Solution of all quartic matrix models

Raimar Wulkenhaar

Mathematisches Institut, Westfälische Wilhelms-Universität Münster

joint work with Harald Grosse and Alexander Hock [arXiv:1906.04600] and Erik Panzer [arXiv:1807.02945]

Daniel Kastler Main result Oco Details OcoOcoco In memory of Daniel Kastler (1926–2015)

In 1998/99, Daniel was trying to catch three fishes: la truite, la truite saumonée, le saumon

They stand for flavours of theories in which the standard model is a representation of $SU_q(2)$, with q a third root of unity.

Daniel Kastler	Main result	Details	Discussion
o	●oo	00000000	
The fish			

- Since "Progress in solving a noncommutative quantum field theory in four dimensions" [arXiv:0909.1389] with Harald Grosse I am telling you: There is a fish in the ϕ^4 -QFT model on noncommutative Moyal space.
- We saw the fish in 2012. It is big.
- I repeated over all the years that the fish is there. But I was not able to show it to you. I understand you think I am crazy.
- Last year, with Erik Panzer, we caught a little fish: ϕ^4 on two-dimensional Moyal space is solved by the Lambert-*W* function.

This made clear: The big fish is there.

On the 10th of May, I caught the fish.
 It is real, it is big. I describe it in this talk.

Daniel Kastler	Main result	Details	Discussion
o	o●o	oooooooo	
The sea			

Consider a familiy of matrix integrals over the space of self-adjoint $\mathcal{N}\times\mathcal{N}\text{-matrices}$

$$\mathcal{Z}(\boldsymbol{E},\lambda) = \frac{\int_{M_{\mathcal{N}}^{*}} d\Phi \exp\left(-\mathcal{N}\mathrm{Tr}\left(\boldsymbol{E}\Phi^{2} + \frac{\lambda}{\rho}\Phi^{\rho}\right)\right)}{\int_{M_{\mathcal{N}}^{*}} d\Phi \exp\left(-\mathcal{N}\mathrm{Tr}\left(\boldsymbol{E}\Phi^{2}\right)\right)}$$

They depend on a positive matrix *E* and a scalar λ .

p = 3 is the Kontsevich model – a gigantic fish

log $\mathcal{Z}(E, i)$ is formal power series in $t_n = -(2n-1)!! \operatorname{Tr}(E^{-(2n+1)})$. Its coefficients are intersection numbers of Chern classes on the moduli space of complex curves. It defines a QFT.

p = 4 is our baby

Today we know: It is structurally identical to p = 3.

Daniel Kastler	Main result	Details	Discussion
	000		

Theorem (the fish)

- Let 0 < E₁ < ··· < E_d be the eigenvalues of E, of multiplicities r₁, ..., r_d.
- Take solutions $\{\varepsilon_k, \varrho_k\}$ with $\lim_{\lambda \to 0} \varepsilon_k = E_k$, $\lim_{\lambda \to 0} \varrho_k = r_k$ of

$$E_{I} = \varepsilon_{I} - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_{k}}{\varepsilon_{k} + \varepsilon_{I}}, \qquad 1 = \frac{r_{I}}{\varrho_{I}} - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_{k}}{(\varepsilon_{k} + \varepsilon_{I})^{2}}$$

Then the planar two-point function of the quartic matrix model is

$$G_{ab}^{(0)} = \frac{1}{\varepsilon_a + \varepsilon_b} \cdot \frac{\prod_{k,l=1}^d \left(1 + \frac{\sigma_k(E_a) + \sigma_l(E_b)}{\varepsilon_k + \varepsilon_l}\right)}{\prod_{k,l=1}^d \left(1 + \frac{\sigma_k(E_a)}{\varepsilon_k + \varepsilon_l}\right) \prod_{k,l=1}^d \left(1 + \frac{\sigma_l(E_b)}{\varepsilon_k + \varepsilon_l}\right)}$$

where $\{\varepsilon_a, -\varepsilon_1 - \sigma_1(E_a), \dots, -\varepsilon_d - \sigma_d(E_a)\}$ are all solutions z of $E_a = z - \frac{\lambda}{N} \sum_{k=1}^d \frac{\varrho_k}{\varepsilon_k + z}$

