend to 1 for large energies (𝑘2 ≫ 𝜆2), but suppress the contributions to the beta functions
at low energies (𝑘2 ≪ 𝜆2). This is a consequence of the fact that a field decouples at energies much
smaller than its mass, just like happened with our𝑊 boson example for the muon decay.

Understanding the Renormalization Flow

Once we have computed the beta functions, we need to interpret them to obtain information about
how the RG flow works. This is mainly a matter of studying the properties of a (usually nonlinear)
dynamical system, a subject well-known in mathematics and introduced pedagogically in the book by
Strogatz (2018), for example. We shall make a very short review of the main features that are relevant
to field theory. More details can be found, e.g., in the book by Weinberg (1996, Secs. 18.3 and 18.4),
which inspires this section.

To study the behavior of a dynamical system, it is often interesting to consider its topological
properties. For example, the existence of fixed points, which are points in theory space where the RG
flow “stops”. Mathematically, one has

�̃�𝑖∣
�̃�∗
= 0, (3.3.28)

where �̃�∗ is the fixed point. These sorts of structures are interesting because they will often have
specific behaviors such as attracting or repulsing RG trajectories, and hence they can be used to obtain
a qualitative behavior of the RG flow.

The prototypical example is the Gaussian fixed point. In any theory, the point in theory space
given by a free massless theory is a fixed point. Since this point in theory space is the absence of
interactions, the RG flowwill not be able to generate a flow that drags the theory away from it*. Some
theories, such as quantum chromodynamics, flow to this fixed point in the UV, and by doing so earn
themselves the title of “asymptotically free”, since they become free theories in the limit of infinite
energy.

Suppose now �̃�∗ is a fixed point. Then it is convenient for us to define the variables

𝑦𝑖 = �̃�𝑖 − �̃�
∗
𝑖 . (3.3.29)

*With the Wetterich equation this can be seen by noticing free theories are quadratic in the fields, and hence the RHS
of the FRGE will not include any instances of the fields. Hence, the sole non-vanishing beta function will be that of the
cosmological constant.



80 3. Functional Renormalization Group

In this way, we can analyze how the RG flow behaves in the vicinity of the fixed point. In particular,
we want to consider the linearization of the flow about the fixed point.

Close to the fixed point, the flow of 𝑦𝑖 is determined by the functions

𝜕𝑡𝑦𝑖 = 𝜕𝑡(�̃�𝑖(𝑘) − �̃�
∗
𝑖 ), (3.3.30a)

= 𝜕𝑡�̃�𝑖(𝑘) − 0, (3.3.30b)
= �̃�𝑖(�̃�), (3.3.30c)

= �̃�𝑖(�̃�
∗) + (

𝜕�̃�𝑖
𝜕�̃�𝑗

)
�̃�∗
(�̃�𝑗 − �̃�

∗
𝑗 ) + 𝒪((�̃� − �̃�

∗)2), (3.3.30d)

= (
𝜕�̃�𝑖
𝜕�̃�𝑗

)
�̃�∗
𝑦𝑗 + 𝒪(𝑦

2), (3.3.30e)

where we used the fact that, by assumption, �̃�𝑖(�̃�∗) = 0. Hence, for small 𝑦, we can linearize the RG
flow and write it as the matrix equation

𝜕𝑡𝑦 = 𝑀𝑦, (3.3.31)

where𝑀 has entries given by

𝑀𝑖𝑗 = (
𝜕�̃�𝑖
𝜕�̃�𝑗

)
�̃�∗
. (3.3.32)

𝑀 is constant, for the dimensionless beta functions cannot depend explicitly on 𝑘 and we are looking
at a fixed value of the couplings.

The formal solution to Eq. (3.3.31) is given by

𝑦(𝑡) = 𝑒𝑡𝛭𝑦(0). (3.3.33)

We can decompose this solution in terms of eigenvectors of𝑀, each of them respecting*

⟨𝑣𝑚∣𝑦(𝑡)⟩ = 𝑒𝑡𝜆𝑚 ⟨𝑣𝑚∣𝑦(0)⟩ , (3.3.34)

where 𝑣𝑚 is an eigenvector associated to the eigenvalue 𝜆𝑚 and summation over𝑚 is not implied. We
have three possible situations:

i. Re[𝜆𝑚] < 0, meaning the flow is dragged toward the fixed point along the direction of 𝑣𝑚 as 𝑡
grows. Hence, the direction 𝑣𝑚 is called UV-attractive or IR-repulsive.

ii. Re[𝜆𝑚] = 0, meaning the linear analysis is insufficient to determine whether the fixed point is
attractive or repulsive, and one needs to consider the quadratic (or higher) terms. We say the
direction 𝑣𝑚 is marginal.

iii. Re[𝜆𝑚] > 0, meaning the flow is dragged away from the fixed point along the direction of 𝑣𝑚 as
𝑡 grows. Hence, the direction 𝑣𝑚 is called UV-repulsive or IR-attractive.

*The case in which the eigenvectors of 𝛭 do not span the vector space is always associated with the presence of
degenerate eigenvalues. We can then understand it as the limiting case of a nondegenerate problem (Strogatz 2018, Example
5.2.5; Weinberg 1996, footnote on p. 140).
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UV-repulsive directions are also called irrelevant, since they can only reach the fixed point in the
UV if ⟨𝑣𝑚∣𝑦(0)⟩ = 0. Hence, if one assume the theory does reach the fixed point in the UV—for
example because this assumption seems reasonable to keep the theory physical at all scales and free
of Landau poles—then the irrelevant directions provide predictions in the IR limit. One does not
have to worry about the values of their couplings constants because they are already fixed by the flow,
and hence they are irrelevant in this sense. Similarly, UV-attractive directions are also called relevant,
because the values of their coupling constants still have to be fixed experimentally even if the theory
flows toward the fixed point in the UV.

It is interesting to point out that these ideas are at the core of asymptotically safe quantum gravity
(see Eichhorn 2019; Percacci 2017, 2023; Reuter and Saueressig 2018; Weinberg 1979), an approach
to QG in which one assumes gravity can be described by a QFT that approaches a fixed point in
the UV. Theories that approach a fixed point in the UV are said to be asymptotically safe, since
they are safe from Landau poles. If the fixed point has only finitely many relevant directions, then
there are only finitely many couplings to be fixed experimentally. In this case, even if the theory is
perturbatively nonrenormalizable it still leads to finite results (due to being asymptotically safe) and
retains its predictive power (since it has only finitely many free parameters).

In the vicinity of the Gaussian fixed point, we can see from Eq. (3.3.4) on page 72 that the
dimensionless beta functions will behave approximately as*

�̃�𝑖 ≈ −𝑑𝑖�̃�𝑖. (3.3.35)

Hence, the matrix𝑀 is already diagonal and has eigenvalues −𝑑𝑖. As a consequence, the directions
with 𝑑𝑖 < 0 are irrelevant and those with 𝑑𝑖 > 0 are relevant, while those with 𝑑𝑖 = 0 are marginal. This
is the same classification one usually finds in perturbative discussions about renormalizability (see
Weinberg 1995, p. 503).

3.A Path Integrals and Generating Functionals

In order to establish our notation and conventions for the definitions of the generating functionals
commonly used in field theory, let us quickly review them in this appendix. A more detailed account
can be found in the books by Peskin and Schroeder (1995, Sec. 11.5) and Weinberg (1996, Sec. 16.1).
Some manipulations in this section will involve calculus of anticommuting numbers, which is well
reviewed by DeWitt (2003, App. A).

Consider a theory with field contentΦ. This is to be understood as a “vector of fields”, with each
of the fields being given byΦ𝑖, for some 𝑖. We shall denote byΦ𝛼 the value of some field component at
some spacetime event, so that 𝛼 carries the information about which field we are talking about, which
entry in internal spaces (such as gauge spaces, for example), and the spacetime event. This is known
as DeWitt’s condensed notation (DeWitt 1964). Each of the fields may be either bosonic or fermionic.
We define the generating functional of the theory 𝑍[𝐽] and the connected generating functional𝑊[𝐽]
through

𝑍[𝐽] = exp (𝑊[𝐽]) = ∫ exp (−𝑆[Φ̂] + ⟨𝐽, Φ̂⟩)𝒟Φ̂ , (3.A.1)

*Technically, Eq. (3.3.35) ignores the linear terms that might occur on Eq. (3.3.4) on page 72 and which do occur, for
example, on Eq. (3.3.26) on page 78. Nevertheless, the conclusion is correct. See the book by Percacci (2017, p. 173) for a
more careful argument.
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where we added a hat toΦ to make it clear that it is being integrated over. In the previous equation,
we have also written the shorthand notation

⟨𝐽, Φ̂⟩ ≡ 𝐽𝛼Φ̂𝛼, (3.A.2)

where the Einstein summation convention also implies an integral over spacetime events. This
notation is based on those used by DeWitt (1964) and Kopietz, Bartosch, and Schütz (2010, Chaps. 6
and 7).

Notice that

𝛿𝑍
𝛿𝐽𝛼

= ∫ exp (−𝑆[Φ̂] + ⟨𝐽, Φ̂⟩)Φ̂𝛼𝒟Φ̂ , (3.A.3)

𝛿2𝑍
𝛿𝐽𝛽𝛿𝐽𝛼

= ∫ exp (−𝑆[Φ̂] + ⟨𝐽, Φ̂⟩)Φ̂𝛽Φ̂𝛼𝒟Φ̂ , (3.A.4)

and so on. Hence, the 𝑛-point correlation functions in the presence of the source 𝐽 are given by

𝜔(Φ̂𝛼1 ⋯ Φ̂𝛼𝑛) =
1

𝑍[𝐽]
𝛿𝑛𝑍

𝛿𝐽𝛼1 ⋯ 𝛿𝐽𝛼𝑛
=
∫ exp (−𝑆[Φ̂] + ⟨𝐽, Φ̂⟩)Φ̂𝛼1 ⋯ Φ̂𝛼𝑛 𝒟Φ̂

∫ exp (−𝑆[Φ̂] + ⟨𝐽, Φ̂⟩)𝒟Φ̂
. (3.A.5)

Let us then check the derivatives of𝑊[𝐽]. We will already introduce the notation

𝜔𝑐(Φ̂𝛼1 ⋯ Φ̂𝛼𝑛) ≡
𝛿𝑛𝑊

𝛿𝐽𝛼1 ⋯ 𝛿𝐽𝛼𝑛
. (3.A.6)

Our goal is now to understand its meaning. Notice that

𝜔𝑐(Φ̂𝛼) =
𝛿𝑊
𝛿𝐽𝛼

, (3.A.7a)

= 𝛿
𝛿𝐽𝛼

log𝑍[𝐽], (3.A.7b)

= 1
𝑍[𝐽]

𝛿𝑍
𝛿𝐽𝛼

, (3.A.7c)

= 𝜔(Φ̂𝛼). (3.A.7d)

Furthermore,

𝜔𝑐(Φ̂𝛼Φ̂𝛽) =
𝛿2𝑊
𝛿𝐽𝛼𝛿𝐽𝛽

, (3.A.8a)

= 𝛿
𝛿𝐽𝛼

( 𝛿
𝛿𝐽𝛽

log𝑍[𝐽]), (3.A.8b)

= 𝛿
𝛿𝐽𝛼

( 1
𝑍[𝐽]

𝛿𝑍
𝛿𝐽𝛽

), (3.A.8c)

= 1
𝑍[𝐽]

𝛿2𝑍
𝛿𝐽𝛼𝛿𝐽𝛽

− 1
𝑍[𝐽]

𝛿𝑍
𝛿𝐽𝛼

1
𝑍[𝐽]

𝛿𝑍
𝛿𝐽𝛽

, (3.A.8d)

= 𝜔(Φ̂𝛼Φ̂𝛽) − 𝜔(Φ̂𝛼)𝜔(Φ̂𝛽). (3.A.8e)
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If we were to write this expression diagramatically, we would have

𝜔𝑐(Φ̂𝛼Φ̂𝛽) = 𝛼 𝛽 − 𝛼 𝛽 , (3.A.9)

whichmeans𝜔𝑐(Φ̂𝛼Φ̂𝛽) is the two-point functionminus its disconnected components. Hence,𝜔𝑐(Φ̂𝛼Φ̂𝛽)
is just the connected two-point function. The same ideas hold for more complicated diagrams (see
Peskin and Schroeder 1995, pp. 379–380; Weinberg 1996, Sec. 16.1), and hence we interpret𝑊[𝐽] as
the generator of connected 𝑛-point correlation functions.

𝑍[𝐽] and𝑊[𝐽] both have the same physical content. Nevertheless, 𝑍[𝐽] generates all diagrams,
while𝑊[𝐽] generates only the connected ones. Hence,𝑊[𝐽] is a simpler object, meaning it will often
be more convenient to work with it. However, there is still another generating functional that is even
simpler: the quantum action, or effective action.

The quantum action Γ is a Legendre–Fenchel transform (see Wipf 2021, Sec. 5.3.1) of the
connected generating functional,

Γ[Φ] ≡ sup
𝐽
[⟨𝐽, Φ⟩ −𝑊[𝐽]]. (3.A.10)

Let us understand some of its properties.
Notice that if the maximum is achieved for some �̄� (something usually assumed in the physics

literature for simplicity), then it must satisfy

𝛿
𝛿𝐽𝛼

(⟨𝐽, Φ⟩ −𝑊[𝐽])∣
𝐽=�̄�

= 0, (3.A.11a)

Φ𝛼 =
𝛿𝑊
𝛿𝐽𝛼

∣
𝐽=�̄�

, (3.A.11b)

= 𝜔(Φ̂𝛼)�̄�. (3.A.11c)

Hence, Γ[Φ] is a functional of the classical fieldsΦ = 𝜔(Φ̂).
To compute the behavior of the derivatives of the quantum action, let us first introduce the

notation

𝜁𝛼 = {
+1, if 𝛼 is a bosonic index,
−1, if 𝛼 is a fermionic index.

(3.A.12)

We will also introduce the ℤmatrix with elements

ℤ𝛼𝛽 = 𝛿𝛼𝛽𝜁𝛼, (3.A.13)

where summation is not implied. Since expressions with 𝜁𝛼 will often end up involving an odd number
of indices, we will typically write the summations explicitly when necessary during the rest of this
section.

As an example of how to use ℤ, we can write

⟨𝐽, Φ⟩ = ∫
𝛼
𝐽𝛼Φ𝛼, (3.A.14a)

= ∫
𝛼
𝜁𝛼Φ𝛼𝐽𝛼, (3.A.14b)

= ⟨Φ, ℤ𝐽⟩ , (3.A.14c)
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where we wrote the integral explicitly to avoid notational ambiguities due to the occurrence of 𝜁𝛼.
We now note that the definition of the quantum action implies

𝛿Γ
𝛿Φ𝛼

= 𝛿
𝛿Φ𝛼

( ⟨�̄�, Φ⟩ −𝑊[�̄�]), (3.A.15a)

= ⟨ 𝛿�̄�𝛿Φ𝛼
, Φ⟩ + ⟨ 𝛿Φ𝛿Φ𝛼

, ℤ�̄�⟩ − 𝛿
𝛿Φ𝛼

𝑊[�̄�], (3.A.15b)

= ⟨ 𝛿�̄�𝛿Φ𝛼
, Φ⟩ + ⟨ 𝛿Φ𝛿Φ𝛼

, ℤ�̄�⟩ −∫
𝛽

𝛿�̄�𝛽
𝛿Φ𝛼

𝛿𝑊
𝛿�̄�𝛽

, (3.A.15c)

= ⟨ 𝛿�̄�𝛿Φ𝛼
, Φ⟩ + ⟨ 𝛿Φ𝛿Φ𝛼

, ℤ�̄�⟩ −∫
𝛽

𝛿�̄�𝛽
𝛿Φ𝛼

Φ𝛽, (3.A.15d)

= ⟨ 𝛿�̄�𝛿Φ𝛼
, Φ⟩ + ⟨ 𝛿Φ𝛿Φ𝛼

, ℤ�̄�⟩ − ⟨ 𝛿�̄�𝛿Φ𝛼
, Φ⟩ , (3.A.15e)

= ⟨ 𝛿Φ𝛿Φ𝛼
, ℤ�̄�⟩ , (3.A.15f)

= 𝜁𝛼�̄�𝛼, (3.A.15g)

where �̄�maximizes the argument of the supremum on Eq. (3.A.10) on the preceding page and we
wrote all integrals explicitly when necessary. In a more compact notation, we can write

�̄� = ℤ 𝛿Γ
𝛿Φ. (3.A.16)

The chain rule then allows us to write

𝛿
𝛿Φ𝛼

= ∫
𝛽

𝛿𝐽𝛽
𝛿Φ𝛼

𝛿
𝛿𝐽𝛽

, (3.A.17a)

= ∫
𝛽

𝛿
𝛿Φ𝛼

(𝜁𝛽
𝛿Γ
𝛿Φ𝛽

) 𝛿
𝛿𝐽𝛽

, (3.A.17b)

= ∫
𝛽

𝛿2Γ
𝛿Φ𝛼𝛿Φ𝛽

𝜁𝛽
𝛿
𝛿𝐽𝛽

. (3.A.17c)

Let us write this as a matrix expression. Define

[ 𝛿
𝛿Φ ⊗ 𝛿

𝛿Φ]
𝛼𝛽
≡ 𝛿2

𝛿Φ𝛼𝛿Φ𝛽
. (3.A.18)

Then we may write Eq. (3.A.17) as

𝛿
𝛿Φ = ( 𝛿

𝛿Φ ⊗ 𝛿
𝛿ΦΓ)ℤ 𝛿

𝛿𝐽 , (3.A.19a)

=
→
𝛿Γ

←
𝛿

𝛿Φ𝛿Φ
𝛿
𝛿𝐽 , (3.A.19b)

where we used ℤ to transform one of the left-derivatives in a right-derivative. This was possible
because Γ is a commutative number, while the arguments of the derivatives are either commutative,
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in which case derivatives from both sides coincide, or anticommutative, in which case they differ by a
sign (see DeWitt 2003, pp. 977–978).

Using this result, we find that

Φ = 𝛿𝑊
𝛿𝐽 , (3.A.20a)

1 = 𝛿
𝛿Φ

𝛿𝑊
𝛿𝐽 , (3.A.20b)

=
→
𝛿Γ

←
𝛿

𝛿Φ𝛿Φ( 𝛿𝛿𝐽 ⊗
𝛿
𝛿𝐽𝑊), (3.A.20c)

and hence

( 𝛿𝛿𝐽 ⊗
𝛿
𝛿𝐽𝑊) = (

→
𝛿Γ

←
𝛿

𝛿Φ𝛿Φ)
−1

, (3.A.21)

which means the second derivative of the quantum action is the inverse of the connected propagator,
where care is due with the fermionic signs.

This is most of the mathematical machinery we need. Nevertheless, a few more comments about
the quantum action are in place. We shall state these facts without proof, but more information can
be found on the books by Peskin and Schroeder (1995, Sec. 11.5) and Weinberg (1996, Sec. 16.1).

Firstly, effects coming from all loop levels are taken into account by considering the tree-level
diagrams coming from the quantum action. In this sense it replaces the classical action, since its
“classical level” already includes all quantum corrections.

Secondly, the quantum action generates the one-particle-irreducible (1PI) diagrams, which are
the connected diagrams that cannot be rendered disconnected by cutting any single internal line. 1PI
diagrams can be used to write all connected diagrams, which can then be used to write all diagrams.
Hence, Γ[Φ] is an object simpler than𝑊[𝐽] or 𝑍[𝐽]. Despite being simpler, it still includes all of the
physical content of the theory.

Finally, notice how these constructions resemble those found in statistical systems (Peskin and
Schroeder 1995, Sec. 11.3). The generating functional 𝑍[𝐽] is analogous to the partition function of a
statistical system,𝑊[𝐽] resembles the Helmholtz free energy, and at last Γ[Φ] resembles the Gibbs
free energy.

One-Loop Quantum Action

It is also interesting for us to derive an expression for the one-loop quantum action. We will adapt
the discussion given by Codello (2010, App. B.2) to theories with fermions. The expression for the
one-loop quantum action for a bosonic field is given in the books by Peskin and Schroeder (1995, Eq.
(11.63)) and Weinberg (1996, Eq. (16.2.8)) for the case of Lorentzian signature.

