Solution of all quartic matrix models

Raimar Wulkenhaar

Mathematisches Institut, Westfälische Wilhelms-Universität Münster

joint work with Harald Grosse and Alexander Hock [arXiv:1906.04600] and Erik Panzer [arXiv:1807.02945]

[Daniel Kastler](#page-1-0) [Main result](#page-2-0) **[Discussion](#page-13-0) Contained Acts Contained Acts** Discussion In memory of Daniel Kastler (1926–2015)

In 1998/99, Daniel was trying to catch three fishes: la truite, la truite saumonée, le saumon

They stand for flavours of theories in which the standard model is a representation of *SUq*(2), with *q* a third root of unity.

Raimar Wulkenhaar (Münster) in The [Solution of all quartic matrix models](#page-0-0) 1

- Since "Progress in solving a noncommutative quantum field theory in four dimensions" [arXiv:0909.1389] with Harald Grosse I am telling you: There is a fish in the ϕ^4 -QFT model on noncommutative Moyal space.
- We saw the fish in 2012. It is big.
- I repeated over all the years that the fish is there. But I was not able to show it to you. I understand you think I am crazy.
- Last year, with Erik Panzer, we caught a little fish: ϕ^4 on two-dimensional Moyal space is solved by the Lambert-*W* function.

This made clear: The big fish is there.

• On the 10th of May, I caught the fish. It is real, it is big. I describe it in this talk.

Consider a familiy of matrix integrals over the space of self-adjoint $N \times N$ -matrices

$$
\mathcal{Z}(E,\lambda) = \frac{\displaystyle \int_{M^*_{\mathcal{N}}} \!\!\! d\Phi \, \exp\left(-\mathcal{N} \text{Tr}\big(E\Phi^2 + \frac{\lambda}{\rho}\Phi^{\rho}\big)\right)}{\displaystyle \int_{M^*_{\mathcal{N}}} \!\!\! d\Phi \, \exp\left(-\mathcal{N} \text{Tr}\big(E\Phi^2\big)\right)}
$$

They depend on a positive matrix E and a scalar λ .

$p = 3$ is the Kontsevich model – a gigantic fish

log $\mathcal{Z}(E, \mathrm{i})$ is formal power series in $t_n = -(2n{-}1)!!\mathrm{Tr}(E^{-(2n+1)}).$ Its coefficients are intersection numbers of Chern classes on the moduli space of complex curves. It defines a QFT.

$p = 4$ is our baby

Today we know: It is structurally identical to $p = 3$.

Theorem (the fish)

- • Let $0 < E_1 < \cdots < E_d$ be the eigenvalues of *E*, of multiplicities r_1, \ldots, r_d .
- Take solutions $\{\varepsilon_k, \varrho_k\}$ with $\lim_{\lambda \to 0} \varepsilon_k = E_k$, $\lim_{\lambda \to 0} \varrho_k = r_k$ of

$$
E_I = \varepsilon_I - \frac{\lambda}{\mathcal{N}} \sum_{k=1}^d \frac{\varrho_k}{\varepsilon_k + \varepsilon_I}, \qquad 1 = \frac{r_I}{\varrho_I} - \frac{\lambda}{\mathcal{N}} \sum_{k=1}^d \frac{\varrho_k}{(\varepsilon_k + \varepsilon_I)^2}
$$

Then the planar two-point function of the quartic matrix model is

$$
G_{ab}^{(0)} = \frac{1}{\varepsilon_a + \varepsilon_b} \cdot \frac{\prod_{k,l=1}^d \left(1 + \frac{\sigma_k(E_a) + \sigma_l(E_b)}{\varepsilon_k + \varepsilon_l}\right)}{\prod_{k,l=1}^d \left(1 + \frac{\sigma_k(E_a)}{\varepsilon_k + \varepsilon_l}\right) \prod_{k,l=1}^d \left(1 + \frac{\sigma_l(E_b)}{\varepsilon_k + \varepsilon_l}\right)}
$$
\nwhere $\{\varepsilon_a, -\varepsilon_1 - \sigma_1(E_a), \dots, -\varepsilon_d - \sigma_d(E_a)\}$ are all solutions z of\n
$$
E_a = z - \frac{\lambda}{N} \sum_{k=1}^d \frac{\varrho_k}{\varepsilon_k + z}
$$