Daniel Kastler	Main result	Details	Discussion
		●0000000	

Dyson-Schwinger equation

The two-point function is

$$ZG_{ab}^{(0)} = \left[\frac{1}{\mathcal{N}}\log\frac{\int_{M_{\mathcal{N}}^{*}} d\Phi \ \Phi_{ab}\Phi_{ba}\exp\left(-\mathcal{N}\mathrm{Tr}\left(E\Phi^{2}+\frac{\lambda}{4}\Phi^{4}\right)\right)}{\int_{M_{\mathcal{N}}^{*}} d\Phi \ \exp\left(-\mathcal{N}\mathrm{Tr}\left(E\Phi^{2}+\frac{\lambda}{4}\Phi^{4}\right)\right)}\right]_{up \ to \ \frac{1}{\mathcal{N}}}$$

Using the Ward identity of [Disertori, Gurau, Magnen, Rivasseau 06] one derives a closed equation for $G_{ab}^{(0)}$:

Theorem [Grosse, W 09]

$$(E_a + E_b)ZG_{ab}^{(0)} = 1 - \lambda \sum_{n=1}^{N} \left(ZG_{ab}^{(0)} ZG_{an}^{(0)} - \frac{ZG_{nb}^{(0)} - ZG_{ab}^{(0)}}{E_n - E_a} \right)$$

Today we can solve this or a limit $\mathcal{N} \to \infty$ to unbounded operators \boldsymbol{E} with $\sum_{n=2}^{\infty} (\boldsymbol{E}_n - \boldsymbol{E}_1)^{-3} < \infty$.

The latter requires renormalisation $Z(\mathcal{N})$ and $E_1 = \frac{1}{2}\tilde{\mu}^2(\mathcal{N})$.

		0000000	
Daniel Kastler	Main result	Details	Discussion

Extension to sectionally holomorphic functions

• Define
$$\rho_0(t) = \frac{1}{N} \sum_{n=1}^{N} \delta(t - (E_n - E_1))$$
, with $E_1 = \frac{1}{2} \tilde{\mu}^2$, $E_N - E_1 = \Lambda^2$
• Then $G_{ab}^{(0)} = G(E_a - E_1, E_b - E_1)$ for

$$(x+y+\tilde{\mu}^2)ZG(x,y)$$

= 1 - $\lambda \int_0^{\Lambda^2} dt \ \rho_0(t) \Big(ZG(x,y)ZG(x,t) - \frac{ZG(t,y) - ZG(x,y)}{t-x}\Big)\Big)$

• This is the analogue of

$$(W(x))^2 + \lambda^2 \int_0^{\Lambda^2} dt \ \rho_0(t) \frac{W(t) - W(x)}{t^2 - x^2} = x$$

in Kontsevich model, solved by [Makeenko, Semenoff 91].

Daniel Kastler o	Main result	Details oo●ooooo	Discussion
Hilbert trans	form		

- Temporarily assume that ρ_0 is Hölder-continuous.
- Ansatz $ZG(a, b) = \frac{e^{\mathcal{H}_a[\tau_b(\bullet)]} \sin \tau_b(a)}{\lambda \pi \rho_0(a)} = \frac{e^{\mathcal{H}_b[\tau_a(\bullet)]} \sin \tau_a(b)}{\lambda \pi \rho_0(b)}$ where $\mathcal{H}_a[f(\bullet)] := \frac{1}{\pi} \lim_{\epsilon \to 0} (\int_0^{a-\epsilon} + \int_{a+\epsilon}^{\Lambda}) \frac{dt f(t)}{t-a}$ is Hilbert transform • Gives

$$\left(\tilde{\mu}^2 + \mathbf{a} + \mathbf{b} + \lambda \pi \mathcal{H}_{\mathbf{a}}[\rho_0(\bullet)] + \frac{1}{\pi} \int_0^{\Lambda^2} dt \ \mathbf{e}^{\mathcal{H}_t[\tau_{\mathbf{a}}(\bullet)]} \sin \tau_{\mathbf{a}}(t) \right) ZG(\mathbf{a}, \mathbf{b})$$

= 1 + $\mathcal{H}_{\mathbf{a}}[\mathbf{e}^{\mathcal{H}_{\bullet}[\tau_b]} \sin \tau_{\mathbf{b}}(\bullet)]$

• [Tricomi 57] $\mathcal{H}_a[e^{\mathcal{H}_{\bullet}[f]}\sin f(\bullet)] = e^{\mathcal{H}_a[f]}\cos f(a) - 1$ • [Panzer, W 18] $\int_0^{\Lambda^2} dt \ e^{\mathcal{H}_t[f(\bullet)]}\sin f(t) = \int_0^{\Lambda^2} dt \ f(t)$