We begin by noticing that Eqs. (3.A.14) and (3.A.16) on page 83 and on the preceding page,
alongside the definitions of𝑊[𝐽] and Γ[Φ], allow us to write

exp(−Γ[Φ]) = ∫ exp(−𝑆[Φ̂] + ⟨Φ̂ − Φ, 𝛿Γ𝛿Φ⟩)𝒟Φ̂ . (3.A.22)

It is convenient for us to define a fluctuation field Ξ̂ = Φ̂ − Φ. We can then write

exp(−Γ[Φ]) = ∫ exp(−𝑆[Ξ̂ + Φ] + ⟨Ξ̂, 𝛿Γ𝛿Φ⟩)𝒟Ξ̂ . (3.A.23)
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Our one-loop expansion consists in expanding the quantum action in powers of ℏ and then
dropping terms proportional to ℏ2 or higher powers. Hence, let us restore ℏ in our equations by
writing

exp(−1ℏΓ[Φ]) = ∫ exp(−1ℏ𝑆[Ξ̂ + Φ] + 1
ℏ ⟨Ξ̂,

𝛿Γ
𝛿Φ⟩)𝒟Ξ̂ . (3.A.24)

If we redefine Ξ̂ → √ℏΞ̂, we get to

exp(−1ℏΓ[Φ]) = ∫ exp(−1ℏ𝑆[
√ℏΞ̂ + Φ] + 1

√ℏ
⟨Ξ̂, 𝛿Γ𝛿Φ⟩)𝒟Ξ̂ . (3.A.25)

Let us then perform two expansions. The first of them is to write the quantum action in the form

Γ[Φ] =
+∞
∑
𝑛=0

ℏ𝑛Γ𝑛[Φ] (3.A.26)

(see Toms 2007, pp. 376–378, for a justification of the use of only integer powers of ℏ). The second is
to Taylor expand the classical action as

𝑆[√ℏΞ̂ + Φ] = 𝑆[Φ] + √ℏ ⟨Ξ̂, 𝛿𝑆𝛿Φ⟩ + ℏ
2 ⟨Ξ̂,

→
𝛿𝑆

←
𝛿

𝛿Φ𝛿ΦΞ̂⟩ + 𝒪(ℏ
3
2 ), (3.A.27a)

= 𝑆[Φ] + √ℏ ⟨Ξ̂, 𝛿𝑆𝛿Φ⟩ + ℏ
2 ⟨Ξ̂, 𝑆

(2)Ξ̂⟩ + 𝒪(ℏ
3
2 ). (3.A.27b)

Notice the positions of the entries are important, since some of the fields anticommute.
Notice then that we get to

exp(−1ℏΓ0[Φ] − Γ1[Φ] + 𝒪(ℏ))

= ∫ exp(−1ℏ𝑆[Φ] −
1
√ℏ

⟨Ξ̂, 𝛿𝑆𝛿Φ⟩ − 1
2 ⟨Ξ̂, 𝑆

(2)Ξ̂⟩ + 1
√ℏ

⟨Ξ̂,
𝛿Γ0
𝛿Φ⟩ + 𝒪(√ℏ))𝒟Ξ̂ . (3.A.28)

At leading order in ℏ, we find that

Γ0[Φ] = 𝑆[Φ] + constant, (3.A.29)

which was expected. Hence, we can simplify the equation to

exp(−Γ1[Φ] + 𝒪(ℏ)) = ∫ exp(−12 ⟨Ξ̂, 𝑆
(2)Ξ̂⟩ + 𝒪(√ℏ))𝒟Ξ̂ . (3.A.30)

We have reduced the problem to computing a Gaussian integral. Using the known expressions
for Gaussian integrals, we find that to one-loop order (cf.Altland and Simons 2010, Eqs. (3.19) and
(4.19); DeWitt 2003, Eq. (A.120))

exp(−Γ1[Φ]) ∝ [SDet𝑆(2)]
− 12 , (3.A.31)

where SDet denotes the superdeterminant (DeWitt 2003, p. 989). Therefore,

Γ1[Φ] =
1
2 log(SDet𝑆(2)), (3.A.32a)

= 1
2 STr[log𝑆(2)]. (3.A.32b)

Thus, to one-loop order, we may write

Γone-loop = 𝑆 + ℏ
2 STr[log𝑆(2)]. (3.A.33)
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3.B Heat Kernel Techniques
When working with the FRGE, we often need to compute complicated functional traces. This
appendix is intended to describe how to perform the calculations we shall encounter. It is based on
the books by Percacci (2017) and Reuter and Saueressig (2018, App. D), and on the paper by Wald
(1979). One might also check the more extensive reviews by Avramidi (2000) and Vassilevich (2003).

Let us denote
Δ = −𝑔𝑎𝑏∇𝑎 ∇𝑏 + 𝔼, (3.B.1)

where 𝑔𝑎𝑏 is the (Euclidean) spacetime metric, ∇𝑎 is the Levi-Civita connection associated with 𝑔𝑎𝑏 ,
and 𝔼 is some linear map that can act on both spacetime indices and eventual internal indices carried
by the fields*. The endomorphism 𝔼 could be, for example, a mass term or perhaps some curvature
term. It is included to make the discussion a bit more general.

When working with the FRGE, we might find ourselves wishing to compute an expression of the
form

Tr[𝑊(Δ)], (3.B.2)

for some arbitrary function𝑊(Δ). How can we proceed to compute the functional trace?
Let𝑊(𝑠) denote the inverse Laplace transform of𝑊(𝑧), i.e., suppose

𝑊(𝑧) = ∫
+∞

0
𝑊(𝑠)𝑒−𝑠𝑧 d𝑠 . (3.B.3)

We may then write
Tr[𝑊(Δ)] = ∫

+∞

0
𝑊(𝑠)Tr[𝑒−𝑠Δ]d𝑠 , (3.B.4)

which reduces the problem to that of computing the simpler trace Tr[𝑒−𝑠Δ].
Assuming Δ is sufficiently well-behaved, we can write the action of 𝑒−𝑠Δ on some test function 𝑓

by means of an integral kernel. Namely, we can write

(𝑒−𝑠Δ𝑓)(𝑥) = ∫𝐾(𝑠; 𝑥, 𝑦; Δ)𝑓(𝑦)√𝑔 d𝑑𝑦 , (3.B.5)

where √𝑔d𝑑𝑦 denotes the integration measure on the manifold. 𝐾(𝑠; 𝑥, 𝑦; Δ) is known as the heat
kernel, while 𝑒−𝑠Δ is also called the heat operator. Notice that if 𝑓 is not a scalar function—for example,
it could be a tensor field or a matrix in some internal space—then𝐾(𝑠; 𝑥, 𝑦; Δ)might also have further
structure.

Notice that the heat operator is a solution to the heat equation,

(𝜕𝑠 + Δ)𝑒
−𝑠Δ = 0. (3.B.6)

It has the initial condition
𝑒−𝑠Δ∣

𝑠=0
= 1. (3.B.7)

It then follows from Eq. (3.B.5) that the heat kernel satisfies

(𝜕𝑠 + Δ)𝐾(𝑠; 𝑥, 𝑦; Δ) = 0 (3.B.8)

*It is possible to add a Yang-Mills connection to ∇𝑎 , but we refrain from doing so since we will not be considering
gauge theories in this thesis.
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and

lim
𝑠→0

𝐾(𝑠; 𝑥, 𝑦; Δ) = 𝛿(𝑑)(𝑥, 𝑦). (3.B.9)

In terms of the heat kernel, we can write the trace Tr[𝑒−𝑠Δ] as

Tr[𝑒−𝑠Δ] = ∫𝐾(𝑠; 𝑥, 𝑥; Δ)√𝑔 d𝑑𝑥 . (3.B.10)

Hence, we have reduced the problem of computing Tr[𝑊(Δ)] to that of understanding the heat
kernel.

Early Time Expansion

Notice that the parameter 𝑠must have dimension of length squared, since Δ has dimension of inverse
length squared. Hence, if we manage to expand the heat operator for small values of 𝑠—“early times”,
since 𝑠 is similar to time in the heat equation—we will be highlighting the UV properties of the heat
operator. In such a limit, we expect it to be similar to what one would get for flat space.

Therefore, in order to gain some intuition, let us consider the problem of obtaining the heat
kernel in flat space for the operator

Δ = −𝛿𝑎𝑏∇𝑎 ∇𝑏 + 𝑚2, (3.B.11)

which typically occurs for a massive scalar field. Since we are working in flat space, we can write this
operator in Cartesian coordinates as

Δ = −
𝑑
∑
𝜇=1

𝜕2

𝜕(𝑥𝜇)2
+ 𝑚2. (3.B.12)

Therefore, the heat kernel can be seen as the solution to the initial value problem

{
( 𝜕𝜕𝑠 −

𝑑
∑
𝜇=1

𝜕2

𝜕(𝑥𝜇)2
+ 𝑚2)𝐾(𝑠; 𝑥, 𝑦; Δ) = 0,

𝐾(0; 𝑥, 𝑦; Δ) = 𝛿(𝑑)(𝑥, 𝑦).
(3.B.13)

To solve the equation we can take a Fourier transform with respect to the spatial variables 𝑥. This
also requires taking a Fourier transform for the initial condition. We are left with the initial value
problem for a simple exponential function. If we solve it and then transform back, we end up with

𝐾(𝑠; 𝑥, 𝑦; Δ) = 1
(2𝜋)𝑑

∫ exp (𝑖𝛿𝜇𝜈 𝑘𝜇(𝑥𝜈 − 𝑦𝜈) − 𝑘2𝑠 − 𝑚2𝑠) d𝑑𝑘 . (3.B.14)

This is a Gaussian integral in 𝑑 dimensions. Using the known formulae for these sorts of integrals
(see, e.g., Altland and Simons 2010, Eq. (3.13)) we get to

𝐾(𝑠; 𝑥, 𝑦; Δ) = 1
(4𝜋𝑠)

𝑑
2
exp (−

(𝑥𝜇 − 𝑦𝜇)(𝑥𝜇 − 𝑦𝜇 )
4𝑠 − 𝑚2𝑠). (3.B.15)
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Hence, we expect to be able to write the heat kernel for a more general operator in the form

𝐾(𝑠; 𝑥, 𝑦; Δ) = 1
(4𝜋𝑠)

𝑑
2
exp (−

𝜎(𝑥, 𝑦)
4𝑠 )

+∞
∑
𝑛=0

𝔸𝑛(𝑥, 𝑦)𝑠
𝑛, (3.B.16)

where 𝜎(𝑥, 𝑦) is the square of the geodesic distance between 𝑥 and 𝑦, and the coefficients 𝔸𝑛(𝑥, 𝑦)
are generally matrices on internal spaces. Wald (1979) proved this expression* for scalar fields on
non-compact manifolds with self-adjoint Δ. It was already known for compact manifolds. One also
has the boundary condition that lim𝑦→𝑥𝔸0(𝑥, 𝑦) = 1—the identity on the internal space—in order
for Eq. (3.B.9) on the preceding page to be satisfied.

From Eqs. (3.B.10) and (3.B.16) on the facing page and on the current page we can see that

Tr[𝑒−𝑠Δ] = 1
(4𝜋𝑠)

𝑑
2

+∞
∑
𝑛=0

∫ tr[𝕒𝑛(𝑥)]√𝑔d𝑑𝑥 𝑠𝑛, (3.B.17)

where 𝕒𝑛(𝑥) ≡ 𝔸𝑛(𝑥, 𝑥) and tr denotes the algebraic trace over the finite-dimensional internal space.
Eq. (3.B.17) is the early time expansion for the trace of the heat operator.

The matrices 𝕒𝑛 can be written in terms of curvature tensors and of the endomorphism 𝔼. For
dimensional reasons, notice that 𝕒𝑛 must be built out of terms with exactly 2𝑛 derivatives. These
coefficients can be found in mathematical physics references such as those by Avramidi (2000) and
Vassilevich (2003). We have, for example, the terms (Reuter and Saueressig 2018, App. D.1)

𝕒0 = 1, (3.B.18)

𝕒1 =
𝑅
6 1 − 𝔼, (3.B.19)

where 𝑅 is the Ricci scalar. Further terms involve more derivatives, meaning the expressions get
progressively more complex.

Traces of Functions of Operators

Let us then get back to the problem of finding Tr[𝑊(Δ)]. From Eqs. (3.B.4) and (3.B.17) on page 87
and on this page we find

Tr[𝑊(Δ)] = ∫
+∞

0
𝑊(𝑠)Tr[𝑒−𝑠Δ]d𝑠 , (3.B.20a)

=
+∞
∑
𝑛=0

∫
+∞

0

𝑊(𝑠)𝑠𝑛 d𝑠
(4𝜋𝑠)

𝑑
2

∫ tr[𝕒𝑛(𝑥)]√𝑔 d𝑑𝑥 , (3.B.20b)

= 1
(4𝜋)

𝑑
2

+∞
∑
𝑛=0

∫
+∞

0
𝑊(𝑠)𝑠−(

𝑑
2 −𝑛) d𝑠∫ tr[𝕒𝑛(𝑥)]√𝑔d𝑑𝑥 , (3.B.20c)

= 1
(4𝜋)

𝑑
2

+∞
∑
𝑛=0

𝑄 𝑑
2 −𝑛

[𝑊]∫ tr[𝕒𝑛(𝑥)]√𝑔 d𝑑𝑥 , (3.B.20d)

where we defined the𝑄-functionals through

𝑄𝑛[𝑊] = ∫
+∞

0
𝑊(𝑠)𝑠−𝑛 d𝑠 . (3.B.21)

*Up to the mathematical caveats that we are ignoring.
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Eq. (3.B.20) on the previous page is the expression we wished to obtain.
Suppose 𝑛 > 0. Then

𝑄𝑛[𝑊] = 1
Γ(𝑛) ∫

+∞

0
𝑊(𝑧)𝑧𝑛−1 d𝑧 . (3.B.22)

Indeed,

1
Γ(𝑛) ∫

+∞

0
𝑊(𝑧)𝑧𝑛−1 d𝑧 = 1

Γ(𝑛) ∬
+∞

0
𝑊(𝑠)𝑧𝑛−1𝑒−𝑠𝑧 d𝑧d𝑠 , (3.B.23a)

= 1
Γ(𝑛) ∬

+∞

0
𝑊(𝑠)𝑢𝑛−1𝑠−𝑛𝑒−𝑢 d𝑢d𝑠 , (3.B.23b)

= ∫
+∞

0
𝑊(𝑠)𝑠−𝑛 d𝑠 , (3.B.23c)

= 𝑄𝑛[𝑊]. (3.B.23d)

For 𝑛 ≤ 0, we cannot use the integral representation of the Gamma function we just applied, but we
can obtain other formulas.

Notice that Eq. (3.B.3) on page 87 implies

𝑊(𝑘)(𝑧) = (−1)𝑘∫
+∞

0
𝑠𝑘𝑊(𝑠)𝑒−𝑠𝑧 d𝑠 , (3.B.24)

and hence
𝑄𝑛[𝑊] = (−1)𝑘𝑄𝑛+𝑘[𝑊

(𝑘)]. (3.B.25)

We are then able to choose a convenient value of 𝑘 and obtain 𝑄𝑛[𝑊] for 𝑛 ≤ 0 by employing
Eqs. (3.B.22) and (3.B.25). This leads to the general formula

𝑄𝑛[𝑊] = (−1)𝑘

Γ(𝑛 + 𝑘) ∫
+∞

0
𝑊(𝑘)(𝑧)𝑧𝑛+𝑘−1 d𝑧 (3.B.26)

for any 𝑘 such that 𝑛 + 𝑘 > 0.

Traces of Covariant Derivatives of Functions of Operators

Let us now consider a more complicated trace. Namely, suppose for some reason we got to an
expression of the form

Tr[𝒪𝑊(Δ)] ≡ Tr[𝒪𝑎1⋯𝑎𝑛∇𝑎1 ⋯∇𝑎𝑛 𝑊(Δ)]. (3.B.27)

These sorts of expressions will occur in Section 4.3, when we are dealing with the Unruh–DeWitt
detector. How can we deal with them?

Firstly, notice we can assume 𝒪𝑎1⋯𝑎𝑛 to be completely symmetric. The antisymmetric parts can be
rewritten in terms of curvature tensors, leading us back to the form of Eq. (3.B.27), although with
𝒪𝑎1⋯𝑎𝑛 now being of a smaller rank.

The first step is to use the inverse Laplace transform, as we did before. Notice that

Tr[𝒪𝑊(Δ)] = ∫
+∞

0
𝑊(𝑠)Tr[𝒪𝑒−𝑠Δ] d𝑠 , (3.B.28)
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and now we just have to study the trace of the heat operator. Notice that

(𝒪𝑒−𝑠Δ𝑓)(𝑥) = ∫𝒪𝐾(𝑠; 𝑥, 𝑦; Δ)𝑓(𝑦)√𝑔d𝑑𝑦 , (3.B.29)

where the operator 𝒪 acts on the 𝑥 coordinates. Hence, we get to

Tr[𝒪𝑒−𝑠Δ] = tr∫𝒪𝑎1⋯𝑎𝑛∇(𝑎1
⋯∇𝑎𝑛)

𝐾(𝑠; 𝑥, 𝑦; Δ)√𝑔 d𝑑𝑥 , (3.B.30)

where the overline denotes the coincidence limit 𝑦 → 𝑥. The algebraic trace tr in front of the integral
takes care of eventual contributions due to internal indices. To simplify notation, we shall also write

𝐾𝑎1⋯𝑎𝑛 ≡ ∇(𝑎1
⋯∇𝑎𝑛)

𝐾(𝑠; 𝑥, 𝑦; Δ). (3.B.31)

Eq. (3.B.30) provides an expression for Tr[𝒪𝑒−𝑠Δ] in terms of the heat kernel evaluated at 𝑥 ≠ 𝑦
until the coincidence limit is taken at the last minute. Hence, computation of traces by means such as
the one provided by Eq. (3.B.30) are known as off-diagonal heat kernel techniques.

Using Eqs. (3.B.16) and (3.B.30) on page 89 and on this page we can obtain expressions for the
traces of the form Tr[𝒪𝑒−𝑠Δ] (see Reuter and Saueressig 2018, App. D.2, for a bit more detail). The
case of a flat manifold with vanishing 𝔼 is of particular interest in Chapter 4. In this case, one has
(Reuter and Saueressig 2018, Eq. (D.29))

𝐾(𝑎1⋯𝑎2𝑛)
= 1
(4𝜋𝑠)

𝑑
2
(− 1

2𝑠)
𝑛
[𝛿𝑎1𝑎2 ⋯ 𝛿𝑎2𝑛−1𝑎2𝑛 + (

(2𝑛)!
2𝑛𝑛! − 1) permutations], (3.B.32a)

= 1
(4𝜋𝑠)

𝑑
2
(− 1

2𝑠)
𝑛 (2𝑛)!
2𝑛𝑛! 𝛿(𝑎1𝑎2 ⋯ 𝛿𝑎2𝑛−1𝑎2𝑛). (3.B.32b)

g 0 G





Four

Nonperturbative Unruh–DeWitt
Detectors

A motivation for the study of the nonperturbative renormalization group flow of a particle detector
is given. We then review how to formulate an Unruh–DeWitt detector in terms of an action, and
attempt to compute its functional renormalization group flow. Our approach will lead to issues on
the gapless limit of the detector, and we shall discuss other possible ideas for further analyses.

Have you guessed the riddle yet?

The Mad Hatter, in Lewis Carroll’sAlice’s Adventures in Wonderland,
Chapter VII: A Mad Tea-Party.

Understanding the relationship between quantum mechanics (QM) and relativity is an issue
nearly as old as QM itself. For example, the considerations raised by Einstein, Podolsky, and Rosen
(1935) naturally lead to questions about whether quantum entanglement allows for superluminal
exchange of information between two systems. As these questions evolved, they developed into an
area of physics known as relativistic quantum information, which is concerned with how information
can be exchanged between observers in spacetime.

When studying such problems, quantum field theory in curved spacetime becomes a particularly
natural language since it is capable of encoding quantum effects while also taking into consideration
the intricacies due to a curved spacetime. Aquantum field canbeused as amedium for communication
with observers accessing it by using particle detectors such as theUnruh–DeWitt detectorwe described
in Section 2.4. By performing a measurement on their detector, an observer can encode information
in the field. Later, a second observer may retrieve this information by performing a newmeasurement
on their detector. Within this paradigm, Landulfo (2016) proposed a communication protocol for
two observers moving through a general globally hyperbolic spacetime and studied its features in a
completely nonperturbative manner. We shall briefly review his model and findings as a motivation
for the following sections.

One considers two observers, Alice and Bob, each possessing a two-level quantum system—a
qubit. We assume them to be in some arbitrary globally hyperbolic spacetime on which there is a
scalar quantum field, which is described by the methods outlined in Section 2.3. The field is assumed
to interact with the qubits by means of the interaction-picture Hamiltonian (Landulfo 2016, Eq.
(24))

𝐻int(𝑡) = ∑
𝑗
𝜖𝑗(𝑡)∫

Σ𝑡
𝜓𝑗(𝑡, �⃗�)𝜎

𝑥
𝑗 (𝑡) ⊗ 𝜙(𝑡, �⃗�)√−𝑔 d3𝑥 (4.0.1)

93
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(cf. Eq. (2.4.25) on page 34). In this expression, 𝑡 is a global time function assured to exist on any
globally hyperbolic spacetime (Wald 1984, Theorem 8.3.14), Σ𝑡 is the Cauchy surface at constant 𝑡,
�⃗� denotes the coordinates on Σ𝑡, 𝑗 labels whether the qubit is Alice’s or Bob’s, 𝜖𝑗(𝑡) is the coupling
between qubit 𝑗 and the field (allowed to have a time-dependence so the coupling can be turned on
and off), 𝜓𝑗(𝑡, �⃗�) is a function modelling the spacetime extension of the qubit, 𝜎𝑥 is the Pauli matrix, 𝜙
is the quantum field, and 𝑔 is the spacetime metric determinant*. While we use the notation �⃗� for a
point in Σ𝑡, do notice that Σ𝑡 does not necessarily have a vector space structure. The total Hamiltonian
of the composite system made of the field and qubits is then given in the interaction picture by

𝐻(𝑡) = 𝐻𝜙 + 𝐻int(𝑡). (4.0.2)

Notice this differs from the model we previously considered in Section 2.4 due to the absence of “gap
terms” for the qubits (see Eq. (2.4.24) on page 34). We shall comment on this shortly.