Dyson-Schwinger equation

The two-point function is

$$
ZG_{ab}^{(0)} = \left[\frac{1}{\mathcal{N}}\log \frac{\int_{M_{\mathcal{N}}^*} d\Phi \, \Phi_{ab} \Phi_{ba} \exp \left(-\mathcal{N} \text{Tr} (E \Phi^2 + \frac{\lambda}{4} \Phi^4)\right)}{\int_{M_{\mathcal{N}}^*} d\Phi \exp \left(-\mathcal{N} \text{Tr} (E \Phi^2 + \frac{\lambda}{4} \Phi^4)\right)}\right]_{\text{up to } \frac{1}{\mathcal{N}}}
$$

Using the Ward identity of [Disertori, Gurau, Magnen, Rivasseau 06] one derives a closed equation for $G_{ab}^{(0)}$:

Theorem [Grosse, W 09]

$$
(E_a + E_b)ZG_{ab}^{(0)} = 1 - \lambda \sum_{n=1}^{\mathcal{N}} \left(ZG_{ab}^{(0)} ZG_{an}^{(0)} - \frac{ZG_{nb}^{(0)} - ZG_{ab}^{(0)}}{E_n - E_a} \right)
$$

Today we can solve this or a limit $\mathcal{N} \rightarrow \infty$ to unbounded operators E with $\sum_{n=2}^{\infty} (E_n - E_1)^{-3} < \infty$.

The latter requires renormalisation $Z(\mathcal{N})$ and $E_1=\frac{1}{2}$ $\frac{1}{2}\tilde{\mu}^2(\mathcal{N}).$

Extension to sectionally holomorphic functions

• Define
$$
\rho_0(t) = \frac{1}{N} \sum_{n=1}^{N} \delta(t - (E_n - E_1))
$$
, with $E_1 = \frac{1}{2} \tilde{\mu}^2$, $E_N - E_1 = \Lambda^2$
\n• Then $G_{ab}^{(0)} = G(E_a - E_1, E_b - E_1)$ for

$$
(x+y+\tilde{\mu}^2)ZG(x,y)
$$

= $1-\lambda \int_0^{\Lambda^2} dt \rho_0(t) \Big(ZG(x,y) ZG(x,t) - \frac{ZG(t,y) - ZG(x,y)}{t-x}\Big)$

• This is the analogue of

$$
(W(x))^{2} + \lambda^{2} \int_{0}^{\lambda^{2}} dt \, \rho_{0}(t) \frac{W(t) - W(x)}{t^{2} - x^{2}} = x
$$

in Kontsevich model, solved by [Makeenko, Semenoff 91].

- Temporarily assume that ρ_0 is Hölder-continuous.
- $\mathsf{Ansatz}\,\,ZG(a,b)=\frac{e^{\mathcal{H}_a[\tau_b(\bullet)]}\sin\tau_b(a)}{b-a\cdot\mathcal{A}(a)}$ $\frac{\partial^2 \mathcal{H}_b(\bullet)]}{\partial \pi \rho_0(\boldsymbol{a})} = \frac{\boldsymbol{\varTheta}^{\mathcal{H}_b[\tau_{\boldsymbol{a}}(\bullet)]} \sin \tau_{\boldsymbol{a}}(\boldsymbol{b})}{\partial \pi \rho_0(\boldsymbol{b})}$ $\lambda \pi \rho_{\mathbf{0}}(\boldsymbol{b})$ where $\mathcal{H}_a[f(\bullet)] := \frac{1}{\pi} \lim_{\epsilon \to 0} (\int_0^{a-\epsilon} \int_{a+\epsilon}^\Lambda) \frac{dt \; f(t)}{t-a}$ *t*−*a* is Hilbert transform **o** Gives

$$
\left(\tilde{\mu}^2 + a + b + \lambda \pi \mathcal{H}_a[\rho_0(\bullet)] + \frac{1}{\pi} \int_0^{\Lambda^2} dt \ e^{\mathcal{H}_t[\tau_a(\bullet)]} \sin \tau_a(t)\right) ZG(a, b)
$$