Daniel Kastler o	Main result	Details ○○○●○○○○	Discussion
The τ -equation			

$$\tau_{a}(\boldsymbol{p}) = \arctan\left(\frac{\lambda \pi \rho_{0}(\boldsymbol{p})}{\tilde{\mu}^{2} + \boldsymbol{a} + \boldsymbol{p} + \lambda \pi \mathcal{H}_{\boldsymbol{p}}[\rho_{0}(\bullet)] + \frac{1}{\pi} \int_{0}^{\Lambda^{2}} dt \, \tau_{\boldsymbol{p}}(t)}\right)$$

Solution in case of $\rho_0(x) \equiv 1$ [Panzer, W 18]

$$au_{a}(p) = \operatorname{Im}\log\left(a + I(p + i\epsilon)\right)$$

$$I(z) := \lambda W_0\left(\frac{1}{\lambda}e^{\frac{1+z}{\lambda}}\right) - \lambda \log\left(1 - W_0\left(\frac{1}{\lambda}e^{\frac{1+z}{\lambda}}\right)\right)$$

where W_0 is the principal branch of Lambert-W and $\tilde{\mu}^2 = 1 - 2\lambda \log(1 + \Lambda^2)$.

In April, Alexander Hock told me that this solution has a remarkable structure:

 $I(z) = f - \lambda \log(1 - f)$ where f solves $1 + z = f - \lambda \log f$

Such expressions arise in topological recursion.

Raimar Wulkenhaar (Münster)

Solution of all quartic matrix models

Daniel Kastler	Main result	Details	Discussion
o	০০০	oooo●ooo	0000000
The fishing-rod			

What escaped for 10 years, was possible to catch in one week:

Ansatz

 $\tau_a(p) = \operatorname{Im} \log \left(a + I(p+i\epsilon) \right)$ with $I(z) = -J(-\mu^2 - J^{-1}(z))$, where

$$J(z) = z - \lambda(-z)^{D/2} \int_{\tilde{\nu}}^{\tilde{\lambda}^2} \frac{dt \ \rho_{\lambda}(t)}{(\mu^2 + t)^{D/2} (t + \mu^2 + z)}$$

- Take smallest $D \in \{0, 2, 4\}$ for which this converges.
- ρ_{λ} is NOT the same as ρ_0 .
- $\mu = \tilde{\mu}$ for D = 0, otherwise a free parameter
- $J: \{\operatorname{Re}(z) > -\frac{2\mu^2}{3}\} \to U \subseteq \mathbb{C}$ is biholomorphic

Daniel Kastler	Main result	Details	Discussion
		00000000	

Solution of all quartic matrix models

Use

- [Cauchy 1831] residue theorem
- [Lagrange 1770] inversion theorem
- [Bürmann 1799] formula

Theorem

The ansatz $J(z) = z - \lambda(-z)^{D/2} \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \rho_{\lambda}(t)}{(\mu^2 + t)^{D/2}(t + \mu^2 + z)}$ solves the τ -equation provided that

• ρ_{λ} is implicit solution of $\rho_0(J(t)) = \rho_{\lambda}(t)$.

•
$$\tilde{\nu} = J^{-1}(0), \ \tilde{\Lambda}^2 = J^{-1}(\Lambda^2),$$

• $\tilde{\mu}^2 = \mu^2 - 2\lambda \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \, \rho_\lambda(t)}{(\mu^2 + t)} \text{ for } D = 2,$
 $\tilde{\mu}^2 = \mu^2 \Big(1 - \lambda \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \, \rho_\lambda(t)}{(\mu^2 + t)^2} \Big) - 2\lambda \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \, \rho_\lambda(t)}{(\mu^2 + t)} \text{ for } D = 4.$

Daniel Kastler	Main result	Details	Discussion
o	০০০	ooooooeo	
Evaluating the Hi	lbert transform		

Remains to evaluate $G(a, b) = Z^{-1} \frac{e^{\mathcal{H}_b[\tau_a(\bullet)]} \sin \tau_a(b)}{\lambda \pi \rho_0(b)}$.

For D = 4 need $Z = Z_0 e^{\mathcal{H}_r[\tau_r(\bullet)]}$ to remove divergences.