As shown by Landulfo (2016), this model leads to a number of advantages. By using it, a commu-
nication protocol can be established with the following properties:

i. it involves a model that can be exactly solved;

ii. the results hold for a general globally hyperbolic spacetime;

iii. one does not need to assume a representation of the canonical commutation relations;

iv. the field can be assumed to be on an arbitrary Gaussian state;

v. both sender and receiver are allowed to have arbitrary trajectories;

vi. both sender and receiver only interact with the field on a bounded region of spacetime;

vii. classical information can be transmitted between sender and receiver;

viii. causality is manifest, with spacelike-related observers being unable to communicate.

Nevertheless, the same simplification that allows for these advantages also brings a few limitations.
The model is exactly solvable because it lacks a gap term such as the one shown on Eq. (2.4.24) on
page 34. This limitation prevents the observers from transmitting quantum information without the
assistance of extra entanglement between the parts, from harvesting entanglement from the vacuum
(Simidzija, Jonsson, and Martín-Martínez 2018), and from using the qubits as particle detectors.
Indeed, the absence of a gap term spoils the interpretation that the detector gets excited when it
detects a particle, since there is no longer a difference between ground and excited states.

Due to these reasons, we are interested in modifying the model analyzed by Landulfo (2016) by
now considering the Hamiltonian

𝐻(𝑡) = 𝐻𝜙 +∑
𝑗

Ω𝑗

2
d𝜏𝑗
d𝑡 𝜎

𝑧
𝑗 + 𝐻int(𝑡). (4.0.3)

*Eq. (4.0.1) on the preceding page does include the determinant of the spacetimemetric rather than the determinant of
the induced metric on Σ𝑡. This can be understood by recalling that the Hamiltonian is not a scalar, but the action—which
includes the time integral of the Hamiltonian—is.
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This new Hamiltonian adds gap terms to the qubits considered on Eq. (4.0.2) on the preceding page.
The factors d𝜏𝑗

d𝑡 are included because the gap terms generate translations with respect to the detector’s
proper times, but𝐻(𝑡) should generate translations with respect to the global time function 𝑡. With
this new Hamiltonian we shall be able to bypass some of the limitations imposed by the previous
model. However, this will cost us the ability to solve the model exactly in an arbitrary spacetime.

We would still like to be able to consider qubits strongly coupled to the quantum field, since
this is one of the main features of the analysis given by Landulfo (2016). Nevertheless, we will no
longer be able to solve the model exactly. A possibility is to then perform a perturbative expansion
not on the couplings to the field, but rather on the energy gaps of the detectors. As long as the gaps
are non-vanishing, we should already be able to use the qubits as particle detectors and obtain other
interesting results concerning communication, and hence there is no great loss in assuming the gaps
to be small.

This perturbative treatment can be improved by considering the renormalization group (RG)
flow of the field-detector system. As mentioned in Chapter 3, the RG flow can be used to partially
resum the perturbative expansion and hence improve the results obtained by perturbative methods
(see, e.g., Delamotte 2004). Therefore, we are interested in employing functional renormalization
group (FRG) techniques to obtain a nonperturbative understandment of the behavior of particle
detectors coupled to quantum fields in curved spacetimes.

Notice that particle detectors are interesting tools to probe the Unruh and Hawking effects,
which have well-defined temperature scales. Hence, they are often taken to be systems in thermal
equilibrium. Since thermal equilibrium can be understood as periodicity in imaginary time (this is
essentially the physical meaning of the Kubo–Martin–Schwinger condition mentioned in Section 2.3
on page 20), an Euclidean approach gains a natural interpretation and our Euclidean formulation of
the FRG seems particularly interesting. The Unruh or Hawking temperature will then often provide
the scale of interest at which we shall consider the theory’s parameters.

Our goal in this chapter will then be to discuss the FRG flow of an Unruh–DeWitt detector.
While ultimately we would like to obtain the flow for accelerated detectors in Minkowski spacetime
or static detectors in Schwarzschild spacetime in order to discuss the Unruh and Hawking effects, we
shall focus on the simpler case of an inertial detector in flat spacetime. As we will notice, this simple
case is already complicated enough to require a careful analysis by itself. Generalizations for other
trajectories, spacetimes, and the analysis of communication aspects are outside the scope of this thesis.
Nevertheless, in the following sections we shall avoid making unnecessary simplifications, and hence
many of our intermediate results hold in more generality.

4.1 Action for a Particle Detector

When working with the functional renormalization group equation (FRGE), we need to have an
ansatz for the effective average action (EAA). Therefore, we would like to have an action formulation
for the particle detector we will be working with. To obtain one we will follow the paper by Burbano,
Perche, and Torres (2021), but first we will specify the model we are interested in studying in a
Hamiltonian formulation.
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Hamiltonian Formulation

Since we are concerned only with the FRG analysis of the particle detector, we can simplify the
Hamiltonian given by Eqs. (4.0.1) and (4.0.3) on page 93 and on page 94 by considering a single
detector. This leaves us with

𝐻(𝑡) = 𝐻𝜙 +
Ω
2

d𝜏
d𝑡 𝜎

𝑧 + 𝐻int(𝑡), (4.1.1)

where
𝐻int(𝑡) = 𝜖(𝑡)∫

Σ𝑡
𝜓(𝑡, �⃗�)𝜎𝑥(𝑡) ⊗ 𝜙(𝑡, �⃗�)√−𝑔 d3𝑥 . (4.1.2)

These Hamiltonians generate translations with respect to the global time function 𝑡. To generate
translations with respect to proper time—which will be more interesting for our purposes—we can
write

𝐻(𝜏) = d𝑡
d𝜏𝐻𝜙 +

Ω
2 𝜎

𝑧 + d𝑡
d𝜏𝐻int(𝜏). (4.1.3)

We shall also simplify the interaction term given by Eq. (4.1.2). Instead of working with the
general case of a smeared particle detector, we will focus on pointlike detectors, which are commonly
known as Unruh–DeWitt detectors (DeWitt 1979; Unruh 1976).

To consider a pointlike detector means to choose the smearing function 𝜓 on Eq. (4.1.2) to have
the form

𝜓(𝑡, �⃗�) = 1
√−𝑔

∫𝛿(𝑑)(𝑥, 𝑧(𝜏)) d𝜏 , (4.1.4)

where the integral is taken over the detector’s proper time and 𝑧(𝜏) denotes the detector’s worldline
(cf. Perche and Martín-Martínez 2022, Eq. (51); Poisson, Pound, and Vega 2011, Eq. (17.4)). We can
then write the interaction Hamiltonian on Eq. (4.1.2) as

𝐻int(𝑡) = 𝜖(𝑡)∬
Σ𝑡
𝛿(𝑑)(𝑥, 𝑧(𝜏))𝜎𝑥(𝑡) ⊗ 𝜙(𝑡, �⃗�)d𝑑−1𝑥 d𝜏 , (4.1.5a)

= 𝜖(𝑡)∫𝛿(𝑡 − 𝑧0(𝜏))𝜎𝑥(𝑡) ⊗ 𝜙(𝑡, �⃗�(𝜏))d𝜏 , (4.1.5b)

= 𝜖(𝑡)∫
𝛿(𝜏 − (𝑧0)−1(𝑡))

∣d𝑧
0

d𝜏 ∣
𝜎𝑥(𝑡) ⊗ 𝜙(𝑡, �⃗�(𝜏))d𝜏 , (4.1.5c)

= 𝜖(𝑡)∫𝛿(𝜏 − (𝑧0)−1(𝑡))d𝜏d𝑡 𝜎
𝑥(𝑡) ⊗ 𝜙(𝑡, �⃗�(𝜏)) d𝜏 , (4.1.5d)

= 𝜖(𝑡)𝜎𝑥(𝑡) ⊗ 𝜙(𝑡, �⃗�(𝜏(𝑡)))d𝜏d𝑡 . (4.1.5e)

Eqs. (4.1.3) and (4.1.5) then yield

𝐻(𝜏) = d𝑡
d𝜏𝐻𝜙 +

Ω
2 𝜎

𝑧 + 𝜖(𝜏)𝜎𝑥(𝜏) ⊗ 𝜙(𝑧(𝜏)). (4.1.6)

Notice that on Eq. (4.1.6) we wrote all factors in the interaction term as functions of 𝜏, despite the
fact that on Eq. (4.1.5) they were written in terms of the global time function 𝑡. This is possible
because the detector is being implicitly assumed tomove on a causal trajectory, and hence its worldline
intercepts each of the hypersurfaces of constant 𝑡 exactly once, as a consequence of the fact that these
hypersurfaces are Cauchy surfaces (Wald 1984, Theorem 8.3.14). Therefore, 𝜏 and 𝑡 are in one-to-one
correspondence.
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Action Formulation

Let us then figure out the action describing the detector. We do not need to consider the term on
Eq. (4.1.6) on the preceding page describing the quantum field, since it will only amount to the usual
action of a scalar field. We will then focus on the remaining terms, which involve the detector.

The problem of formulating the Unruh–DeWitt detector by means of an action was recently
addressedbyBurbano, Perche, andTorres (2021)with the goal of providing apath integral formulation
of particle detectors. We shall follow their approach.

We begin by introducing the 𝔰𝔲(2) ladder operators by*

𝜎± = 𝜎𝑥 ± 𝑖𝜎𝑦

2 . (4.1.7)

With this definition we can then write

𝜎𝑥 = 𝜎+ + 𝜎− (4.1.8)

and

𝜎𝑧 = 𝜎+𝜎− − 𝜎−𝜎+. (4.1.9)

Therefore, the gap term becomes

𝐻Ω = Ω
2 (𝜎

+𝜎− − 𝜎−𝜎+). (4.1.10)

Eq. (4.1.10) resembles the Hamiltonian for a fermionic harmonic oscillator (Nakahara 2003, Sec.
1.5.1). In particular, notice how

{𝜎+, 𝜎−} = 1 and {𝜎±, 𝜎±} = 0. (4.1.11)

The path integral quantization of such a system is a well-understood problem inQM and is discussed,
for example, by Nakahara (2003, Sec. 1.5). It requires us to employ Grassmann variables (which are
reviewed by DeWitt 2003, App. A; Nakahara 2003, Sec. 1.5).

If our problem was simply to quantize a fermionic harmonic oscillator, we would introduce a
pair of Grassmann variables �̄� and 𝜃which, upon quantization, would satisfy the canonical anticom-
mutation relations (CAR)

{�̄�, 𝜃} = 1, {𝜃, 𝜃} = 0, and {�̄�, �̄�} = 0. (4.1.12)

This is the same algebra given on Eq. (4.1.11). Hence, a path integral formulation in terms of Grass-
mann variables would yield the correct algebra we are expecting. Eq. (4.1.12) can also be seen to
describe the complex Clifford algebra ℂℓ2 (see Vaz Jr. and Rocha Jr. 2016; Woit 2017, Chaps. 28 and
29) by defining

𝜒1 =
𝜃 + �̄�
√2

and 𝜒2 =
𝑖(𝜃 − �̄�)
√2

(4.1.13)

and noticing this implies
{𝜒𝑖, 𝜒𝑗} = 𝛿𝑖𝑗. (4.1.14)

*Since these operators lie on the complexification of 𝔰𝔲(2), they are actually elements of 𝔰𝔩(2, ℂ) (Hall 2015, Sec. 3.6).
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An Unruh–DeWitt detector, however, is more complicated than a fermionic harmonic oscillator.
In terms of the Grassmann variables �̄� and 𝜃, we would represent the gap term by “mimicking”
Eq. (4.1.10) on the previous page with an action term similar to

𝑆Ω ∼ Ω
2 (�̄�𝜃 − 𝜃�̄�), (4.1.15)

where the details still need to be worked out and we are ignoring the necessary integrals. For now,
we are only interested in the algebraic structure. The extra difficulty in the Unruh–DeWitt detector
comes from the fact we also need to somehow represent the interaction with the field. Our current
proposal would look like

𝑆int ∼ 𝜖𝜙(�̄� + 𝜃). (4.1.16)

This is not an acceptable action. Indeed, since 𝜙 is real and �̄� and 𝜃 are Grassmann numbers, this is an
a-number, but the action should be a c-number. Hence, this approach cannot be right.

To correctly represent the detector, we must find a manner to represent the CAR algebra in an
“even manner”, i.e., in such a way that each term occurring in the action always involves the product
of an even number of Grassmann fields. In this way, we can ensure the action will be a c-number.

We already know the terms in the action can be written in terms of the Clifford algebra ℂℓ2, but
this requires the use of odd terms. Nevertheless, it is known within the theory of Clifford algebras
that ℂℓ+𝑛 ≃ ℂℓ𝑛−1, where ℂℓ+𝑛 represents the even part of ℂℓ𝑛 and ≃ denotes an isomorphism. This
follows, for example, from the results given in the book by Vaz Jr. and Rocha Jr. (2016, Theorem
4.2 and 4.4). Therefore, ℂℓ2 ≃ ℂℓ+3 , and we can represent the necessary degrees of the freedom for
the detector by employing a representation of ℂℓ3. Venturelli (2007) discusses this approach in the
related problem of the spin-boson system in condensed matter physics.

When working with the FRGE, the representation provided by ℂℓ3 turns out to be inconvenient.
The ansatz provided by the classical action is a bad truncation for the EAA because the interaction
term is not capable of generating corrections to other terms, and hence we would have to supplement
the ansatz with more coupling constants. To avoid this, we will reapply the result ℂℓ+𝑛 ≃ ℂℓ𝑛−1 and
work with a representation given by ℂℓ+4 . We then have the relations

ℂℓ+4 ≃ ℂℓ3 ⊇ ℂℓ+3 ≃ ℂℓ2. (4.1.17)

This is the same approach chosen by Burbano, Perche, and Torres (2021).
ℂℓ4 is generated by four Grassmann variables (in addition to the identity, which is commutative).

Hence, we shall work with two pairs of Grassmann variables: 𝜃, �̄�, 𝜂, and �̄�. Upon quantization they
will respect the algebra given by

{�̄�, 𝜃} = 1 and {�̄�, 𝜂} = 1 (4.1.18)

while all other anticommutators vanish. In analogy with Eq. (4.1.13) on the preceding page, we may
define

𝜒3 =
𝜂 + �̄�
√2

and 𝜒4 =
𝑖(𝜂 − �̄�)
√2

(4.1.19)

and obtain
{𝜒𝑖, 𝜒𝑗} = 𝛿𝑖𝑗 (4.1.20)

for 𝑖, 𝑗 = 1, 2, 3, 4.
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Since our original goal was to represent ℂℓ2, how can we now interpret these objects coming from
ℂℓ4? Our trick is to see both the ground and excited states of the detector as excitations on some more
fundamental “true vacuum”. This idea is similar to how, deep down, the energy levels on a hydrogen
atom are all excitations upon the Minkowski vacuum for the electron field—instead of interpreting
the changes in energy levels as straightforward energy transitions, we can also interpret them as the
annihilation of an electron at some energy level and the creation of an electron at the new energy level.
A similar concept was employed by Torres et al. (2020) to understand neutrino oscillations. In their
model, one describes a particle detector in terms of protons and neutrons, which are both seem as
excitations upon an underlying “true vacuum” that represents the absence of nucleons.

From this point of view, we may then see the operators 𝜎± as being shorthands for

𝜎+ = 𝑎†𝑒𝑎𝑔 and 𝜎− = 𝑎†𝑔𝑎𝑒, (4.1.21)

where 𝑎𝑔, 𝑎†𝑔, 𝑎𝑒, and 𝑎†𝑒 are the ladder operators for the ground and excited states. In other words, 𝜎+,
for example, acts on the detector by annihilating the ground state ∣𝑔⟩ and then creating the excited
state |𝑒⟩. To see how this relates to our representation of ℂℓ4, notice that these new ladder operators
satisfy

{𝑎†𝑒 , 𝑎𝑒} = 1 and {𝑎†𝑔, 𝑎𝑔} = 1 (4.1.22)

with all other anticommutators vanishing. This is the same algebra the Grassmann variables 𝜃, �̄�, 𝜂,
and �̄� satisfy, as shownonEq. (4.1.18) on the preceding page. Hence, we can interpret theseGrassmann
variables as representing the ladder operators associated with the ground and excited states upon
some more fundamental underlying vacuum. More specifically, �̄�, �̄�, 𝜃, and 𝜂 are associated with 𝑎†𝑒 ,
𝑎†𝑔, 𝑎𝑒, and 𝑎𝑔, respectively.

In terms of these new ladder operators, the gap term can be written as

𝐻Ω(𝑎
†
𝑔, 𝑎𝑔, 𝑎

†
𝑒 , 𝑎𝑒) =

Ω
2 (𝑎

†
𝑒𝑎𝑔𝑎

†
𝑔𝑎𝑒 − 𝑎

†
𝑔𝑎𝑒𝑎

†
𝑒𝑎𝑔), (4.1.23a)

= Ω
2 (𝑎

†
𝑒𝑎𝑒 − 𝑎

†
𝑒𝑎

†
𝑔𝑎𝑔𝑎𝑒 − 𝑎

†
𝑔𝑎𝑔 + 𝑎

†
𝑔𝑎

†
𝑒𝑎𝑒𝑎𝑔), (4.1.23b)

= Ω
2 (𝑎

†
𝑒𝑎𝑒 − 𝑎

†
𝑔𝑎𝑔). (4.1.23c)

Similarly, the interaction term becomes

𝐻int(𝑎
†
𝑔, 𝑎𝑔, 𝑎

†
𝑒 , 𝑎𝑒) = 𝜖(𝜏)𝜎𝑥(𝜏) ⊗ 𝜙(𝑧(𝜏)), (4.1.24a)

= 𝜖(𝜏)[𝜎+(𝜏) + 𝜎−(𝜏)] ⊗ 𝜙(𝑧(𝜏)), (4.1.24b)
= 𝜖(𝜏)[𝑎†𝑒 (𝜏)𝑎𝑔(𝜏) + 𝑎

†
𝑔(𝜏)𝑎𝑒(𝜏)] ⊗ 𝜙(𝑧(𝜏)). (4.1.24c)

We want then to obtain the Euclidean action for this theory. Given a Hamiltonian in terms of
creation and annihilation operators, it is well-known how one can obtain the coherent state path
integral (see Altland and Simons 2010, Sec. 4.2). Hence, we obtain (Burbano, Perche, and Torres
2021, pp. 6–7)

𝑆 = 𝑆𝜙 +∫ �̄��̇� + �̄��̇� + 𝐻Ω(�̄�, 𝜂, �̄�, 𝜃) + 𝐻int(�̄�, 𝜂, �̄�, 𝜃) d𝜏 , (4.1.25)

where the dots denote differentiation with respect to 𝜏, the terms in𝐻Ω and𝐻int are understood as
being evaluated on the detector’s worldline, and 𝑆𝜙 denotes the quantum field’s action. More explicitly,
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we can write the classical action for the field-detector system as

𝑆 = 𝑆𝜙 +∫ �̄��̇� + �̄��̇� + Ω
2 (�̄�𝜃 − �̄�𝜂) + 𝜖(𝜏)𝜙(𝜏)(�̄�𝜃 + �̄�𝜂) d𝜏 , (4.1.26)

where 𝜙(𝜏) ≡ 𝜙(𝑧(𝜏)) and theGrassmann variables are all understood as being defined on the detector’s
worldline.

4.2 Setting Up the FRGE
We are now in position to discuss the ansätze that we will need when working with the FRGE for the
field-detector system. Namely, we must choose a truncation for the EAA and a regulator. We shall
also make a few preliminary calculations that will be necessary to compute the RG flow.

Truncation Ansatz

Inspired by Eqs. (3.3.8) and (4.1.26) on page 75 and on the current page, we shall consider the ansatz

Γ𝑘 = ∫ 1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝑉𝑘(𝜙) d𝑑𝑥 +∫ �̄��̇� + �̄��̇� +
Ω𝑘
2 (�̄�𝜃 − �̄�𝜂) + 𝜖𝑘𝜒(𝜏)𝜙(𝜏)(�̄�𝜂 + �̄�𝜃)d𝜏 , (4.2.1)

where 𝜒(𝜏) is some previously chosen function modelling how the detector can be turned on and off.
A few comments are in place.

Firstly, we are assuming the field to be subject to an arbitrary potential depending only on the
field itself. This assumption is being made to keep the expression more general for the time being,
and because it will allow us to take a look at whether field self-interactions can affect or be affected by
the detector. Furthermore, assuming an interacting field will not affect most of our computations,
and hence restricting our attention to free fields would not simplify them. In any case, we may later
choose the potential to simply be a mass term, if we prefer*.