= 1 + $\mathcal{H}_a[e^{\mathcal{H}_\bullet[\tau_b]} \sin \tau_b(\bullet)]$

• [Tricomi 57] $\left[e^{\mathcal{H}_{\bullet}[f]} \sin f(\bullet)\right] = e^{\mathcal{H}_{a}[f]} \cos f(a) - 1$ **•** [Panzer, W 18] 2 $\int_0^{\Lambda^2} dt\; e^{\mathcal{H}_t[f(\bullet)]}\sin f(t)=\int_0^{\Lambda^2}$ $\int_0^{\pi} dt f(t)$

$$
\tau_a(p) = \arctan\left(\frac{\lambda \pi \rho_0(p)}{\tilde{\mu}^2 + a + p + \lambda \pi \mathcal{H}_p[\rho_0(\bullet)] + \frac{1}{\pi} \int_0^{\Lambda^2} dt \ \tau_p(t)}\right)
$$

Solution in case of $\rho_0(x) \equiv 1$ [Panzer, W 18]

$$
\tau_a(p) = \text{Im} \log (a + I(p+i\epsilon))
$$

$$
I(z):=\lambda W_0\Big(\frac{1}{\lambda}e^{\frac{1+z}{\lambda}}\Big)-\lambda\log\Big(1-W_0\Big(\frac{1}{\lambda}e^{\frac{1+z}{\lambda}}\Big)\Big)
$$

where W_0 is the principal branch of Lambert-W and $\tilde{\mu}^2=1-2\lambda\log(1+\Lambda^2).$

In April, Alexander Hock told me that this solution has a remarkable structure:

 $I(z) = f - \lambda \log(1 - f)$ where *f* solves $1 + z = f - \lambda \log f$

Such expressions arise in topological recursion.

Raimar Wulkenhaar (Münster) in [Solution of all quartic matrix models](#page-0-0) 8

What escaped for 10 years, was possible to catch in one week:

Ansatz

 $\tau_a(p) = \text{Im} \log \big(a + \textit{I}(p{+}\mathrm{i}\epsilon) \big)$ with $\textit{I}(z) = -\textit{J}(-\mu^2 - \textit{J}^{-1}(z)),$ where

$$
J(z) = z - \lambda(-z)^{D/2} \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \rho_{\lambda}(t)}{(\mu^2 + t)^{D/2} (t + \mu^2 + z)}
$$

- Take smallest $D \in \{0, 2, 4\}$ for which this converges.
- \bullet ρ_{λ} is NOT the same as ρ_{0} .
- \bullet $\mu = \tilde{\mu}$ for $D = 0$, otherwise a free parameter
- *J* : {Re(*z*) > $-\frac{2\mu^2}{3}$ $\frac{\mu^2}{3}\}\rightarrow U\subseteq\mathbb{C}$ is biholomorphic

Solution of all quartic matrix models

Use

- [Cauchy 1831] residue theorem
- [Lagrange 1770] inversion theorem
- [Bürmann 1799] formula

Theorem

The ansatz $J(z) = z - \lambda(-z)^{D/2} \int_{\tilde{\nu}}^{\tilde{\Lambda}^2}$ *dt* $\rho_{\lambda}(t)$ $(\mu^2+t)^{D/2}(t+\mu^2+z)$ solves the τ -equation provided that

 ρ_{λ} is implicit solution of $\rho_0(J(t)) = \rho_{\lambda}(t)$.

•
$$
\tilde{\nu} = J^{-1}(0), \tilde{\Lambda}^2 = J^{-1}(\Lambda^2),
$$

\n• $\tilde{\mu}^2 = \mu^2 - 2\lambda \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \rho_{\lambda}(t)}{(\mu^2 + t)}$ for $D = 2,$
\n $\tilde{\mu}^2 = \mu^2 \left(1 - \lambda \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \rho_{\lambda}(t)}{(\mu^2 + t)^2}\right) - 2\lambda \int_{\tilde{\nu}}^{\tilde{\Lambda}^2} \frac{dt \rho_{\lambda}(t)}{(\mu^2 + t)}$ for D

for *D* = 4.