Proposition

$$\begin{split} G(a,b) &:= \frac{(\mu^2)^{\delta_{D,4}}(\mu^2 + a + b)\exp(N(a,b))}{(\mu^2 + b + J^{-1}(a))(\mu^2 + a + J^{-1}(b))} \ ,\\ N(a,b) &:= \frac{1}{2\pi \mathrm{i}} \int_{-\infty}^{\infty} dt \Big\{ \log \Big(\frac{a - J(-\frac{\mu^2}{2} - \mathrm{i}t)}{a - (-\frac{\mu^2}{2} - \mathrm{i}t)} \Big) \frac{d}{dt} \log \Big(\frac{b - J(-\frac{\mu^2}{2} + \mathrm{i}t)}{b - (-\frac{\mu^2}{2} + \mathrm{i}t)} \Big) \\ &- \delta_{D,4} \log \Big(\frac{J(-\frac{\mu^2}{2} - \mathrm{i}t)}{(-\frac{\mu^2}{2} - \mathrm{i}t)} \Big) \frac{d}{dt} \log \Big(\frac{J(-\frac{\mu^2}{2} + \mathrm{i}t)}{(-\frac{\mu^2}{2} + \mathrm{i}t)} \Big) \Big\} \end{split}$$

For ρ discrete, ρ_{λ} is also discrete (see \frown here), and the *N*-integral is evaluated by the residues to the right of $\operatorname{Re}(z) < -\frac{\mu^2}{2}$.

Raimar Wulkenhaar (Münster)

Solution of all quartic matrix models

Daniel Kastler o	Main result	Details 0000000	Discussion

- $J(z) = z \lambda z^2 \int_0^\infty \frac{dt \rho_\lambda(t)}{(\mu^2 + t)^2(t+z)}$ is bounded above on \mathbb{R}_+ .
- Consequently, J⁻¹(a) needed in τ_b(a) and G(a, b) on previous slide does not exist (for D = 4, λ > 0, Λ² → ∞, all a).

Is the Landau ghost back?

Not here! Express
$$G(a, b) := \frac{\mu^2 \exp(N_4(a, b))}{(\mu^2 + a + b)}$$
 which avoids J^{-1} :
 $N_4(a, b) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} dt \Big\{ \log \big(a - J(-\frac{\mu^2}{2} - it)\big) \frac{d}{dt} \log \big(b - J(-\frac{\mu^2}{2} + it)\big) - \log \big(a - (-\frac{\mu^2}{2} - it)\big) \frac{d}{dt} \log \big(b - (-\frac{\mu^2}{2} + it)\big) - \log \big(-J(-\frac{\mu^2}{2} - it)\big) \frac{d}{dt} \log \big(-J(-\frac{\mu^2}{2} + it)\big) + \log \big(-(-\frac{\mu^2}{2} - it)\big) \frac{d}{dt} \log \big(-J(-\frac{\mu^2}{2} + it)\big) \Big\}$

Raimar Wulkenhaar (Münster)

Daniel Kastler	Main result	Details	Discussion
			•000000

4D-Moyal space at infinite noncommutativity

Previously we were mainly interested Φ_4^4 -model on Moyal space at infinite noncommutativity.

Defined by $\rho_0(x) = x$; it's the only case where $\rho_\lambda(t) = \rho_0(J(t)) =: t(t + \mu^2)\psi(t)$

solves a Fredholm integral equation of second kind:

$$\psi(t) = \frac{1}{t+\mu^2} - \lambda \int_0^\infty du \; \frac{t}{(t+\mu^2)} \frac{1}{(u+t+\mu^2)} \frac{u}{(u+\mu^2)} \psi(u)$$

Theorem [Seiringer 19]

The integral operator has spectrum $[0, \pi]$. Consequently, the Φ_4^4 -model on Moyal space exists for $\lambda > -\frac{1}{\pi}$.

- Proves that *J*(*t*) stays positive!
- Solved as convergent(!) power series in hyperlogarithms.
- It is here where number theory meets QFT!

Raimar Wulkenhaar (Münster)

Solution of all quartic matrix models

Daniel Kastler	Main result	Details	Discussion
			000000

Beyond the 2-point function

Recursive equations for all planar functions [Grosse, W 12]:

$$G_{b_0\dots b_{N-1}}^{(0)} = -\lambda \sum_{l=1}^{\frac{N-2}{2}} \frac{G_{b_0\dots b_{2l-1}}^{(0)} \cdot G_{b_{2l}\dots b_{N-1}}^{(0)} - G_{b_1\dots b_{2l}}^{(0)} \cdot G_{b_0 b_{2l+1}\dots b_{N-1}}^{(0)}}{(E_{b_0} - E_{b_{2l}})(E_{b_1} - E_{b_{N-1}})}$$

Theorem [de Jong, Hock, W 19]

The solution is in 1:1-correspondence with Catalan tables of length $\frac{N}{2}$. There are $d_{(N-2)/2}$ of them, where $d_n = \frac{1}{n+1} {3n+1 \choose n}$.