Secondly, notice that on Eq. (4.1.26) the coupling between detector and field was responsible for
turning the interaction on and off. The most natural generalization would then be to “promote”
𝜖(𝜏) to a two-variable function 𝜖𝑘(𝜏). Such a function lives in the tensor product space of the spaces
of functions of 𝑘 and of 𝜏. Hence, it can be written as a sum of functions of the form 𝑓(𝑘)𝑔(𝜏),
but will generally not have this form. We chose to make the simplifying assumption in which
𝜖𝑘(𝜏) = 𝜖𝑘𝜒(𝜏). This is not completely general from a mathematical point of view, but we expect it to
be sufficient for our interests. A more general assumption also seems likely to lead to more difficulties
than improvements. In any case, one can still wonder whether splitting 𝜒(𝜏) = 𝜒1(𝜏) + 𝜒2(𝜏) and
working with two couplings 𝜖1𝑘 and 𝜖2𝑘 such that 𝜖𝑘(𝜏) = 𝜖1𝑘 𝜒1(𝜏) + 𝜖2𝑘 𝜒2(𝜏) would lead to the same
results. For now, our calculations will not depend on this simplifying assumption, so we will keep
the shorthand 𝜖𝑘(𝜏) = 𝜖𝑘𝜒(𝜏) to save space, but it can be relevant later on. At the final stages of our
calculations, though, we will make one more simplifying assumption and take 𝜖𝑘(𝜏) = 𝜖𝑘, without any
time dependence.

Thirdly, notice that we are assuming the spacetime manifold to be flat on Eq. (4.2.1). We will also
implicitly assume our path integrals to be computed with respect to the Minkowski vacuum, so we
can be comfortable with the self-interaction terms we are considering for the quantum field, in spite

*I thank Prof. Alex Gomes Dias for the suggestion of considering the effects of field self-interactions.
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of our previous concerns mentioned in Section 2.5. Nevertheless, it seems reasonable to expect the
following calculations to be generalizable for curved spacetimes, at least when considering stationart
states on static spacetimes.

Lastly, we are not considering the running of any derivative terms. Therefore, our approach will
be similar to when we considered the behavior of a scalar field with the local potential approximation
in Section 3.3. In particular, we can assume the fields to be constant throughout spacetime in the
Wetterich equation.

Hessian of the EAA

The right-hand side of the Wetterich equation involves the Hessian of the EAA. Hence, we will
surely need to compute it. We shall do this now, because looking at its form will also help us choose
appropriate regulators to work with.

To make the functional traces in the Wetterich equation clear, we would like to work only with
fields defined over the whole spacetime. Otherwise, we would get uncomfortable expressions that
would require us to integrate over proper time and spacetime variables separately. While it may be
possible to deal with such expressions, they are surely not usual in the literature, and hence we shall
avoid them in favor of more common techniques.

Therefore, we would like to understand the detector in terms of fields defined over spacetime, not
only on the worldline. To do so, we will “promote” the Grassmann variables to spacetime fields. To
keep the action unchanged we shall use Dirac deltas to keep the physical detector variables restricted
to its worldline.

We will illustrate it first with the interaction term. Notice that we can write

∫𝜖𝑘(𝜏)𝜙(𝜏)(�̄�𝜂 + �̄�𝜃)d𝜏 = ∫𝜖𝑘(𝜏)𝜙(𝑧(𝜏))(�̄�𝜂 + �̄�𝜃)d𝜏 , (4.2.2a)

= ∫𝜖𝑘(𝜏)𝜙(𝑧(𝜏))(�̄�𝜂 + �̄�𝜃)𝛿
(𝑑)(𝑥 − 𝑧(𝜏)) d𝑑𝑥d𝜏 , (4.2.2b)

= ∫𝜖𝑘(𝜏)𝜙(𝑥)(�̄�𝜂 + �̄�𝜃)𝛿
(𝑑)(𝑥 − 𝑧(𝜏)) d𝑑𝑥 d𝜏 , (4.2.2c)

where we used the fact that 𝜙was originally defined on the whole spacetime, not only on the detector’s
worldline. If we now promote the other fields to fields on the whole spacetime and copy the steps we
did on Eq. (4.1.5) on page 96, we can write

∫𝜖𝑘(𝜏)𝜙(𝜏)(�̄�𝜂 + �̄�𝜃)d𝜏 = ∫𝜖𝑘(𝑡)𝜙(𝑥)(�̄�(𝑥)𝜂(𝑥) + �̄�(𝑥)𝜃(𝑥))𝛿
(𝑑)(𝑥 − 𝑧(𝜏)) d𝑑𝑥 d𝜏 , (4.2.3a)

= ∫𝜖𝑘(𝑡)𝜙(𝑥)(�̄�(𝑥)𝜂(𝑥) + �̄�(𝑥)𝜃(𝑥))𝛿
(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 d𝑑𝑥 . (4.2.3b)

Since 𝑡 and 𝜏 are in one-to-one correspondence, there is nothing wrong with writing 𝜖𝑘(𝑡). We could
do the same with the Grassmann fields, but it will be convenient to treat them as defined on spacetime
without further simplifications.

Similarly, the gap term becomes

∫
Ω𝑘
2 (�̄�𝜃 − �̄�𝜂)d𝜏 = ∫

Ω𝑘
2 (�̄�𝜃 − �̄�𝜂)𝛿(𝑑−1)(�⃗� − �⃗�(𝜏))d𝜏d𝑡 d𝑑𝑥 . (4.2.4)
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The kinetic terms, on the other hand, involve a time derivative and hence are a bit more subtle.
Notice, however, that

∫�̄�𝜕𝜏𝜃 d𝜏 (4.2.5)

is parameterization invariant. Hence, since 𝜏 and 𝑡 are in a one-to-one correspondence, we have

∫�̄�(𝜏)𝜕𝜏𝜃(𝜏) d𝜏 = ∫ �̄�(𝑡)𝜕𝑡𝜃(𝑡) d𝑡 , (4.2.6a)

= ∫ �̄�(𝑡, �⃗�)𝜕𝑡𝜃(𝑡, �⃗�)𝛿
(𝑑−1)(�⃗� − �⃗�(𝑡))d𝑡 d𝑑−1𝑥 , (4.2.6b)

= ∫ �̄�(𝑥)𝜕𝑡𝜃(𝑥)𝛿
(𝑑−1)(�⃗� − �⃗�(𝑡))d𝑑𝑥 , (4.2.6c)

= ∫ �̄�(𝑥)𝜕𝜏𝜃(𝑥)𝛿
(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 d𝑑𝑥 , (4.2.6d)

= ∫ �̄�(𝑥)
d𝑧𝜇

d𝜏 𝜕𝜇 𝜃(𝑥)𝛿
(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 d𝑑𝑥 , (4.2.6e)

= ∫ �̄�(𝑥)𝑢𝜇𝜕𝜇 𝜃(𝑥)𝛿
(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 d𝑑𝑥 , (4.2.6f)

= ∫ �̄�(𝑥)𝑢𝑎𝜕𝑎 𝜃(𝑥)𝛿
(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 d𝑑𝑥 , (4.2.6g)

where we defined 𝑢𝜇 = d𝑧𝜇

d𝜏 . Notice 𝑢𝑎 is the detector’s four-velocity. It should be understood as a
function of 𝜏 (or 𝑡), since it is defined only on the detector’s worldline.

If we bring everything together we find that the EAA can be written as

Γ𝑘 = ∫ 1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝑉𝑘(𝜙) d𝑑𝑥

+∫𝛿(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 [�̄�𝑢
𝑎𝜕𝑎 𝜃 + �̄�𝑢

𝑎𝜕𝑎 𝜂 +
Ω𝑘
2 (�̄�𝜃 − �̄�𝜂) + 𝜖𝑘(𝑡)𝜙(�̄�𝜂 + �̄�𝜃)] d𝑑𝑥 , (4.2.7)

where all fields are now understood as being defined over spacetime.
To further simplify this expression, let us introduce the notation

𝜉 ≡ (𝜃
𝜂
) (4.2.8)

and

𝛾𝜏 = 𝛿(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 (4.2.9)

so that we may write

Γ𝑘 = ∫ 1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝑉𝑘(𝜙) + 𝛾𝜏[�̄�
⊺𝑢𝑎𝜕𝑎 𝜉 +

Ω𝑘
2 �̄�⊺𝜎𝑧𝜉 + 𝜖𝑘(𝑡)𝜙�̄�

⊺𝜎𝑥𝜉] d𝑑𝑥 , (4.2.10)

where 𝜎𝑥 and 𝜎𝑧 are the Pauli matrices*.
*I am now writing them as 𝜎𝑥 and 𝜎𝑧 rather than 𝜎𝑥 and 𝜎𝑧, because they are now not being considered as operators on

the detector’s Hilbert space, but merely as matrices.
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Therefore, we have the derivative

𝛿Γ𝑘
𝛿Φ(𝑥) = (

−𝜕2𝜙(𝑥) + 𝑉′
𝑘 (𝜙) + 𝛾𝜏𝜖𝑘(𝑡)�̄�

⊺(𝑥)𝜎𝑥𝜉(𝑥)
𝛾𝜏[𝑢

𝑎𝜕𝑎 �̄�(𝑥) −
Ω𝑘
2 𝜎𝑧�̄�(𝑥) − 𝜖𝑘(𝑡)𝜙(𝑥)𝜎𝑥�̄�(𝑥)]

𝛾𝜏[𝑢
𝑎𝜕𝑎 𝜉(𝑥) +

Ω𝑘
2 𝜎𝑧𝜉(𝑥) + 𝜖𝑘(𝑡)𝜙(𝑥)𝜎𝑥𝜉(𝑥)]

), (4.2.11)

where we took the conventionΦ⊺ = (𝜙, 𝜉⊺, �̄�⊺). To make this computation, it is convenient to notice
that

∫�̄�⊺𝜕𝜏𝜉 d𝜏 = ∫𝜉⊺𝜕𝜏�̄� d𝜏 , (4.2.12)

as one can show using integration by parts and the fact 𝜉 is composed of Grassmann variables. It is
also useful to notice that

�̄�⊺𝜎𝑥𝜉 = −𝜉⊺𝜎𝑥�̄�, (4.2.13)

and similarly for 𝜎𝑧.
Eq. (4.2.11) implies the Hessian is

→
𝛿Γ𝑘

←
𝛿

𝛿Φ(𝑥)𝛿Φ(𝑥′) = (
−𝜕2 + 𝑉″

𝑘 (𝜙) 𝛾𝜏𝜖𝑘�̄�
⊺𝜎𝑥 −𝛾𝜏𝜖𝑘𝜉

⊺𝜎𝑥
−𝛾𝜏𝜖𝑘𝜎𝑥�̄� 0 𝛾𝜏[𝑢

𝑎𝜕𝑎 −
Ω𝑘
2 𝜎𝑧 − 𝜖𝑘𝜙𝜎𝑥]

𝛾𝜏𝜖𝑘𝜎𝑥𝜉 𝛾𝜏[𝑢
𝑎𝜕𝑎 +

Ω𝑘
2 𝜎𝑧 + 𝜖𝑘𝜙𝜎𝑥] 0

)𝛿(𝑑)(𝑥 − 𝑥′), (4.2.14)

where we were able to omit the spacetime dependence of the fields and of 𝜖𝑘(𝑡) due to the Dirac delta.

Choice of Regulator

We choose to work with a regulator with the form

ℛ𝑘(𝑥, 𝑥
′) = (

𝑅𝜙
𝑘 0 0
0 0 −𝛾𝜏𝑅

𝑑
𝑘 𝜎𝑧

0 𝛾𝜏𝑅
𝑑
𝑘 𝜎𝑧 0

)𝛿(𝑑)(𝑥 − 𝑥′), (4.2.15)

where this choice is motivated by the desire that the detector regulator matches a gap term, preventing
divergences in the gapless limit. Another possible choice would be to match the kinetic terms—this
was used by Jungnickel and Wetterich (1996) and Litim (2001) with chiral fermions to avoid spoiling
chiral symmetry, for example.

For now, we do not need to specify our choices for 𝑅𝜙
𝑘 and 𝑅𝑑

𝑘 and we shall keep it like that for
as long as possible. Nevertheless, when the time comes, we will use cutoffs defined through profiles
according to

𝑅𝜙
𝑘 (𝑧) = 𝑘2𝑟𝜙(

𝑧
𝑘2
) (4.2.16a)

and

𝑅𝑑
𝑘 (𝑧) = 𝑘𝑟𝑑(

𝑧
𝑘2
). (4.2.16b)

A particularly interesting case is the Litim cutoff (Litim 2001), given by

𝑅𝜙
𝑘 (𝑧) = (𝑘2 − 𝑧)Θ(𝑘2 − 𝑧) (4.2.17)
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and

𝑅𝑑
𝑘 (𝑧) = (𝑘 − 𝑧

𝑘)Θ(𝑘
2 − 𝑧). (4.2.18)

Eq. (4.2.17) on the preceding page is identical to the cutoff given by Eq. (3.2.9) on page 65 and
Eq. (4.2.18) is the same cutoff, apart from a division by 𝑘 to keep dimensional consistency.

4.3 Renormalization Group Flow

Let us then proceed to use the Wetterich equation to find the beta functions forΩ𝑘, 𝜖𝑘, and for the
field self-couplings. While these calculations are not trivial, they are fairly algorithmic. We shall follow
the procedure outlined by Benedetti et al. (2011).

Regularized Propagator

As we can see on Eq. (3.2.38) on page 71, we need to compute the inverse of Γ(2)𝑘 +ℛ𝑘. Since Γ
(2)
𝑘 +ℛ𝑘

is the inverse of the connected propagator given by 𝑊𝑘, we can say that we need to compute the
“regularized propagator” for the theory. While this is an arduous task, it is simplified by noticing our
choice of cutoff on Eq. (4.2.15) on the preceding page is a sparse matrix. Hence, upon taking the
supertrace of (Γ(2)𝑘 +ℛ𝑘)

−1𝜕𝑡ℛ𝑘, only a handful of terms of (Γ(2)𝑘 +ℛ𝑘)
−1 will be relevant. Let us figure

out which terms are these.
Suppose

(Γ(2)𝑘 +ℛ𝑘)
−1 = (

𝔸 𝔹 ℂ
𝔻 𝔼 𝔽
𝔾 ℍ 𝕀

). (4.3.1)

Then the Wetterich equation reads, for the regulator given on Eq. (4.2.15) on the previous page,

𝜕𝑡Γ𝑘 =
1
2 STr [(Γ(2)𝑘 +ℛ𝑘)

−1𝜕𝑡ℛ𝑘], (4.3.2a)

= 1
2 STr [(

𝔸 𝔹 ℂ
𝔻 𝔼 𝔽
𝔾 ℍ 𝕀

)(
𝜕𝑡𝑅

𝜙
𝑘 0 0

0 0 −𝛾𝜏𝜕𝑡𝑅
𝑑
𝑘 𝜎𝑧

0 𝛾𝜏𝜕𝑡𝑅
𝑑
𝑘 𝜎𝑧 0

)], (4.3.2b)

= 1
2 STr [(

𝔸𝜕𝑡𝑅
𝜙
𝑘 ℂ𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 𝜎𝑧 −𝔹𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 𝜎𝑧

𝔻𝜕𝑡𝑅
𝜙
𝑘 𝔽𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 𝜎𝑧 −𝔼𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 𝜎𝑧

𝔾𝜕𝑡𝑅
𝜙
𝑘 𝕀𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 𝜎𝑧 −ℍ𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 𝜎𝑧

)], (4.3.2c)

= 1
2 Tr [𝔸𝜕𝑡𝑅

𝜙
𝑘 ] −

1
2 Tr [𝔽𝛾𝜏𝜕𝑡𝑅𝑑

𝑘 𝜎𝑧] +
1
2 Tr [ℍ𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 𝜎𝑧], (4.3.2d)

where 𝑡 represents the RG time 𝑡 = log 𝑘 (we will no longer make use of the spacetime’s global time
function in this chapter) and we omitted the omnipresent Dirac delta 𝛿(𝑑)(𝑥 − 𝑥′). We see then that
we only need to compute three block entries of (Γ(2)𝑘 +ℛ𝑘)

−1. In fact, we do not even need to compute
these entries exactly, for some of their components will lie outside the truncation we are working
with. Hence, we will be able to perform a few simplifications during our computations.
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To compute (Γ(2)𝑘 +ℛ𝑘)
−1 we will treat the functional matrices formally rather than writing their

products as
(𝕄1𝕄2)(𝑥, 𝑧) = ∫𝕄1(𝑥, 𝑦)𝕄2(𝑦, 𝑧) d𝑑𝑦 , (4.3.3)

which would be a more rigorous approach. Since some of the entries of Γ(2)𝑘 are Grassmann-valued
(see Eq. (4.2.14) on page 103), we must compute the inverse by using formulae for inverses of block
matrices. These are given, for example, in the book by Bernstein (2018, Sec. 3.9). We can, however,
exploit the fact that our truncation only needs terms that are at most quadratic in the Grassmann
fields, for this means we do not need an exact inverse. It suffices to make a series expansion approach.
This is, in fact, the way inverses in the Grassmann algebra are defined (DeWitt 2003, App. A).

To compute the block inverse, we will consider Γ(2)𝑘 +ℛ𝑘 as given by blocks according to

(𝐴 𝐵
𝐶 𝐷

) ≡ (
𝑃𝑘 + 𝑉

″
𝑘 (𝜙) 𝛾𝜏𝜖𝑘�̄�

⊺𝜎𝑥 −𝛾𝜏𝜖𝑘𝜉
⊺𝜎𝑥

−𝛾𝜏𝜖𝑘𝜎𝑥�̄� 0 𝛾𝜏[𝑢
𝑎𝜕𝑎 − (𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜎𝑧 − 𝜖𝑘𝜙𝜎𝑥]

𝛾𝜏𝜖𝑘𝜎𝑥𝜉 𝛾𝜏[𝑢
𝑎𝜕𝑎 + (𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜎𝑧 + 𝜖𝑘𝜙𝜎𝑥] 0

) , (4.3.4)

where we introduced the shorthand

𝑃𝑘(Δ) ≡ Δ + 𝑅𝜙
𝑘 (Δ), (4.3.5)

where Δ = −𝜕2. We then notice that, if𝕄1 and𝕄2 are matrices,

(𝕄1 +𝕄2)
−1 = 𝕄−1

1 −𝕄−1
1 𝕄2𝕄

−1
1 +𝕄−1

1 𝕄2𝕄
−1
1 𝕄2𝕄

−1
1 −𝕄−1

1 𝕄2𝕄
−1
1 𝕄2𝕄

−1
1 𝕄2𝕄

−1
1 + ⋯ . (4.3.6)

As we mentioned, this formula is particularly useful when working with anticommuting variables
(see DeWitt 2003, Eq. (A.5)).

We can then write

(Γ(2)𝑘 +ℛ𝑘)
−1
= (𝐴 0

0 𝐷
)
−1

− (𝐴 0
0 𝐷

)
−1

(0 𝐵
𝐶 0

)(𝐴 0
0 𝐷

)
−1

+ (𝐴 0
0 𝐷

)
−1

(0 𝐵
𝐶 0

)(𝐴 0
0 𝐷

)
−1

(0 𝐵
𝐶 0

)(𝐴 0
0 𝐷

)
−1

+ ⋯ , (4.3.7)

where the dots stand for higher terms in the series expansion that will involve at least three instances
of Grassmann variables coming from 𝐵 or 𝐶 (and hence lie beyond our truncation). Notice then that
we have

(Γ(2)𝑘 +ℛ𝑘)
−1
= (𝐴

−1 0
0 𝐷−1) − (

0 𝐴−1𝐵𝐷−1

𝐷−1𝐶𝐴−1 0
) + (𝐴

−1𝐵𝐷−1𝐶𝐴−1 0
0 𝐷−1𝐶𝐴−1𝐵𝐷−1) + ⋯ .

(4.3.8)
By comparing this expression to Eqs. (4.3.1) and (4.3.2) on the preceding page, we see that the middle
term does not contribute to the Wetterich equation. Hence, we only need to consider the remaining
terms.

Eq. (4.3.4) allows us to see that

𝐴−1 = 1
𝑃𝑘 + 𝑉″

𝑘 (𝜙)
(4.3.9)
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and

𝐷−1 = 1

𝛾𝜏[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
(

0 𝑢𝑎𝜕𝑎 + (𝑅
𝑑
𝑘 +

Ω𝑘
2 )𝜎𝑧 + 𝜖𝑘𝜙𝜎𝑥

𝑢𝑎𝜕𝑎 − (𝑅
𝑑
𝑘 +

Ω𝑘
2 )𝜎𝑧 − 𝜖𝑘𝜙𝜎𝑥 0

).

(4.3.10)

With a little more algebraic work, one can also find that

𝐴−1𝐵𝐷−1𝐶𝐴−1 =
2𝛾𝜏𝜖

2
𝑘 [𝜖𝑘𝜙�̄�

⊺𝜎𝑥𝜉 − (𝑅
𝑑
𝑘 +

Ω𝑘
2 )�̄�

⊺𝜎𝑧𝜉]

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
. (4.3.11)

It is a bit more complicated to compute𝐷−1𝐶𝐴−1𝐵𝐷−1. To do it, we begin by noticing that

𝐶𝐴−1𝐵 = 1
𝑃𝑘 + 𝑉″

𝑘 (𝜙)
(−𝛾𝜏𝜖𝑘𝜎𝑥�̄�
𝛾𝜏𝜖𝑘𝜎𝑥𝜉

)(𝛾𝜏𝜖𝑘�̄�
⊺𝜎𝑥 −𝛾𝜏𝜖𝑘𝜉

⊺𝜎𝑥), (4.3.12a)

=
𝛾2𝜏 𝜖

2
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

(−𝜎𝑥�̄��̄�
⊺𝜎𝑥 𝜎𝑥�̄�𝜉

⊺𝜎𝑥
𝜎𝑥�̄�𝜉

⊺𝜎𝑥 −𝜎𝑥𝜉𝜉
⊺𝜎𝑥
). (4.3.12b)

Terms coming from 𝜉𝜉⊺ and �̄��̄�⊺ cannot affect our truncation, and hence we may ignore them. We
then write

𝐶𝐴−1𝐵 =
𝛾2𝜏 𝜖

2
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

( 0 𝜎𝑥�̄�𝜉
⊺𝜎𝑥

𝜎𝑥�̄�𝜉
⊺𝜎𝑥 0

) + ⋯ , (4.3.13)

where the dots stand for terms outside of our truncation. We can then compute𝐷−1𝐶𝐴−1𝐵𝐷−1 by
employing Eqs. (4.3.10) and (4.3.13). We shall find that

𝐷−1𝐶𝐴−1𝐵𝐷−1 = 𝛼(0 𝑓
ℎ 0

) + ⋯ , (4.3.14)

where the coefficient is

𝛼 =
𝜖2𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 (4.3.15)

and the entries are

𝑓 = 𝜎𝑥𝜉�̄�
⊺𝜎𝑥(𝑢

𝑎𝜕𝑎 )
2 − 𝑖(𝑅𝑘 +

Ω𝑘
2 )𝜎𝑥𝜉�̄�

⊺𝜎𝑦𝑢
𝑎𝜕𝑎 + 𝜖𝑘𝜙𝜎𝑥𝜉�̄�

⊺𝑢𝑎𝜕𝑎

+ 𝑖(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦𝜉�̄�

⊺𝜎𝑥𝑢
𝑎𝜕𝑎 + (𝑅𝑘 +

Ω𝑘
2 )

2
𝜎𝑦𝜉�̄�

⊺𝜎𝑦 + 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦𝜉�̄�

⊺

+ 𝜖𝑘𝜙𝜉�̄�
⊺𝜎𝑥𝑢

𝑎𝜕𝑎 − 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜉�̄�⊺𝜎𝑥 + 𝜖

2
𝑘 𝜙

2𝜉�̄�⊺ (4.3.16)

and
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ℎ = 𝜎𝑥�̄�𝜉
⊺𝜎𝑥(𝑢

𝑎𝜕𝑎 )
2 + 𝑖(𝑅𝑘 +

Ω𝑘
2 )𝜎𝑥�̄�𝜉

⊺𝜎𝑦𝑢
𝑎𝜕𝑎 − 𝜖𝑘𝜙𝜎𝑥�̄�𝜉

⊺𝑢𝑎𝜕𝑎

− 𝑖(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦�̄�𝜉

⊺𝜎𝑥𝑢
𝑎𝜕𝑎 + (𝑅𝑘 +

Ω𝑘
2 )

2
𝜎𝑦�̄�𝜉

⊺𝜎𝑦 + 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦�̄�𝜉

⊺

− 𝜖𝑘𝜙�̄�𝜉
⊺𝜎𝑥𝑢

𝑎𝜕𝑎 − 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )�̄�𝜉⊺𝜎𝑥 + 𝜖

2
𝑘 𝜙

2�̄�𝜉⊺. (4.3.17)

Notice that 𝑓 and ℎ are terms on the matrices 𝔽 andℍ shown on Eq. (4.3.1) on page 104. As we
see on Eq. (4.3.2) on page 104, in the Wetterich equation they shall occur only through terms with
the form

Tr [𝛼𝑓𝛾𝜏𝜕𝑡𝑅𝑑
𝑘 𝜎𝑧] and Tr [𝛼ℎ𝛾𝜏𝜕𝑡𝑅𝑑

𝑘 𝜎𝑧]. (4.3.18)

Hence, we only need to keep the terms of 𝑓 and ℎ that are part of our truncation after beingmultiplied
by 𝜎𝑧 and traced over. This means we can write

𝑓 = 𝜎𝑥𝜉�̄�
⊺𝜎𝑥(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
𝜎𝑦𝜉�̄�

⊺𝜎𝑦 + 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦𝜉�̄�

⊺ + ⋯ (4.3.19)

and

ℎ = 𝜎𝑥�̄�𝜉
⊺𝜎𝑥(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
𝜎𝑦�̄�𝜉

⊺𝜎𝑦 + 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦�̄�𝜉

⊺ + ⋯ . (4.3.20)

We are now in position to give the relevant blocks shown in Eq. (4.3.1) on page 104. From
Eqs. (4.3.9) and (4.3.11) on page 105 and on the facing page, we find that

𝔸 = 1
𝑃𝑘 + 𝑉″

𝑘 (𝜙)
+

2𝛾𝜏𝜖
2
𝑘 [𝜖𝑘𝜙�̄�

⊺𝜎𝑥𝜉 − (𝑅
𝑑
𝑘 +

Ω𝑘
2 )�̄�

⊺𝜎𝑧𝜉]

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
. (4.3.21)

Eqs. (4.3.10), (4.3.14), (4.3.15) and (4.3.19) on pages 106–107 yield

𝔽 =
𝑢𝑎𝜕𝑎 + (𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜎𝑧 + 𝜖𝑘𝜙𝜎𝑥

𝛾𝜏[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]

+
𝜖2𝑘 [𝜎𝑥𝜉�̄�

⊺𝜎𝑥(𝑢
𝑎𝜕𝑎 )

2 + (𝑅𝑘 +
Ω𝑘
2 )

2
𝜎𝑦𝜉�̄�

⊺𝜎𝑦 + 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦𝜉�̄�

⊺]

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 + ⋯ , (4.3.22)

and these same equations in addition to Eq. (4.3.20) give

ℍ =
𝑢𝑎𝜕𝑎 − (𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜎𝑧 − 𝜖𝑘𝜙𝜎𝑥

𝛾𝜏[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]

+
𝜖2𝑘 [𝜎𝑥�̄�𝜉

⊺𝜎𝑥(𝑢
𝑎𝜕𝑎 )

2 + (𝑅𝑘 +
Ω𝑘
2 )

2
𝜎𝑦�̄�𝜉

⊺𝜎𝑦 + 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦�̄�𝜉

⊺]

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 + ⋯ . (4.3.23)



108 4. Nonperturbative Unruh–DeWitt Detectors

Algebraic Traces

We can now use the expressions we just obtained in Eq. (4.3.2) on page 104 to simplify our expression
for 𝜕𝑡Γ𝑘. For now, let us compute the necessary algebraic traces and reduce the problem of finding 𝜕𝑡Γ𝑘
to that of computing some functional traces.

Eq. (4.3.21) on the previous page tells us that

Tr [𝔸𝜕𝑡𝑅
𝜙
𝑘 ] = Tr[

𝜕𝑡𝑅
𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

] + Tr[
2𝛾𝜏𝜖

2
𝑘 [𝜖𝑘𝜙�̄�

⊺𝜎𝑥𝜉 − (𝑅
𝑑
𝑘 +

Ω𝑘
2 )�̄�

⊺𝜎𝑧𝜉]𝜕𝑡𝑅
𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
]. (4.3.24)

Notice, however, that the 𝜖2𝑘 𝜙
2 term on the denominator of the second term can only generate terms

that lie outside of our truncation. Indeed, it will only contribute to terms of the form 𝜙𝑛�̄�⊺𝜎𝑖𝜉with
𝑛 ≥ 2. Hence, we can drop it. We simply get

Tr [𝔸𝜕𝑡𝑅
𝜙
𝑘 ] = Tr[

𝜕𝑡𝑅
𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

] + Tr[
2𝛾𝜏𝜖

2
𝑘 [𝜖𝑘𝜙�̄�

⊺𝜎𝑥𝜉 − (𝑅
𝑑
𝑘 +

Ω𝑘
2 )�̄�

⊺𝜎𝑧𝜉]𝜕𝑡𝑅
𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]. (4.3.25)

We cannot use the same argument to get rid of 𝑉″
𝑘 (𝜙), because it may include terms that do either not

depend on the field or depend on it linearly. These would arise from a mass term or from a cubic
interaction.

Since we are not considering the running of any derivative couplings, we can treat the fields as
constants and write

Tr [𝔸𝜕𝑡𝑅
𝜙
𝑘 ] = Tr[

𝜕𝑡𝑅
𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

] − 2Tr[
𝛾𝜏𝜖

2
𝑘 (𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]�̄�⊺𝜎𝑧𝜉

+ 2Tr[
𝛾𝜏𝜖

3
𝑘 𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]𝜙�̄�⊺𝜎𝑥𝜉. (4.3.26)

Using Eq. (4.3.22) on the preceding page and the fact that Pauli matrices are traceless, we can find

Tr [𝔽𝛾𝜏𝜕𝑡𝑅𝑑
𝑘 𝜎𝑧] = Tr[

(𝑅𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
]

+ Tr[
𝛾𝜏𝜖

2
𝑘 [𝜎𝑥𝜉�̄�

⊺𝜎𝑥(𝑢
𝑎𝜕𝑎 )

2 + (𝑅𝑘 +
Ω𝑘
2 )

2
𝜎𝑦𝜉�̄�

⊺𝜎𝑦 + 𝑖𝜖𝑘𝜙(𝑅𝑘 +
Ω𝑘
2 )𝜎𝑦𝜉�̄�

⊺]𝜕𝑡𝑅
𝑑
𝑘 𝜎𝑧

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 ] + ⋯ . (4.3.27)

Using the cyclic property of the trace and the properties of Pauli matrices, we can simplify this
expression to

Tr [𝔽𝛾𝜏𝜕𝑡𝑅𝑑
𝑘 𝜎𝑧] = Tr[

(𝑅𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
]
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+ Tr[
𝛾𝜏𝜖

2
𝑘 [−𝜉�̄�

⊺𝜎𝑧(𝑢
𝑎𝜕𝑎 )

2 − (𝑅𝑘 +
Ω𝑘
2 )

2
𝜉�̄�⊺𝜎𝑧 + 𝜖𝑘𝜙(𝑅𝑘 +

Ω𝑘
2 )𝜉�̄�

⊺𝜎𝑥]𝜕𝑡𝑅
𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 ] + ⋯ . (4.3.28)

Using that the fields are constant, we can get to

Tr [𝔽𝛾𝜏𝜕𝑡𝑅𝑑
𝑘 𝜎𝑧] = Tr[

(𝑅𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
]

− Tr[
𝛾𝜏𝜖

2
𝑘 [(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 ] tr[𝜉�̄�

⊺𝜎𝑧]

+ Tr[
𝛾𝜏𝜖

3
𝑘 (𝑅𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 ]𝜙 tr[𝜉�̄�⊺𝜎𝑥] + ⋯ . (4.3.29)

If we notice that tr[𝜉�̄�⊺𝜎𝑧] = −�̄�⊺𝜎𝑧𝜉 and tr[𝜉�̄�⊺𝜎𝑥] = −�̄�⊺𝜎𝑥𝜉, then we get to

Tr [𝔽𝛾𝜏𝜕𝑡𝑅𝑑
𝑘 𝜎𝑧] = Tr[

(𝑅𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
]

+ Tr[
𝛾𝜏𝜖

2
𝑘 [(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 ]�̄�

⊺𝜎𝑧𝜉

− Tr[
𝛾𝜏𝜖

3
𝑘 (𝑅𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2]
2 ]𝜙�̄�

⊺𝜎𝑥𝜉 + ⋯ . (4.3.30)

We can ignore the 𝜖2𝑘 𝜙
2 contribution in the two latter terms. Hence, our final expression is

Tr [𝔽𝛾𝜏𝜕𝑡𝑅𝑑
𝑘 𝜎𝑧] = Tr[

(𝑅𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
]

+ Tr[
𝛾𝜏𝜖

2
𝑘 [(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]�̄�

⊺𝜎𝑧𝜉

− Tr[
𝛾𝜏𝜖

3
𝑘 (𝑅𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]𝜙�̄�

⊺𝜎𝑥𝜉 + ⋯ . (4.3.31)
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Finally, the same procedure using Eq. (4.3.23) on page 107 gives

Tr [ℍ𝛾𝜏𝜕𝑡𝑅
𝑑
𝑘 𝜎𝑧] = −Tr[

(𝑅𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
]

− Tr[
𝛾𝜏𝜖

2
𝑘 [(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]�̄�

⊺𝜎𝑧𝜉

+ Tr[
𝛾𝜏𝜖

3
𝑘 (𝑅𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]𝜙�̄�

⊺𝜎𝑥𝜉 + ⋯ . (4.3.32)

If we bring all of these expressions back to Eq. (4.3.2) on page 104, we find that

𝜕𝑡Γ𝑘 =
1
2 Tr[

𝜕𝑡𝑅
𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

] − Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
]

− Tr[
𝛾𝜏𝜖

2
𝑘 (𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]�̄�⊺𝜎𝑧𝜉

− Tr[
𝛾𝜏𝜖

2
𝑘 [(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]�̄�

⊺𝜎𝑧𝜉

+ Tr[
𝛾𝜏𝜖

3
𝑘 𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]𝜙�̄�⊺𝜎𝑥𝜉

+ Tr[
𝛾𝜏𝜖

3
𝑘 (𝑅𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]𝜙�̄�

⊺𝜎𝑥𝜉 + ⋯ . (4.3.33)

Notice that the 𝜖2𝑘 𝜙
2 term on the second trace will generate all of the even self-interactions of

the quantum field. It is interesting to notice that even something as simple as a particle detector is
sufficient to initiate the flow of infinitely many coupling constants.

The Taylor Trick

Our next goal is to actually compute the functional traces occurring on Eq. (4.3.33). One may notice
some of them involve derivatives in the denominator. This means we will need to be clever when
dealing with them.

While we expect the following techniques to work on more general cases, we shall make a few
simplifying assumptions to keep the calculations more treatable. Namely, we will assume:
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i. that the coupling between quantum field and detector is time-independent, i.e., we assume
𝜖𝑘(𝜏) = 𝜖𝑘;

ii. that the detector is moving inertially so that its proper time corresponds to an inertial global
time function.

So far, these assumptions were not necessary, and they likely can be dropped in the following discus-
sions. Nevertheless, since this is (to my knowledge) the first ever treatment of the FRG flow for a
two-level system, it is interesting to first make the computations for the simplest possible case.

The difficult traces on Eq. (4.3.33) on the facing page have the general form

Tr[
𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )

2𝑛

[(𝑢𝑎𝜕𝑎 )
2 − 𝐴(Δ)]

𝑚 ], (4.3.34)

where𝑛 and𝑚 are non-negative integers,𝑊(Δ) and𝐴(Δ) are some functions of the covariantLaplacian
Δ = −𝜕2, and 𝑓(𝑥) is some spacetime function (such as 𝛾𝜏). Neither𝑊 nor 𝐴 depend on spacetime
events. If Eq. (4.3.34) only had derivatives in the numerator, we would be able to compute this
functional trace by simply employing off-diagonal heat kernel techniques (see Section 3.B). However,
this is not the case. How can we proceed?

We shall approach this calculation by performing a “trick” with a Taylor series. Hence, we will
refer to this technique as the “Taylor trick” from here onward. The main idea is to perform a formal
Taylor series expansion in 𝑢𝑎𝜕𝑎 , so that all derivatives end up in the numerator. Once this happens we
can use off-diagonal heat kernel techniques and then resum the series.

More explicitly, we write

Tr[
𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )

2𝑛

[(𝑢𝑎𝜕𝑎 )
2 − 𝐴(Δ)]

𝑚 ] = (−1)𝑚
+∞
∑
𝑙=0

(𝑚)𝑙
𝑙! Tr[

𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )
2𝑛+2𝑙

𝐴(Δ)𝑚+𝑙
], (4.3.35)

where we used the series expansion

1
(𝑥2 − 𝑎)𝑚

= (−1)𝑚

𝑎𝑚
+∞
∑
𝑙=0

(𝑚)𝑙𝑥
2𝑙

𝑙!𝑎𝑙
, (4.3.36)

where (𝑚)𝑙 is the (rising) Pochhammer symbol (see Arfken, Weber, and Harris 2013, Eq. (1.72)). This
series expansion converges for |𝑥|2 < |𝑎|, and hence the expression on Eq. (4.3.35) should have a non-
vanishing radius of convergence as long as 𝐴(Δ) does not vanish identically. Comparing Eqs. (4.3.33)
and (4.3.35) on the preceding page and on this page, we see that typically 𝐴(Δ) = (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
, and

hence we aim to use the regulator 𝑅𝑑
𝑘 to keep 𝐴(Δ) finite even in the gapless limit. Notice, however,

that this will fail in the ultraviolet (UV) region, since the regulator is small for large values of its
argument. We shall look at this more closely in Section 4.4.

The traces inside the sum of Eq. (4.3.35) have the form given on Eq. (3.B.27) on page 90, and
hence we can now proceed with off-diagonal heat-kernel techniques. Namely, let us consider a trace
with the form

Tr[𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )
2𝑛]. (4.3.37)
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We can deal with it by using the expressions in Section 3.B. In flat spacetime we have

Tr[𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )
2𝑛] = (−1)𝑛(2𝑛)!

(4𝜋)
𝑑
2 4𝑛𝑛!

∫
+∞

0
𝑊(𝑠)𝑠−

𝑑
2 −𝑛∫𝑓(𝑥)𝑢𝑎1 ⋯𝑢𝑎2𝑛𝛿(𝑎1𝑎2 ⋯ 𝛿𝑎2𝑛−1𝑎2𝑛) d

𝑑𝑥 d𝑠 .

(4.3.38)
The formulae in Section 3.B also tell us the trace would be zero if there was an odd number of
insertions of 𝑢𝑎𝜕𝑎 . On Eq. (4.3.38) we used the fact that the detector is inertial to be able to write

(𝑢𝑎𝜕𝑎 )
2𝑛 = 𝑢𝑎1 ⋯𝑢𝑎2𝑛𝜕𝑎1 ⋯ 𝜕𝑎2𝑛 . (4.3.39)

Since 𝜂𝑎𝑏 𝑢
𝑎𝑢𝑏 = −1 in Lorentzian signature, we will have 𝛿𝑎𝑏 𝑢

𝑎𝑢𝑏 = +1 in Euclidean signature. Hence,

Tr[𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )
2𝑛] = (−1)𝑛(2𝑛)!

(4𝜋)
𝑑
2 4𝑛𝑛!

∫
+∞

0
𝑊(𝑠)𝑠−

𝑑
2 −𝑛∫𝑓(𝑥) d𝑑𝑥 d𝑠 . (4.3.40)

If we recall the definition of the𝑄-functionals given on Eq. (3.B.21) on page 89, we see that

Tr[𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )
2𝑛] = (−1)𝑛(2𝑛)!

(4𝜋)
𝑑
2 4𝑛𝑛!

∫𝑓(𝑥) d𝑑𝑥𝑄𝑛+ 𝑑2
[𝑊]. (4.3.41)

Notice the integral over 𝑓 can be used to consider, for example, the effects of the detector being turned
on for only a finite time.

Using Eqs. (4.3.35) and (4.3.41) on the previous page and on this page, we find that

Tr[
𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )

2𝑛

[(𝑢𝑎𝜕𝑎 )
2 − 𝐴(Δ)]

𝑚 ] = (−1)𝑚
+∞
∑
𝑙=0

(−1)𝑛+𝑙(𝑚)𝑙(2(𝑛 + 𝑙))!

(4𝜋)
𝑑
2 4𝑛+𝑙(𝑛 + 𝑙)!𝑙!

∫𝑓(𝑥) d𝑑𝑥𝑄𝑛+𝑙+ 𝑑2
[ 𝑊
𝐴𝑚+𝑙 ]. (4.3.42)

We are only interested in the cases with 𝑑 > 0 and 𝑛, 𝑙 ≥ 0. Hence, we can use Eq. (3.B.22) on
page 90 when computing the𝑄-functionals and write

Tr[
𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )

2𝑛

[(𝑢𝑎𝜕𝑎 )
2 − 𝐴(Δ)]

𝑚 ] = (−1)𝑚
+∞
∑
𝑙=0

(−1)𝑛+𝑙(𝑚)𝑙(2(𝑛 + 𝑙))! ∫𝑓(𝑥) d𝑑𝑥
(4𝜋)

𝑑
2 4𝑛+𝑙(𝑛 + 𝑙)!𝑙!Γ(𝑛 + 𝑙 + 𝑑

2 )
∫

+∞

0

𝑊(𝑧)𝑧𝑛+𝑙+
𝑑
2 −1

𝐴(𝑧)𝑚+𝑙
d𝑧 .

(4.3.43)
Assuming we can exchange the limits between the series and the 𝑧 integral, and using the identities

Γ(𝑛 + 𝑙 + 𝑑
2 ) = Γ(𝑛 + 𝑑

2 )(𝑛 +
𝑑
2 )𝑙

and (2(𝑛 + 𝑙))!
(𝑛 + 𝑙)! = (2𝑛)!