Definition (Catalan tuple $\tilde{e} = (e_0, \dots, e_n)$ of length $|\tilde{e}| = n$)

consists of $e_j \in \mathbb{N}$ with $\sum_{j=0}^{n} e_j = n$ and $\sum_{j=0}^{k} e_j > k$ for all k < n.

Definition (Catalan table $\langle \tilde{e}^{(0)}, \tilde{e}^{(1)}, \dots, \tilde{e}^{(n)} \rangle$ of length *n*)

(n + 1)-tuple of Catalan tuples, such that $(1 + |\tilde{e}^{(0)}|, |\tilde{e}^{(1)}|, \dots, |\tilde{e}^{(n)}|)$ is itself a Catalan tuple.

Daniel Kastler o	Main result	Details 00000000	Discussion

Higher topology

Fact: Moments in matrix models have topological expansion

$$\log\left(\frac{\int_{\mathcal{M}_{\mathcal{N}}^{*}} d\Phi \ \Phi_{k_{1}l_{1}} \cdots \Phi_{k_{n}l_{n}} e^{-\mathcal{N} S(\Phi)}}{\int_{\mathcal{M}_{\mathcal{N}}^{*}} d\Phi \ e^{-\mathcal{N} S(\Phi)}}\right) = \sum_{g=0}^{\infty} \sum_{B=1}^{n} \mathcal{N}^{2-2g-B} \mathcal{G}_{k_{1}^{1} \cdots k_{n}^{1}|\cdots|k_{1}^{B} \cdots k_{n_{B}}^{B}}$$

(the *l*'s are a permutation of *k*'s which has *B* cycles)

- These *G*^(g) satisfy a hierarchy of Dyson-Schwinger equations, which holomorphically extend to linear singular integral equations.
- There is a general solution theory [Carleman 21]. In some sense, everything is already solved.
- However, we expect that the solution simplifies enormously and shows universal properties: topological recursion.
- This is not yet done. The outcome could be exciting!

Daniel Kastler	Main result	Details	Discussion
			0000000

Topological recursion [Eynard, Orantin 07]

- Main ingredient is a polynomial equation $\mathcal{E}(x, y) = 0$ for a plane algebraic curve: the (classical) spectral curve.
- Any such curve gives rise to topological invariants. It defines a partition function which is a *τ*-function for Hirota equations: Integrability can be made precise.
- Solutions of *E*(*x*, *y*) = 0 parametrised by meromorphic functions *x*(*z*), *y*(*z*).
- In the Kontsevich model, y(z) is the expectation value of a single resolvent W(z) = Tr((z − M)⁻¹), and x(z) = z² − c.
- Starting from a universal 2-form ω_{0,2}(z₁, z₂) = dz₁dz₂/((z₁-z₂)²), a family ω_{g,s} of *s*-forms on C^s is constructed which satisfy universal recursive equations.

These equations can be solved by residue operations!

Daniel Kastler	Main result	Details	Discussion
			0000000

What is the spectral curve of the quartic matrix model

• Almost surely: $y(z) = z - \frac{\lambda}{N} \sum_{k=1}^{d} \frac{\varrho_k}{\varepsilon_k + z}$

(because it describes the solution of the 2-point function).

- We don't know yet x(z). The same $x = z^2 c$ as in the Kontsevich model works, but it would be a little disappointing.
- The 1+1-point function (genus 0) should be decisive. It solves

$$\lambda \pi \rho_0(t) \cot \tau_a(a) \ G(a|c)$$

= $\lambda \pi \mathcal{H}_a[\rho_0(\bullet)G(\bullet|c)] + \lambda \frac{G(a,c) - G(c,c)}{a-c}$

- Work in progress, procedure is clear, but lengthy.
- There might be difficulties with the 2 + 2-point functions, but most is routine once we have the spectral curve.

Daniel Kastler	Main result	Details	Discussion
o		oooooooo	○○○○○●○
Summary			

- I hope I convinced you that we have the fish.
- It remains to determine the species.
- I invite you to join us. There is no longer any risk.

Agenda

- Write the dictionary between differential forms in the spectral curve and correlations functions of the quartic matrix model (see Harald's talk).
- Identify Hirota equations and integrability.
- Compute the rational numbers in the partition function. They should be topological invariants: of what?

For your interacting QFT model: Think of implicitly defined functions.

If the free theory has variable p^2 , you cannot expect that p^2 is a good variable in the interacting model.

It will be an inverse z of $p^2 = z + f(z)$.

Even very simple functions *f* produce extremely rich inverses *z*! This richness makes QFT so interesting.