𝑛! (𝑛 + 1
2)𝑙

4𝑙, (4.3.44)

we can write

Tr[
𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )

2𝑛

[(𝑢𝑎𝜕𝑎 )
2 − 𝐴(Δ)]

𝑚 ] =
(−1)𝑚+𝑛(2𝑛)! ∫𝑓(𝑥) d𝑑𝑥

(4𝜋)
𝑑
2 4𝑛𝑛!Γ(𝑛 + 𝑑

2 )
∫

+∞

0

𝑊(𝑧)𝑧𝑛+
𝑑
2 −1

𝐴(𝑧)𝑚
+∞
∑
𝑙=0

(𝑚)𝑙(𝑛 +
1
2)𝑙

(𝑛 + 𝑑
2 )𝑙𝑙!

(− 𝑧
𝐴(𝑧))

𝑙
d𝑧 .

(4.3.45)
We can now see the series evaluates to a hypergeometric function (see Arfken, Weber, andHarris 2013,
Sec. 18.5). Therefore, we may write

Tr[
𝑊(Δ)𝑓(𝑥)(𝑢𝑎𝜕𝑎 )

2𝑛

[(𝑢𝑎𝜕𝑎 )
2 − 𝐴(Δ)]

𝑚 ] =
(−1)𝑚+𝑛(2𝑛)! ∫𝑓(𝑥) d𝑑𝑥

(4𝜋)
𝑑
2 4𝑛𝑛!Γ(𝑛 + 𝑑

2 )
∫

+∞

0

𝑊(𝑧)𝑧𝑛+
𝑑
2 −1𝐹(𝑚, 𝑛 + 1

2 ; 𝑛 +
𝑑
2 ; −

𝑧
𝛢(𝑧))

𝐴(𝑧)𝑚 d𝑧 .

(4.3.46)
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Using this expression, we can write the beta functional on Eq. (4.3.33) on page 110 in terms of
integrals of hypergeometric functions. While these integrals may be complicated, in the worst case
scenario we can still evaluate them numerically. This allows us to at least obtain a portrait of how the
RG flow behaves in parameter space.

Functional Traces

We can now use the Taylor trick to deal with each of the functional traces. To further simplify
the integrals that Eq. (4.3.46) on the preceding page yields us, it is convenient to introduce a few
new definitions. Firstly, we will write the cutoffs 𝑅𝜙

𝑘 and 𝑅𝑑
𝑘 in terms of cutoff profiles as shown on

Eq. (4.2.16) on page 103. To avoid writing 𝑧
𝑘2 all the time, we will also introduce a new variable 𝑢 = 𝑧

𝑘2 .
Notice that

𝜕𝑡𝑅
𝜙
𝑘 (𝑧) = 2𝑘2[𝑟𝜙(𝑢) − 𝑢𝑟

′
𝜙(𝑢)] and 𝜕𝑡𝑅

𝑑
𝑘 (𝑧) = 𝑘[𝑟𝑑(𝑢) − 2𝑢𝑟

′
𝑑(𝑢)]. (4.3.47)

We will also introduce dimensionless couplings. Ω𝑘 always has dimension of energy regardless of
the spacetime dimension, so we shall define its dimensionless version through

Ω̃𝑘 = 𝑘−1Ω𝑘. (4.3.48)

The dimensions of 𝜖𝑘 do depend on spacetime dimension. From Eq. (4.1.26) on page 100, we can tell
that the dimensionless version of 𝜖𝑘 should be defined as

𝜖𝑘 = 𝑘
𝑑
2 −2𝜖𝑘. (4.3.49)

The potential’s second derivative, 𝑉″
𝑘 , is also dimensionful. We will define

𝑈𝑘(𝜙) = 𝑘−2𝑉𝑘(𝜙) (4.3.50)

so that𝑈″
𝑘 is dimensionless.

With these new definitions in mind, let us move on to the traces.

Field Self-Interactions

There are two traces contributing to the field’s self-interactions. The first of them is

Tr[
𝜕𝑡𝑅

𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

] =
𝑉𝑑

(4𝜋)
𝑑
2
𝑄 𝑑

2
[

𝜕𝑡𝑅
𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

] (4.3.51)

which we had already computed on Eq. (3.3.14) on page 76. Hence, we will not further develop this
expression. We recall that 𝑉𝑑 denotes the (infinite) volume of 𝑑-dimensional spacetime.

The new trace is generated by the detector. To read it as a series of terms being generated for the
field, it is useful to make a series expansion in 𝜙 before computing it. We have

Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
− 𝜖2𝑘 𝜙

2
] =

+∞
∑
𝑙=0

𝜖2𝑙𝑘 Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
𝑙+1 ]𝜙

2𝑙. (4.3.52)
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We can compute the traces in the series by using Eq. (4.3.46) on page 112 with𝑚 = 𝑙 + 1, 𝑛 = 0,
𝑓(𝑥) = 1,

𝑊(Δ) = (𝑅𝑑
𝑘 (Δ) +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘 (Δ), and 𝐴(Δ) = (𝑅𝑑

𝑘 (Δ) +
Ω𝑘
2 )

2
. (4.3.53)

We find

Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
𝑙+1 ]

=
(−1)𝑙+1𝑉𝑑
(4𝜋)

𝑑
2 Γ(𝑑2 )

∫
+∞

0

(𝑅𝑑
𝑘 (𝑧) +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘 (𝑧)𝑧

𝑑
2 −1

(𝑅𝑑
𝑘 (𝑧) +

Ω𝑘
2 )

2𝑙+2 𝐹(𝑙 + 1, 12 ;
𝑑
2 ; −

𝑧

(𝑅𝑑
𝑘 (𝑧) +

Ω𝑘
2 )

2 ) d𝑧 . (4.3.54)

Using Eqs. (4.2.16) and (4.3.47) to (4.3.49) on page 103 and on the previous page, we see that

Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
𝑙+1 ]

=
(−1)𝑙+1𝑉𝑑𝑘

𝑑−2𝑙

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2𝑙+1 𝐹(𝑙 + 1, 12 ;
𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢 . (4.3.55)

When we compute the RG flow, we will need to fix

i. 𝑑, to select the spacetime dimension we are interested in;

ii. 𝑟𝑑, to select the cutoff we will be working with;

iii. 𝑙, to select the term whose beta function we are computing.

Hence, the only free parameter in the integral shown on Eq. (4.3.55) is the dimensionless gap Ω̃𝑘. We
can then solve the integral numerically, for example, for some range of Ω̃𝑘 and obtain the RG flow
numerically. In some cases, it may be possible to solve the integral exactly.

Similar statements hold for all of the following integrals. They can be put in a form in which they
depend solely on the dimensionless couplings, at which stage we can solve the integrals numerically
for some different values of couplings and understand the flow.

Gap Term

Our next step is to consider the traces for the gap term. The first of them is

Tr[
𝛾𝜏(𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]. (4.3.56)
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We can compute it with Eq. (4.3.46) on page 112 by setting𝑚 = 1, 𝑛 = 0, 𝑓(𝑥) = 𝛾𝜏,

𝑊(Δ) =
(𝑅𝑑

𝑘 (Δ) +
Ω𝑘
2 )𝜕𝑡𝑅

𝜙
𝑘 (Δ)

[𝑃𝑘(Δ) + 𝑉″
𝑘 (𝜙)]

2 , and 𝐴(Δ) = (𝑅𝑑
𝑘 (Δ) +

Ω𝑘
2 )

2
. (4.3.57)

Therefore,

Tr[
𝛾𝜏(𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]

=
−∫𝛾𝜏 d𝑑𝑥
(4𝜋)

𝑑
2 Γ(𝑑2 )

∫
+∞

0

𝜕𝑡𝑅
𝜙
𝑘 (𝑧)𝑧

𝑑
2 −1

[𝑃𝑘(𝑧) + 𝑉″
𝑘 (𝜙)]

2
(𝑅𝑑

𝑘 (𝑧) +
Ω𝑘
2 )

𝐹(1, 12 ;
𝑑
2 ; −

𝑧

(𝑅𝑑
𝑘 (𝑧) +

Ω𝑘
2 )

2 ) d𝑧 . (4.3.58)

Notice that the definition of 𝛾𝜏, Eq. (4.2.9) on page 102, implies

∫𝛾𝜏 d𝑑𝑥 = ∫𝛿(𝑑−1)(�⃗� − �⃗�(𝑡))d𝜏d𝑡 d𝑑𝑥 , (4.3.59a)

= ∫ d𝜏
d𝑡 d𝑡 , (4.3.59b)

= ∫ d𝜏 , (4.3.59c)

= 𝑉1, (4.3.59d)

where 𝑉1 is the (infinite) length of the detector’s worldline.
Using this fact and the dimensionless parameters we introduced on Eqs. (4.2.16) and (4.3.47)

to (4.3.50) on page 103 and on page 113, we can write

Tr[
𝛾𝜏(𝑅

𝑑
𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]

=
−2𝑉1𝑘

𝑑−3

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝜙(𝑢) − 𝑢𝑟
′
𝜙(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)]

2
(𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

𝐹(1, 12 ;
𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢 . (4.3.60)

The second relevant trace is

Tr[
𝛾𝜏[(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]. (4.3.61)
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We will split it into two separate traces in order to be able to apply Eq. (4.3.46) on page 112. Namely,

Tr[
𝛾𝜏[(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ] = Tr[

𝛾𝜏𝜕𝑡𝑅
𝑑
𝑘 (𝑢

𝑎𝜕𝑎 )
2

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]

+ Tr[
𝛾𝜏(𝑅𝑘 +

Ω𝑘
2 )

2
𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]. (4.3.62)

We then find

Tr[
𝛾𝜏𝜕𝑡𝑅

𝑑
𝑘 (𝑢

𝑎𝜕𝑎 )
2

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]

=
−𝑉1

2(4𝜋)
𝑑
2 Γ(1 + 𝑑

2 )
∫

+∞

0

𝜕𝑡𝑅
𝑑
𝑘 (𝑧)𝑧

𝑑
2

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)](𝑅

𝑑
𝑘 +

Ω𝑘
2 )

4𝐹(2,
3
2 ; 1 +

𝑑
2 ; −

𝑧

(𝑅𝑑
𝑘 +

Ω𝑘
2 )

2 ) d𝑧 (4.3.63)

and

Tr[
𝛾𝜏(𝑅𝑘 +

Ω𝑘
2 )

2
𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]

=
𝑉1

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

𝜕𝑡𝑅
𝑑
𝑘 (𝑧)𝑧

𝑑
2 −1

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)](𝑅

𝑑
𝑘 +

Ω𝑘
2 )

2𝐹(2,
1
2 ;

𝑑
2 ; −

𝑧

(𝑅𝑑
𝑘 +

Ω𝑘
2 )

2 ) d𝑧 . (4.3.64)

If we add both terms and change to dimensionless quantities, we find

Tr[
𝛾𝜏[(𝑢

𝑎𝜕𝑎 )
2 + (𝑅𝑘 +

Ω𝑘
2 )

2
]𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]

=
−𝑉1𝑘

𝑑−3

2(4𝜋)
𝑑
2 Γ(1 + 𝑑

2 )
∫

+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

4𝐹(2,
3
2 ; 1 +

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢

+
𝑉1𝑘

𝑑−3

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

2𝐹(2,
1
2 ;

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 )d𝑢 . (4.3.65)

Interaction Term

Lastly we need to compute the traces associated with the interaction term. The first of them is
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Tr[
𝛾𝜏𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]

=
−𝑉1

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

𝜕𝑡𝑅
𝜙
𝑘 (𝑧)𝑧

𝑑
2 −1

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
(𝑅𝑑

𝑘 +
Ω𝑘
2 )

2𝐹(1,
1
2 ;

𝑑
2 ; −

𝑧

(𝑅𝑑
𝑘 +

Ω𝑘
2 )

2 ) d𝑧 . (4.3.66)

In terms of the dimensionless quantities

Tr[
𝛾𝜏𝜕𝑡𝑅

𝜙
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)]

2
[(𝑢𝑎𝜕𝑎 )

2 − (𝑅𝑑
𝑘 +

Ω𝑘
2 )

2
]
]

=
−2𝑉1𝑘

𝑑−4

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝜙(𝑢) − 𝑢𝑟
′
𝜙(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)]

2
(𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

2𝐹(1,
1
2 ;

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 )d𝑢 . (4.3.67)

The second and last trace is

Tr[
𝛾𝜏(𝑅𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]

=
𝑉1

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

𝜕𝑡𝑅
𝑑
𝑘 (𝑧)𝑧

𝑑
2 −1

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)](𝑅

𝑑
𝑘 +

Ω𝑘
2 )

3𝐹(2,
1
2 ;

𝑑
2 ; −

𝑧

(𝑅𝑑
𝑘 +

Ω𝑘
2 )

2 ) d𝑧 . (4.3.68)

Or, in terms of dimensionless quantities,

Tr[
𝛾𝜏(𝑅𝑘 +

Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[𝑃𝑘 + 𝑉″
𝑘 (𝜙)][(𝑢

𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ]

=
𝑉1𝑘

𝑑−4

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

3𝐹(2,
1
2 ;

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 )d𝑢 . (4.3.69)

Beta Functions

Let us bring Eqs. (4.3.51), (4.3.52), (4.3.55), (4.3.60), (4.3.65), (4.3.67) and (4.3.69) on pages 113–117
together, to reduce Eq. (4.3.33) on page 110 to integrals. Recalling Eq. (4.3.49) on page 113, we see
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that

𝜕𝑡Γ𝑘 =
𝑉𝑑

2(4𝜋)
𝑑
2
𝑄 𝑑

2
[

𝜕𝑡𝑅
𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

]

+
+∞
∑
𝑙=0

(−1)𝑙𝜖2𝑙𝑘 𝑉𝑑𝑘
𝑑+(𝑑−2)𝑙𝜙2𝑙

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2𝑙+1 𝐹(𝑙 + 1, 12 ;
𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢

+
2𝜖2𝑘𝑉1𝑘�̄�

⊺𝜎𝑧𝜉

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝜙(𝑢) − 𝑢𝑟
′
𝜙(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)]

2
(𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

𝐹(1, 12 ;
𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 )d𝑢

+
𝜖2𝑘𝑉1𝑘�̄�

⊺𝜎𝑧𝜉

2(4𝜋)
𝑑
2 Γ(1 + 𝑑

2 )
∫

+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

4𝐹(2,
3
2 ; 1 +

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 )d𝑢

−
𝜖2𝑘𝑉1𝑘�̄�

⊺𝜎𝑧𝜉

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

2𝐹(2,
1
2 ;

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 )d𝑢

−
2𝜖3𝑘𝑉1𝑘

2− 𝑑2 𝜙�̄�⊺𝜎𝑥𝜉

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝜙(𝑢) − 𝑢𝑟
′
𝜙(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)]

2
(𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

2𝐹(1,
1
2 ;

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢

+
𝜖3𝑘𝑉1𝑘

2− 𝑑2 𝜙�̄�⊺𝜎𝑥𝜉

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

3𝐹(2,
1
2 ;

𝑑
2 ; −

𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢 + ⋯ .

(4.3.70)

Eq. (4.3.70) completely describes the RG flow for the field-detector system. Our current goal is to
extract the beta functions from it, since they are more convenient to work with.

Since the argument of the hypergeometric functions always has the same form, let us define

𝜌(𝑢, Ω̃𝑘) ≡
𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 . (4.3.71)

From Eq. (4.2.10) on page 102, and from the assumption that the fields are constant throughout
spacetime, we can notice that

𝜕𝑡Γ𝑘 = 𝑉𝑑𝜕𝑡𝑉𝑘(𝜙) +
𝑉1
2 𝛽Ω�̄�

⊺𝜎𝑧𝜉 + 𝑉1𝛽𝜖𝜙�̄�
⊺𝜎𝑥𝜉. (4.3.72)

Using Eqs. (3.3.4) and (4.3.70) to (4.3.72) on page 72 and on the current page, we find for the
potential that

𝜕𝑡𝑉𝑘(𝜙) =
1

2(4𝜋)
𝑑
2
𝑄 𝑑

2
[

𝜕𝑡𝑅
𝜙
𝑘

𝑃𝑘 + 𝑉″
𝑘 (𝜙)

]
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+
+∞
∑
𝑙=0

(−1)𝑙𝜖2𝑙𝑘 𝑘
𝑑+(𝑑−2)𝑙𝜙2𝑙

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1𝐹(𝑙 + 1, 12 ;

𝑑
2 ; −𝜌(𝑢, Ω̃𝑘))

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2𝑙+1 d𝑢 . (4.3.73)

For the gap term, we get the dimensionless beta function

�̃�Ω = −Ω̃𝑘 +
𝜖2𝑘

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝜙(𝑢) − 𝑢𝑟
′
𝜙(𝑢)]𝑢

𝑑
2 −1𝐹(1, 12 ;

𝑑
2 ; −𝜌(𝑢, Ω̃𝑘))

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)]

2
(𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

d𝑢

+
𝜖2𝑘

4(4𝜋)
𝑑
2 Γ(1 + 𝑑

2 )
∫

+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 𝐹(2, 32 ; 1 +

𝑑
2 ; −𝜌(𝑢, Ω̃𝑘))

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

4 d𝑢

−
𝜖2𝑘

2(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1𝐹(2, 12 ;

𝑑
2 ; −𝜌(𝑢, Ω̃𝑘))

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

2 d𝑢 . (4.3.74)

At last, for the interaction term, we get

�̃�𝜖 = (𝑑2 − 2)𝜖𝑘 −
2𝜖3𝑘

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝜙(𝑢) − 𝑢𝑟
′
𝜙(𝑢)]𝑢

𝑑
2 −1𝐹(1, 12 ;

𝑑
2 ; −𝜌(𝑢, Ω̃𝑘))

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)]

2
(𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

2 d𝑢

+
𝜖3𝑘

(4𝜋)
𝑑
2 Γ(𝑑2 )

∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1𝐹(2, 12 ;

𝑑
2 ; −𝜌(𝑢, Ω̃𝑘))

[𝑢 + 𝑟𝜙(𝑢) + 𝑈″
𝑘 (𝜙)](𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

3 d𝑢 . (4.3.75)

Let us quickly recall the simplifications wemade to obtain these results. These expressions assume
that:

i. we are working in Minkowski spacetime;

ii. the detector is inertial and its proper time is an inertial global time function;

iii. the detector’s coupling to the quantum field does not change with time.

The assumption of Minkowski spacetime simplifies the heat kernel expressions. The assumption of
inertial motion is a hypothesis of our Taylor trick formulae. The assumption of constant coupling
simplifies the functional traces.

4.4 Gapless Divergences
Wewould now like to compute the RG flow for the theory and see how the constants evolve, but there
is at least one issue with these expressions: some of them are divergent in the gapless limit Ω̃𝑘 → 0.
Consider, for example, the integral

𝐼(Ω̃𝑘) ≡ ∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

𝑑
2 −1𝐹(2, 12 ;

𝑑
2 ; −𝜌(𝑢, Ω̃𝑘))

[𝑢 + 𝑟𝜙(𝑢)](𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

3 d𝑢 , (4.4.1)
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which occurs on Eq. (4.3.75) on the preceding page in the particular case of a free massless field. For
both 𝑑 = 4 and 𝑑 = 2 this integral will diverge at Ω̃𝑘 for the usual cutoffs we discussed in Section 3.2.
For example, Figs. 4.1 and 4.2 on the next page illustrate the values of the integral for different values
of Ω̃𝑘 for each of the cutoffs illustrated in Fig. 3.3 on page 66 (the same profile was chosen for the
field and for the detector).

Since the divergence occurs in the gapless limit, it appears to be an infrared (IR) divergence.
Nevertheless, it is interesting to plot the integrand of Eq. (4.4.1) on the previous page for fixed values
of Ω̃𝑘. This is shown in Fig. 4.3 on page 122 for the exponential cutoff 𝑟(𝑥) = 𝑥(𝑒𝑥 − 1)−1 and 𝑑 = 4.
Notice that as Ω̃𝑘 decreases, the integrand grows for large values of 𝑢. This corresponds to the UV
region, not to the IR region. Hence, it seems the divergence might somehow be related to UV effects.

To understand this behavior, it is useful to look at the denominator of the integrand on Eq. (4.4.1)
on the previous page. In particular, notice the term

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

3

. (4.4.2)

In the UV, 𝑟𝑑(𝑢) should be small enough so that it does not suppress the high energy modes in the
path integral. However, if Ω̃𝑘 is also small, then the denominator is small in the UV and we end up
with a divergent expression.

This does not happen for the scalar field because the kinetic term contributes with a term 𝑢
that grows in the UV, and hence keeps the denominator large enough to prevent divergences from
happening.

The absence of such a “control term” in the detector comes from the fact that we were not able
to solve the functional traces that occurred on Eq. (4.3.33) on page 110 in a straightforward manner,
but rather had to resort to the Taylor trick. This removes the kinetic term contribution from the
denominator and leads to this issue. Therefore, we should question the validity of Eq. (4.3.35) on
page 111 in the UV region, since Eq. (4.3.36) on page 111 only converges for |𝑥|2 < |𝑎|, and in the
gapless UV limit 𝐴(Δ)will be really small. At the same time, the UV region is energetic, and hence
𝑢𝑎𝜕𝑎 is expected to be large.

This poses a difficulty to the problem: without relying on the Taylor trick, it is not clear how to
compute the traces of the form given on Eq. (4.3.34) on page 111, which are essential for our purposes.

Given this conundrum, let us try to investigate possible origins of the issues we are facing. For
example, two things we may try are*

i. to exploit the fact we are working in Minkowski spacetime and attempt to compute the traces
using Fourier analysis;

ii. to try to compute the one-loop effective action using standard quantum field theory (QFT)
techniques and see whether we run into similar problems with the gapless limit even when we
are using other regularization schemes.

Each of these routes brings different advantages. Fourier analysis allows us to bypass the need for
heat kernel techniques and we can see whether avoiding the Taylor trick still leads to the same issues.
On the other hand, a one-loop computation allows us to notice whether the difficulties we have been
facing are somehow related to our choice of cutoffℛ𝑘.

*I thank Prof. Antônio Duarte Pereira Junior for these suggestions.
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(1 − 𝑥)Θ(1 − 𝑥)

Figure 4.1: Numerical solutions of the integral on Eq. (4.4.1) on page 119 for the cutoffs shown on Fig. 3.3 on
page 66 and 𝑑 = 4. Notice how the integral grows as Ω̃𝑘 vanishes. The values plotted were obtained
using Mathematica’s (Wolfram Research 2021) NIntegrate function with Ω̃𝑘 ≥ 0.01.
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Figure 4.2: Numerical solutions of the integral on Eq. (4.4.1) on page 119 for the cutoffs shown on Fig. 3.3 on
page 66 and 𝑑 = 2. Notice how the integral grows as Ω̃𝑘 vanishes. The values plotted were obtained
using Mathematica’s (Wolfram Research 2021) NIntegrate function with Ω̃𝑘 ≥ 0.01.
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Figure 4.3: Plots of the integrand 𝑓(𝑢) of Eq. (4.4.1) on page 119 for the cutoff profile 𝑟(𝑢) = 𝑢(𝑒𝑢 − 1)−1 and
𝑑 = 4. While the color scale is mostly logarithmic, the smallest value 10−10 was manually replaced
by 0. Notice how the integrand grows as Ω̃𝑘 vanishes. It is interesting to notice that this growth
happens for large values of 𝑢, which are associated with UV modes. The values plotted were
obtained using Mathematica (Wolfram Research 2021).

Fourier Analysis

Let us begin by computing some of the divergent traces using Fourier techniques. This might not
be generalized in a straightforward manner for other spacetimes, and might even be too difficult
to be used in the case of an uniformly accelerated detector, for example. Hence, our goal with this
calculation ismostly to try to understand if the Taylor trick is problematic. Therefore, wewill perform
this calculation with a single functional trace with the sole goal of learning whether its divergence
depends or not on the Taylor trick.

We shall compute a functional trace associated with the field self-interactions. The results for
the traces of the self-interactions obtained by means of the Taylor trick were given on Eqs. (4.3.51)
and (4.3.52) on page 113. Some of the field self-interactions involve divergent traces. Indeed, the
integral

𝐼(Ω̃𝑘) = ∫
+∞

0

[𝑟𝑑(𝑢) − 2𝑢𝑟
′
𝑑(𝑢)]𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

3 𝐹(2, 12 ; 2; −
𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢 , (4.4.3)

which occurs on Eq. (4.3.51) on page 113 for 𝑑 = 4 and 𝑙 = 1, diverges in the gapless limit for the three
cutoffs we have been considering, as illustrated in Fig. 4.4 on the facing page.

Let us then compute the same functional trace by using Fourier analysis. We will choose a Litim
cutoff to keep the calculations feasible. Computing a functional trace by working in momentum
space is a trick often used in standard QFT textbooks, such as those by Peskin and Schroeder (1995,
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Figure 4.4: Numerical solutions of the integral on Eq. (4.4.3) on the preceding page for the cutoffs shown
on Fig. 3.3 on page 66. Notice how the integral grows as Ω̃𝑘 vanishes. The values plotted were
obtained using Mathematica’s (Wolfram Research 2021) NIntegrate function with Ω̃𝑘 ≥ 0.01.

p. 374) and Weinberg (1996, p. 70), and hence we will not go into much detail. We have

Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ] =

𝑉4
(2𝜋)4

∫
(𝑅𝑑

𝑘 (𝑝
2) + Ω𝑘

2 )𝜕𝑡𝑅
𝑑
𝑘 (𝑝

2)

[(𝑢𝑎𝑝𝑎 )
2 + (𝑅𝑑

𝑘 (𝑝
2) + Ω𝑘

2 )
2
]
2 d4𝑝 , (4.4.4a)

=
𝑉4

(2𝜋)4
∫
∥𝑝∥≤𝑘

(𝑘 − 𝑝2

𝑘 + Ω𝑘
2 )(𝑘 +

𝑝2

𝑘 )

[(𝑝0)
2 + (𝑘 − 𝑝2

𝑘 + Ω𝑘
2 )

2
]
2 d4𝑝 . (4.4.4b)

Let us define spherical coordinates on the 3-sphere through

{

𝑝0 = 𝑝 cos𝜓,
𝑝1 = 𝑝 sin𝜓 cos 𝜃,
𝑝2 = 𝑝 sin𝜓 sin 𝜃 cos 𝜙,
𝑝3 = 𝑝 sin𝜓 sin 𝜃 sin 𝜙,

(4.4.5)

where 𝑝 ≥ 0, 𝜓, 𝜃 ∈ [0, 𝜋], and 𝜙 ∈ [0, 2𝜋). Furthermore, let us define dimensionless variables through

𝑝 = 𝑘𝑞 and Ω𝑘 = 𝑘Ω̃𝑘. (4.4.6)

We can then write

Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ] =

𝑉4𝑘
2

(2𝜋)4
∫
𝑞≤1

(1 − 𝑞2 + Ω̃𝑘
2 )(1 + 𝑞

2)𝑞3 d𝑞 d3Ω

[𝑞2 cos2 𝜓 + (1 − 𝑞2 + Ω̃𝑘
2 )

2
]
2 , (4.4.7a)



124 4. Nonperturbative Unruh–DeWitt Detectors

=
𝑉4𝑘

2

4𝜋3
∫

𝜋

0
∫

1

0

(1 − 𝑞2 + Ω̃𝑘
2 )(1 + 𝑞

2)𝑞3 sin2 𝜓 d𝑞 d𝜓

[𝑞2 cos2 𝜓 + (1 − 𝑞2 + Ω̃𝑘
2 )

2
]
2 . (4.4.7b)

While solving this integral is not trivial, we can once again resort to numerical methods. For the
purpose of comparison, notice that Eq. (4.3.51) on page 113 would lead to

Tr[
(𝑅𝑑

𝑘 +
Ω𝑘
2 )𝜕𝑡𝑅

𝑑
𝑘

[(𝑢𝑎𝜕𝑎 )
2 − (𝑅𝑑

𝑘 +
Ω𝑘
2 )

2
]
2 ] =

𝑉4𝑘
2

16𝜋2
∫

1

0

(1 + 𝑢)𝑢

(1 − 𝑢 + Ω̃𝑘
2 )

3𝐹(2,
1
2 ; 2; −

𝑢

(1 − 𝑢 + Ω̃𝑘
2 )

2 ) d𝑢 . (4.4.8)

Eqs. (4.4.7) and (4.4.8) on the preceding page and on the current page invite us to consider the
integrals

𝐹(Ω̃𝑘) =
1
4𝜋3

∫
𝜋

0
∫

1

0

(1 − 𝑞2 + Ω̃𝑘
2 )(1 + 𝑞

2)𝑞3 sin2 𝜓d𝑞 d𝜓

[𝑞2 cos2 𝜓 + (1 − 𝑞2 + Ω̃𝑘
2 )

2
]
2 (4.4.9)

and

𝑇(Ω̃𝑘) =
1

16𝜋2
∫

1

0

(1 + 𝑢)𝑢

(1 − 𝑢 + Ω̃𝑘
2 )

3𝐹(2,
1
2 ; 2; −

𝑢

(1 − 𝑢 + Ω̃𝑘
2 )

2 )d𝑢 , (4.4.10)

where 𝐹 stands for “Fourier” and 𝑇 for “Taylor”.
These integrals are actually equal. Indeed, if one defines 𝑢 = 𝑞2 and 𝜉 = cos𝜓, it can be shown

that

𝐹(Ω̃𝑘) =
1
4𝜋3

∫
1

0
∫

1

0

(1 + 𝑢)𝑢√1 − 𝜉2 d𝑢 d𝜉

(1 − 𝑢 + Ω̃𝑘
2 )

3
[𝜌(𝑢, Ω̃𝑘)𝜉2 + 1]

2
, (4.4.11)

with
𝜌(𝑢, Ω̃𝑘) =

𝑢

(1 − 𝑢 + Ω̃𝑘
2 )

2 . (4.4.12)

Notice that

∫
1

0

√1 − 𝜉2

[𝜌𝜉2 + 1]2
d𝜉 =

+∞
∑
𝑛=0

(2)𝑛(−𝜌)
𝑛

𝑛! ∫
1

0
√1 − 𝜉2𝜉2𝑛 d𝜉 , (4.4.13a)

= 𝜋
4

+∞
∑
𝑛=0

(2)𝑛(
1
2)𝑛

(2)𝑛𝑛!
(−𝜌)𝑛, (4.4.13b)

= 𝜋
4𝐹(2,

1
2 ; 2; −𝜌). (4.4.13c)

From Eqs. (4.4.10) to (4.4.13), we can conclude that the Taylor trick and Fourier analysis lead to
the same result.
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One-Loop Quantum Action and Beta Functions

A second analysis we may perform in an attempt to understand what is going on is to consider the
one-loop effective action for this detector. This will let us check whether the issue lies on our choice
of cutoffs. We shall then compute the functional trace given on Eq. (3.A.33) on page 86. Therefore,
our goal is to compute

Γone-loop = 𝑆 + 1
2 STr[log𝑆(2)] (4.4.14)

for the Unruh–DeWitt detector.
Notice that our goal is not to obtain a complete and general result, but rather just to check what

happens in the gapless limit. Since the gapless divergences were occurring even for a detector coupled
to a free field, we shall focus on the structure due to the detector and ignore the one-loop contributions
to the field. We will also overlook the contributions to terms that lie outside the truncation we are
interested in.

Our previous ansatz for the EAA was based on the classical action for the detector, and hence we
have actually already computed 𝑆(2). From Eq. (4.2.14) on page 103 we know that

𝑆(2)(𝑥, 𝑥′) = (
−𝜕2 𝛾𝜏𝜖�̄�

⊺𝜎𝑥 −𝛾𝜏𝜖𝜉
⊺𝜎𝑥

−𝛾𝜏𝜖𝜎𝑥�̄� 0 𝛾𝜏[𝑢
𝑎𝜕𝑎 −

Ω
2 𝜎𝑧 − 𝜖𝜙𝜎𝑥]

𝛾𝜏𝜖𝜎𝑥𝜉 𝛾𝜏[𝑢
𝑎𝜕𝑎 +

Ω
2 𝜎𝑧 + 𝜖𝜙𝜎𝑥] 0

)𝛿(𝑑)(𝑥 − 𝑥′), (4.4.15)

where 𝑆 is given by (cf. Eq. (4.2.10) on page 102)

𝑆 = ∫ 1
2𝜕𝑎 𝜙𝜕

𝑎𝜙 + 𝛾𝜏[�̄�
⊺𝑢𝑎𝜕𝑎 𝜉 +

Ω
2 �̄�

⊺𝜎𝑧𝜉 + 𝜖𝜙�̄�
⊺𝜎𝑥𝜉] d𝑑𝑥 . (4.4.16)

We already dropped the time dependence of 𝜖 and the quantum field potential, for simplicity.
We begin by splitting 𝑆(2) in blocks according to (cf. Eq. (4.3.4) on page 105)

(𝐴 𝐵
𝐶 𝐷

) ≡ (
−𝜕2 + 𝑉″(𝜙) 𝛾𝜏𝜖�̄�

⊺𝜎𝑥 −𝛾𝜏𝜖𝜉
⊺𝜎𝑥

−𝛾𝜏𝜖𝜎𝑥�̄� 0 𝛾𝜏[𝑢
𝑎𝜕𝑎 −

Ω
2 𝜎𝑧 − 𝜖𝜙𝜎𝑥]

𝛾𝜏𝜖𝜎𝑥𝜉 𝛾𝜏[𝑢
𝑎𝜕𝑎 +

Ω
2 𝜎𝑧 + 𝜖𝜙𝜎𝑥] 0

) . (4.4.17)

Using this decomposition and Eq. (3.A.32) on page 86, we can notice that the one-loop correction
to the quantum action is given by

Γ1 =
1
2 STr[log𝑆(2)], (4.4.18a)

= 1
2 log (SDet𝑆(2)), (4.4.18b)

= 1
2 log [Det(𝐴 − 𝐵𝐷−1𝐶)] − 1

2 log [Det𝐷], (4.4.18c)

= 1
2 Tr [log(𝐴 − 𝐵𝐷−1𝐶)] − 1

2 Tr [log𝐷], (4.4.18d)

where we used known properties of the superdeterminant to decompose it in terms of standard
functional determinants (see DeWitt 2003, Eq. (A.81)).

As we can see from Eq. (4.4.17),𝐷 does not contain any instances of the detector variables, and
hence will not contribute to the pieces of the action we are interested in. Hence, we shall ignore the
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term Tr [log𝐷], although a more complete analysis of the theory’s one-loop structure would need to
take it into account. We are left with

Γ1 =
1
2 Tr [log(𝐴 − 𝐵𝐷−1𝐶)] + ⋯ , (4.4.19)

where the dots denote terms we are not interested in. To compute the logarithm we shall expand it in
a series and notice that

Γ1 =
1
2 Tr [log𝐴] − 1

2

+∞
∑
𝑛=1

1
𝑛 Tr [(𝐴−1𝐵𝐷−1𝐶)𝑛] + ⋯ . (4.4.20)

As we can see from Eq. (4.4.17) on the previous page, 𝐴 does not involve the detector variables, and
the terms (𝐴−1𝐵𝐷−1𝐶)𝑛 with 𝑛 ≥ 2will either vanish due to involving squares of Grassmann variables
or will lie outside the truncation we are interested in. Therefore, we write

Γ1 = −12 Tr [𝐴−1𝐵𝐷−1𝐶] + ⋯ . (4.4.21)

With some algebraic work, we can get to (cf. Eq. (4.3.11) on page 106)

Γ1 = −12 Tr [
2𝛾𝜏𝜖

2[𝜖𝜙�̄�⊺𝜎𝑥𝜉 −
Ω
2 �̄�

⊺𝜎𝑧𝜉]

[−𝜕2][(𝑢𝑎𝜕𝑎 )
2 − Ω2

4 − 𝜖2𝜙2]
] + ⋯ . (4.4.22)

Since we are not interested in the 𝜙 contributions that might come from the denominator (they do
not contribute to our original truncation), we will ignore them and write simply

Γ1 = −Tr [
𝛾𝜏𝜖

2[𝜖𝜙�̄�⊺𝜎𝑥𝜉 −
Ω
2 �̄�

⊺𝜎𝑧𝜉]

[−𝜕2][(𝑢𝑎𝜕𝑎 )
2 − Ω2

4 ]
] + ⋯ . (4.4.23)

By treating the fields as constants, we find

Γ1 = −𝜖2 Tr [ 𝛾𝜏
[−𝜕2][(𝑢𝑎𝜕𝑎 )

2 − Ω2

4 ]
](𝜖𝜙�̄�⊺𝜎𝑥𝜉 −

Ω
2 �̄�

⊺𝜎𝑧𝜉) + ⋯ , (4.4.24)

Eq. (4.3.46) on page 112 now implies that

Tr [ 𝛾𝜏
[−𝜕2][(𝑢𝑎𝜕𝑎 )

2 − Ω2

4 ]
] =

−4𝑉1
(4𝜋)

𝑑
2 Γ(𝑑2 )Ω2

∫
+∞

0

𝑧
𝑑
2 −1𝐹(1, 12 ;

𝑑
2 ; −

4𝑧
Ω2 )

𝑧 d𝑧 . (4.4.25)

We may now use the fact that (cf. Bateman 1954, p. 336, Eq. (6.9.3))

∫
+∞

0
𝑧
𝑑
2 −2𝐹(1, 12 ;

𝑑
2 ; −

4𝑧
Ω2 ) d𝑧 = Ω𝑑−2Γ(3 − 𝑑)Γ(𝑑2 − 1)Γ(𝑑2 ), (4.4.26)

which holds for 2 < 𝑑 < 3. We are, of course, aware of the fact that the expression diverges when we
take 𝑑 → 4, and hence we need to regularize it. We then have

Tr [ 𝛾𝜏
[−𝜕2][(𝑢𝑎𝜕𝑎 )

2 − Ω2

4 ]
] =

−4𝑉1Ω
𝑑−4

(4𝜋)
𝑑
2

Γ(3 − 𝑑)Γ(𝑑2 − 1). (4.4.27)



4.4. Gapless Divergences 127

If we define 𝜀 = 4 − 𝑑 and perform a series expansion in 𝜀, we get to

Tr [ 𝛾𝜏
[−𝜕2][(𝑢𝑎𝜕𝑎 )

2 − Ω2

4 ]
] =

𝑉1
8𝜋2

[2𝜀 − 𝛾𝛦 + log 4𝜋 + 2 − logΩ2] + 𝒪(𝜀), (4.4.28)

where 𝛾𝛦 is the Euler–Mascheroni constant. Notice the difference between the coupling 𝜖 and the
parameter 𝜀.

Notice that Eq. (4.4.28) still has a divergence in the gapless limit, in spite of the fact that we
regularized the expression by means of dimensional regularization this time. Nevertheless, it is worth
pointing out that similar divergences occur in the massless limit for a scalar theory (see, e.g., Peskin
and Schroeder 1995, Eq. (11.77)).

In the modified minimal subtraction scheme (Peskin and Schroeder 1995, p. 377; Weinberg 1996,
Sec. 18.6), we can write Eq. (4.4.28) as

Tr [ 𝛾𝜏
[−𝜕2][(𝑢𝑎𝜕𝑎 )

2 − Ω2

4 ]
] →

𝑉1
8𝜋2

[2 − log(Ω
2

𝑘2
)], (4.4.29)

where 𝑘 is a mass scale introduced to keep dimensional consistency. It can be interpreted as the RG
sliding scale.

From Eqs. (4.4.16), (4.4.24) and (4.4.29) on pages 125–127, we find the effective potential

𝑉eff(𝜙, �̄�, 𝜉) =
𝛾𝜏
2 (Ω +

[2 − log(Ω
2

𝑘2 )]𝜖
2Ω

8𝜋2
)�̄�⊺𝜎𝑧𝜉 + 𝛾𝜏(𝜖 −

[2 − log(Ω
2

𝑘2 )]𝜖
3

8𝜋2
)𝜙�̄�⊺𝜎𝑥𝜉 + ⋯ , (4.4.30)

where the dots indicate the terms we chose to ignore for simplicity during our calculations.
Eq. (4.4.30) invites us to define the running couplings

Ω𝑘 = Ω +
[2 − log(Ω

2

𝑘2 )]𝜖
2Ω

8𝜋2
and 𝜖𝑘 = 𝜖 −

[2 − log(Ω
2

𝑘2 )]𝜖
3

8𝜋2
, (4.4.31)

and differentiation leads us to

𝛽Ω = 𝑘𝜕𝑘Ω𝑘 =
Ω𝜖2

4𝜋2
and 𝛽𝜖 = 𝑘𝜕𝑘𝜖𝑘 = − 𝜖3

4𝜋2
. (4.4.32)

To one-loop, we can invert Eq. (4.4.31) and insert it on Eq. (4.4.32) to obtain

𝛽Ω =
Ω𝑘𝜖

2
𝑘

4𝜋2
and 𝛽𝜖 = −

𝜖3𝑘
4𝜋2

. (4.4.33)

Therefore, to one-loop we get beta functions that do not diverge in the gapless limit, although
the intermediate calculations did involve gapless divergences. However, these divergences seemed to
have the same nature of the infrared divergences we would run into in the intermediate calculations
for a scalar field. This suggests our difficulties might indeed be arising from our choice of cutoffℛ𝑘.
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Figure 4.5: Numerical solutions of the integral on Eq. (4.4.34) for the cutoffs shown on Fig. 3.3 on page 66.
Notice how the integral seems to remain finite as Ω̃𝑘 vanishes. The values plotted were obtained
using Mathematica’s (Wolfram Research 2021) NIntegrate function with Ω̃𝑘 ≥ 0.01.

Conclusions and Other Possibilities

Given the previous discussions, let us recall the information we have and other possible approaches
we could try to understand what is going wrong with this calculation.

Firstly, we must discuss the Taylor trick. Since we see at least one of the divergences it predicts is
also obtained by means of Fourier analysis, it seems abandoning it would not cure the issues we are
having. Furthermore, it seems that the Taylor trick still works for some other traces. Consider, for
example, the integral

𝐼(Ω̃𝑘) = ∫
+∞

0

[𝑟𝜙(𝑢) − 𝑢𝑟
′
𝜙(𝑢)]𝑢

(𝑢 + 𝑟𝜙(𝑢))
2
(𝑟𝑑(𝑢) +

Ω̃𝑘
2 )

𝐹(1, 12 ; 2; −
𝑢

(𝑟𝑑(𝑢) +
Ω̃𝑘
2 )

2 ) d𝑢 , (4.4.34)

which occurs on Eq. (4.3.60) on page 115. Plotting the numerical values for this integral, as done in
Fig. 4.5, we see that the integral remains finite even as the gap vanishes. Hence, if the Taylor trick is
an issue, it does not cause trouble on every single trace.

Secondly we raise the question of whether our cutoffs have been chosen adequately. The one-loop
beta functions we computed are finite in the gapless limit, which suggests it might be a good idea to
choose different cutoffs and try to regulate the expressions in different manners. A possibility is trying
to mimic the kinetic term instead of the gap term on Eq. (4.2.15) on page 103, or to try a combination
of both approaches.

A third possible issue is our formal manipulation of functional matrices. Rigorously, we should
see the multiplication of functional matrices as given on Eq. (4.3.3) on page 105, but we chose to just
manipulate them formally. This it typically avoided by diagonalizing the operators one will trace over,
but the complexity of Eq. (4.3.4) on page 105 suggests this might not be feasible on this calculation.
Each entry of the matrix is in principle diagonalized on a different functional basis, and hence we
would need to find a manner of diagonalizing both the algebraic and functional matrices at the same
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time. Since the algebraic matrix already includes Grassmann variables, this is not an easy task, if
possible.

In any case, do notice the same formal manipulations entered our one-loop calculations when
going from Eq. (4.4.21) on page 126 to Eq. (4.4.22) on page 126, since we employed Eq. (4.3.11) on
page 106, which already involved formal manipulation of functional matrices. Hence, if there is
something wrong with these procedures, they do not seem to be responsible for our difficulties, or at
least they are not the sole culprits.
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Five

Conclusions
Our previous discussions are recapitulated and we discuss what possibilities lie ahead of us.

Hic sunt dracones.

Latin for “here be dragons”. Generally, but falsely, believed to be an old
cartographer inscription to denote uncharted and possibly dangerous

regions in maps.

In this thesis we studied one of the oldest physics questions known to humankind: why do things
fall? Simple questions often have difficult answers. Hence, our approach was specified to a very
particular attack route. Let us recall it.

At first, we reviewed the main ideas and concepts lying behind quantum field theory in curved
spacetime (QFTCS). This was done through multiple different approaches, so we could always focus
on the aspects that interested us the most at each stage of the thesis. We formulated QFTCS within
the algebraic approach, which is particularly clear from a conceptual point of view, and later employed
Euclidean techniques to be able to perform renormalization group (RG) computations. We also
noticed how fragile the current knowledge about the relationship between these two approaches
seems to be. Through these discussions we filled a pedagogical gap in the physics literature, since most
(if not all) texts concerning the algebraic approach are written exclusively with mathematics-oriented
readers in mind.

A particularly interesting prediction of QFTCS is the Unruh effect, which states that different
observers on the same spacetime might interpret the vacuum state of a quantum field theory (QFT)
in very different ways. Namely, while an inertial observer might be freezing in the absence of particles,
an accelerated observer might be burning in a thermal bath. We derived this conclusion through four
different approaches and, in particular, noticed how particle detectors can be used to probe these
effects.

Using Euclidean techniques we were able to study the RG in a nonperturbative formulation,
when it is often referred to as the functional renormalization group (FRG). Our discussion was
mainly based on the notion of effective average action (EAA), which is a “scale-dependent action”,
and the functional differential equation it satisfies—the Wetterich equation. Our derivation of the
Wetterich equation considered both bosonic and fermionic fields from the start, which is uncommon
in pedagogical expositions.

Employing the techniques and ideas developed in the previous chapter, we then tackled for the
first time ever the problem of describing the RG flow of a particle detector. This required us to
reformulate the Unruh–DeWitt particle detector in terms of an action so that we could use the
Wetterich equation machinery on it. This led us to difficult functional traces that do not occur on
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most problems in QFT. We dealt with them by means of the Taylor trick, but got to beta functions
that diverge in the gapless limit. Nevertheless, even without the beta functions, we were able to
notice, for example, that even the interaction with a particle detector is sufficient to generate infinitely
many interactions in the EAA. We also analyzed some alternative calculations and noticed the gapless
divergences still occurred on some of the traces even without the Taylor trick, and found that the
one-loop calculation has well-behaved beta functions.

At this stage it is natural to ask ourselves which other possibilities lie ahead for applications
of the FRG to QFTCS, both within the problem of understanding Unruh–DeWitt detectors in a
nonperturbative fashion and for other eventual applications.

5.1 On Particle Detectors

Our explorations with particle detectors led to difficulties in evaluating the beta functions for small
gaps, which we noticed both with the Taylor trick and with Fourier analysis techniques. By studying
the one-loop approximation, we found beta functions that were well-behaved, but in the process we
found expressions that were infrared (IR) divergent. Nevertheless, these IR divergences were similar
to what one would find when performing the same computations for a scalar field.

The Taylor trick seems to be reliable, since it predicts the same divergences we obtained with
Fourier analysis. Furthermore, it does not lead to divergences on all traces. Hence, while it might
be interesting to search for a more straightforward manner of computing the traces we obtained, it
seems we should first attempt at other solutions.

Since the one-loop solution gave finite beta functions in the gapless limit, it seems possible that
our regularization scheme is not working. In other words, our choice of cutoff made on Eq. (4.2.15)
on page 103might not be adequate. In this case, it is interesting tomake other choices and see whether
the results improve. An immediate option is to mimic a kinetic term rather than a gap term on
Eq. (4.2.15) on page 103, or to attempt at a combination of both ideas that allows for a regulation of
both kinetic and gap terms simultaneously.

Another point of stress in the calculations are the formal manipulations we carried out with
functional matrices. Abandoning this simplification seems considerably difficult at first, and hence
it seems more productive to first attempt at using different cutoffs and see whether this is enough
to obtain sensible results. If not, a manner of avoiding these manipulations entirely could be to
refrain from promoting the detector variables to spacetime fields. In such a manner, it might be that
the functional matrices will all be trivially diagonalized in a momentum-like basis, and hence the
manipulation will be much more clean. Nevertheless, computing the functional traces by means of
heat kernel techniques might no longer be possible, in which case it is not immediately clear whether
we can actually complete the calculations at all.

5.2 On Compact Interactions

One of the difficulties of computing the renormalization flow of a particle detector is the fact that
this interaction happens only on a specific region of spacetime. This is unusual, since most QFTs are
typically considered with interaction terms that hold for the whole spacetime. Since this new feature
lies at the heart of the particle detector problem, it might be productive to further study these sorts of
uncommon interactions. While they might in principle occur on infinite regions of spacetime (as is
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the case of a particle detector that is always turned on), I will refer to these interactions as “compact
interactions” for the remainder of this section.

Since the Unruh–DeWitt detector has a complicated field structure due to its dependence on four
Grassmann fields, a compactly interacting scalar field might provide a useful toy model to investigate
similar issues. One might study how the renormalization flow of a scalar field is affected by allowing
the interaction to happen only on a worldline, or only on some subset of spacetime. This would
provide a simpler field model that can still lead, for example, to non-trivial functional matrices similar
to the ones we had to deal with. At the end of the calculation we should somehow be able to recover
the typical results for a scalar theory by taking the interaction to happen on the whole spacetime.

This might be an interesting model to also investigate whether the flow for a detector that is
turned on and off depends on how often this detector is turned on and off. During our previous
calculations, we obtained the beta functions for a single detector that is always turned on, and hence
we interpreted Eq. (4.3.72) on page 118 as meaning the beta functions referred to the exact terms we
would like them to refer to. Nevertheless, it could be that the renormalization flow would happen
only on a certain region of spacetime. Our present formalism does not allow to discuss this and
considers the flow as something completely global, in spite of the interactions being allowed to be
compact.

A possible application of these ideas is the following. Consider a detector that, classically, was
prescribed to be turned on and off between two given times. If the renormalization flow does not
depend on spacetime, then is it possible that quantum effects will turn on the particle detector later?
Is it possible they would turn it on earlier?

Due to our analytic continuations, the function describing how the detector turns on and off is
not allowed to vanish on an open set, since analyticity would then force it to vanish on the whole
complex plane. Nevertheless, even in this situation, we can ask whether the RG flow can force a
detector to be strongly coupled, for example.

While interesting, it is important to notice these remarks are not a challenge on causality of
spacetime. Even if the RG flow turns on a detector earlier than planned, this can hardly be seem as a
violation of causality, since even tiny interactions seem to be enough to turn on an RG flow. Hence,
it would be impossible to tell whether the detector has been turned on because it would be turned on
in the future or just because it was not possible to isolate it from external noise in the first place.

Similarly, one might wonder whether the RG flow of field self-interactions due to the detector
could be seem as a violation of causality. After all, our calculations suggest that turning on a detector
at late times could be sufficient to render the scalar field self-interacting at early times. While beta
functions are not observables, this would have observable consequences, since it would alter the cross
sections of scattering experiments, for example. Indeed, the cross section for a 𝜙𝜙 → 𝜙𝜙 process with
a self-interacting field and with a free field are expected to behave very differently. Nevertheless, do
notice that measuring such a process would require to probe the quantum field somehow, which
means the field would need to be coupled to some sort of detector. While this detector might not be
a qubit, we would then also expect it to be sufficient to cause a RG flow on the field, which would be
rendered interacting simply by being probed. This prevents anyone from claiming causality violations
based on RG flows, since the only way a field would manage to remain free would be if it has no
interactions with anything else, in which case it is completely unobservable.

Another interesting applicationof compact interactions toparticle detectors is to considerwhether
two different detectors can affect each other’s RG flow. Consider the situation in which two detectors
follow trajectories on which they never cross. In this case, we can promote the degrees of freedom of



134 5. Conclusions
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Figure 5.1: (a): Two observers, Alice and Bob, are moving with the same acceleration at first. At the event 𝐴,
Alice stops accelerating and continues in inertial motion. A little after, at event 𝐵, Bob increases
his acceleration to reach event 𝐶. Bob’s acceleration between 𝐵 and 𝐶was carefully chosen so that,
at event 𝐶, he can now return to his original acceleration and continue his motion on the exact
trajectory Alice would perform had she never turned off her acceleration. The dashed lines represent
when the observers keep their detectors turned off, and the solid lines represent when the observers
keep their detectors turned on. The dotted line depicts the worldline Alice would have followed if
she had not changed her acceleration. Hence, Alice has her detector turned on only before reaching
event 𝐴 and Bob has his detector turned on only after reaching event 𝐶. (b): A single observer with
constant acceleration turns their detector on and off in such a way that the detector is turned on at
the very same events Alice and Bob would have their detectors turned on.

both detectors to the same set of four spacetime Grassmann variables, rather than promoting each
detector to a different set of variables. This is possible because the theory’s action will only consider
the values of the variables on the detectors’ worldlines, and hence it is just a notational trick. This
choice is not ambiguous, because the only degrees of freedom that enter the theory are the ones
written in the action, and hence if we used each spacetime field to model a single detector we would
be throwing away degrees of freedom that we might also use to model other detectors. Since the FRG
calculation involve manipulations of matrices in field space, this can greatly simplify the operations,
for it allows us to deal with only five spacetime fields instead of nine.

Let us then prescribe worldlines to the detectors, such as the ones shown in Fig. 5.1. In that
figure, we consider two observers, Alice and Bob. Alice and Bob coordinated their motions and the
functions describing how their detectors are turned on and off in such a manner that at every Cauchy
surface for the spacetime there is a single detector turned on. Furthermore, the detector that is turned
on is always following a trajectory of constant acceleration. Hence, from a purely mathematical
perspective, there is no way to distinguish these two detectors from a single detector undergoing
constant acceleration and being turned on and off.

Under these conditions it is interesting to wonder whether Alice’s detector can influence the RG
flow of Bob’s detector. If so, then applications of nonperturbative flows to quantum communication
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might require a more careful analysis that considers the impacts of one detector onto different ones.
Once again, it is relevant to recall that the detectors cannot be turned off in an absolute sense,

since the Euclidean techniques require us to analytically continue their trajectories to imaginary time.
Therefore, there are still traces of Alice and Bob in the action, even though they might be faint. Even
so, it is interesting to wonder how these faint tails can affect the calculations, since this restricts the
simplications one can make when modelling the behavior of a detector. If the results are sensible to
these faint effects, then models for a physical situation might need to be excessively complicated to
match experimental results.

In order to distinguish between the flows of both detectors when describing them with the
same set of spacetime fields, one might use, for example, the spacetime cutoffs used on perturbative
algebraic quantum field theory (see Rejzner 2016, Sec. 4.1). The Wetterich equation would then not
reduce to some expression times the spacetime volume, but rather to some integral involving the
spacetime cutoff. By changing cutoffs one might be able to probe different regions of spacetime and
figure out how different detectors respond to the flow.

5.3 On Higher Spins
Our calculations were performed with a scalar field, which is customary within QFTCS. Scalar fields
are typically simpler to deal with and allow us to obtain a general view of how more complicated
phenomena will happen.

While our calculations were not fully completed, they already suggest a few results. For example,
Eq. (4.3.73) on page 119 suggests the interaction with a detector will cause the generation of a mass
term on a scalar field, even though the field could have initially been massless. This appearance of
a mass term would surely be unexpected on gauge theories and it might be interesting to wonder
what happens to it on quantum electrodynamics, for example. Since we have detected the photon
and know it is massless to a good precision, verifying the photon mass beta function vanishes could
provide a consistency check for these computations.

Do notice that higher spins require more complex models for a particle detector.

5.4 Final Remarks
While this thesis has focused on the study of an Unruh–DeWitt detector, it is also interesting to
wonder in which other ways the functional renormalization group might allow us to slide from
quantum field theory in curved spacetime toward quantum gravity.
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A

Notation and Conventions

A.1 Units

We assume units with 𝑘𝛣 = ℏ = 𝑐 = 1 throughout the whole text, although some expressions might
restore these quantities to increase clarity. In Chapters 1 and 2, we also take 𝐺 = 1. Nevertheless, since
when working with quantum field theory (QFT) it is often convenient to discuss mass dimensions,
we understand 𝐺 as being dimensional in Chapters 3 and 4.

Assume a physical quantity has dimensions of [mass]𝐷 in units with 𝑘𝛣 = ℏ = 𝑐 = 1. The value𝐷
is often referred to as the “mass dimension” of the physical quantity.

A.2 Conventions

We work in the + + + relativity convention as defined by Misner, Thorne, and Wheeler (1973). This
also coincides with the conventions used by Hawking and Ellis (1973), Percacci (2017), Reuter and
Saueressig (2018), and Wald (1984, 1994) up to a few different choices on the positions of indices.
Since these choices mostly affect only how one writes the Christoffel symbols of the second kind—viz.,
Γ𝑎𝑏𝑐, Γ

𝑎
𝑏𝑐 , and so on—these differences do not affect this thesis. These conventions imply that we use

the “mostly pluses” metric convention—i.e., the line element in Minkowski spacetime is given in
Cartesian coordinates as

d𝑠2 = − d𝑡2 + d𝑥2 + d𝑦2 + d𝑧2 . (A.2.1)

When working in Euclidean signature, the metric is taken to be positive-definite.
Many QFT textbooks often use the “mostly minuses” sign convention. Nevertheless, Năstase

(2020) and Weinberg (1995, 1996), for example, work in the “mostly pluses” convention.
We take the physicist’s convention on Hermitian inner products, meaning that if 𝜓, 𝜙 ∈ ℋ and

𝜇, 𝜆 ∈ ℂ, then
⟨𝜇𝜓∣𝜆𝜙⟩ = �̄�𝜆 ⟨𝜓∣𝜙⟩ , (A.2.2)

where �̄� denotes the complex conjugate of 𝜇.
No conventions are chosen with respect to the Fourier transform. While it occurs a few times

throughout this thesis, all expressions are written in a manner that holds for any choice of sign and
normalization.

The Einstein summation convention is in effect at all times, unless stated otherwise or clear from
context. Sometimes the summation is written explicitly to make its range clear or avoid ambiguity.
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A.3 Notation

Differential Geometry

Spacetime is denoted byℳ, Cauchy surfaces are denoted by Σ. The space of compactly supported
smooth functions on a manifold 𝑋 is denoted by 𝒞∞

0 (𝑋). supp denotes the support and 𝐽±(𝑋)
denote the causal past and future of some set𝑋 ⊆ ℳ. For more information on the causal structure
of spacetime, including the definitions of Cauchy surface and causal past and future, see, e.g., the
references due to Geroch (1970), Hawking and Ellis (1973), Pfäffle (2009), and Wald (1984).

Tensorial expressions are written in abstract index notation (Geroch 2013, Chap. 4; Wald 1984,
Sec. 2.4). Hence, tensors written with Latin indices such as 𝑅 𝑑

𝑎𝑏𝑐 are meant as abstract tensors, while
expressions with Greek indices such as 𝑅 𝜎

𝜇𝜈𝜌 denote tensor components on some coordinate system.
Sometimes we also write 𝑥𝜇𝑥𝜇 to denote the invariant interval in Minkowski spacetime.

A few times we work in a 3+1 decomposition of the spacetimemanifold. In these cases, wemight
write �⃗� (with an arrow) to denote points on the spacelike manifold. Nevertheless, it is important to
point out that such manifolds might not always have a vector space structure. Since I find it unlikely
that this will lead to confusion, I consider it convenient to use the notation common in Minkowski
spacetime. Within this thesis, calculations in which �⃗� could be mistaken for a vector occur only in
Minkowski spacetime, and hence there is not really much loss.

The volume element on a manifold is written as √∣𝑔∣ d𝑑𝑥, where 𝑔𝑎𝑏 is the metric and 𝑔 its
determinant in the coordinate system of consideration. Typically we will write √−𝑔 in Lorentzian
signature and √𝑔 in Euclidean. Technically this notation makes reference to a coordinate system, but
we use it even when a coordinate system is not strictly necessary. One could alternatively write d𝜇𝑔(𝑥)
or write the volume form explicitly, for example.

We might write symmetrizations as

𝑇(𝑎1⋯𝑎𝑛)
= 1
𝑛! ∑𝜋

𝑇𝜋(𝑎1)⋯𝜋(𝑎1)
, (A.3.1)

where the sum runs over permutations of 𝑛 elements.

Distributions

When working with distributions, we sometimes write w-lim to denote the “weak limit”. This means
the limit should be taken only after integrating the distribution against some test function. For
example, the distributions 𝜑± defined on Eq. (2.B.12) on page 51 act on functions according to

𝜑±(𝑓) = lim
𝜀→0+

∫
𝑓(𝑥)
𝑥 ± 𝑖𝜀 d𝑥 . (A.3.2)

The term “weak limit” refers to the fact this corresponds to a limit in the weak topology generated by
the space of test functions (cf. Simon 2015, Sec. 5.7).

The Dirac delta in a 𝑑-dimensional flat manifold is given in Cartesian coordinates as 𝛿(𝑑)(𝑥, 𝑦).
Hence, one has, for any function 𝑓,

𝑓(𝑥) = ∫𝛿(𝑑)(𝑥, 𝑦) d𝑑𝑦 = ∫
𝛿(𝑑)(𝑥, 𝑦)
√−𝑔(𝑦)

√−𝑔(𝑦) d𝑑𝑦 . (A.3.3)
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Field Theory

When writing path integrals, we put a hat on fields being integrated over, while their classical coun-
terparts do not have a hat. For example, Φ = ⟨Φ̂⟩. This is overlooked in Chapter 2, in which fields
being integrated over can be clearly understood from context.

In Chapter 3, we occasionally employ DeWitt’s condensed notation (DeWitt 1964), where a field’s
internal indices and spacetime dependence are written in terms of a single index. For example, 𝛼
in Φ𝛼 labels the field and stands for both the internal indices of the field in, e.g., gauge space and
for the spacetime dependency. Einstein’s summation convention then also implies integrals over
the spacetime variables. When writing integrals explicitly for these indices (as we sometimes do in
Section 3.A) a summation over the discrete variables is implied. The correct integration measure is
understood.

Chapter 3 also employs an abstract notation for functional matrices. For example, we often
manipulate Φ by understanding it as a vector with components Φ𝛼. We also introduce the inner
product ⟨⋅, ⋅⟩ to denote

⟨𝐽, Φ⟩ = 𝐽𝛼Φ𝛼. (A.3.4)

This notation is adapted from the one used by Kopietz, Bartosch, and Schütz (2010, Chaps. 6 and 7).

Linear Algebra and Functional Analysis

ℋ denotes a Hilbert space. ℒ(ℋ) denotes the space of linear operators fromℋ to itself. Similarly,
ℬ(ℋ) denotes the space of bounded linear operators fromℋ to itself, i.e., the space of linear operators
with eigenvalues of a bounded set. More details can be found on the book by Reed and Simon (1980).

We often need to consider many different sorts of traces. Traces over finite-dimensional spaces
are denoted as tr. Functional traces are denoted by Tr and functional determinants by Det. The
supertrace (see DeWitt 2003, p. 989) is denoted by STr—while in principle it can be used in finite-
dimensional spaces, all of the occurrences of the supertrace in this thesis involve functional traces.
Similarly, the superdeterminant (DeWitt 2003, p. 989), also known as Berezinian, is denoted by SDet.
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