Evaluating the Hilbert transform

Remains to evaluate $G(a, b) = Z^{-1} \frac{e^{\mathcal{H}_b[\tau_a(\bullet)]} \sin \tau_a(b)}{dx}$ $\frac{\partial u}{\partial x \rho_0(b)}$.

For $D = 4$ need $Z = Z_0 e^{\mathcal{H}_r[\tau_r(\bullet)]}$ to remove divergences.

Proposition

$$
G(a,b) := \frac{(\mu^2)^{\delta_{D,4}}(\mu^2 + a + b) \exp(N(a,b))}{(\mu^2 + b + J^{-1}(a))(\mu^2 + a + J^{-1}(b))},
$$

$$
N(a,b) := \frac{1}{2\pi i} \int_{-\infty}^{\infty} dt \Big\{ \log \Big(\frac{a - J(-\frac{\mu^2}{2} - it)}{a - (-\frac{\mu^2}{2} - it)} \Big) \frac{d}{dt} \log \Big(\frac{b - J(-\frac{\mu^2}{2} + it)}{b - (-\frac{\mu^2}{2} + it)} \Big) - \delta_{D,4} \log \Big(\frac{J(-\frac{\mu^2}{2} - it)}{(-\frac{\mu^2}{2} - it)} \Big) \frac{d}{dt} \log \Big(\frac{J(-\frac{\mu^2}{2} + it)}{(-\frac{\mu^2}{2} + it)} \Big) \Big\}
$$

For ρ discrete, ρ_{λ} is also discrete (see \rightarrow [here](#page-4-0)), and the *N*-integral is evaluated by the residues to the right of Re(*z*) $<$ $\frac{\mu^2}{2}$ $rac{1}{2}$.

Raimar Wulkenhaar (Münster) in the [Solution of all quartic matrix models](#page-0-0) in the Solution of all quartic matrix models

The limit $\Lambda \to \infty$ for $D=4$ and $\lambda > 0$

- $J(z) = z \lambda z^2 \int_0^\infty$ *dt* $\rho_{\lambda}(t)$ $\frac{dt \rho_{\lambda}(t)}{(\mu^2+t)^2(t+z)}$ is bounded above on \mathbb{R}_+ .
- Consequently, $J^{-1}(a)$ needed in $\tau_b(a)$ and $G(a, b)$ on previous slide <mark>does not exist</mark> (for $D=4, \, \lambda>0, \, \Lambda^2\to \infty,$ all *a*).

Is the Landau ghost back?

Not here! Express
$$
G(a, b) := \frac{\mu^2 \exp(N_4(a, b))}{(\mu^2 + a + b)}
$$
 which avoids J^{-1} :
\n
$$
N_4(a, b) = \frac{1}{2\pi i} \int_{-\infty}^{\infty} dt \Big\{ \log (a - J(-\frac{\mu^2}{2} - it)) \frac{d}{dt} \log (b - J(-\frac{\mu^2}{2} + it)) - \log (a - (-\frac{\mu^2}{2} - it)) \frac{d}{dt} \log (b - (-\frac{\mu^2}{2} + it)) - \log (-J(-\frac{\mu^2}{2} - it)) \frac{d}{dt} \log (-J(-\frac{\mu^2}{2} + it)) + \log (-(-\frac{\mu^2}{2} - it)) \frac{d}{dt} \log (-(-\frac{\mu^2}{2} + it)) \Big\}
$$

4D-Moyal space at infinite noncommutativity

Previously we were mainly interested Φ^4_4 -model on Moyal space at infinite noncommutativity.

Defined by $\rho_0(x) = x$; it's the only case where $\rho_{\lambda}(t) = \rho_{0}(J(t)) =: t(t + \mu^2)\psi(t)$

solves a Fredholm integral equation of second kind:

$$
\psi(t) = \frac{1}{t + \mu^2} - \lambda \int_0^{\infty} du \, \frac{t}{(t + \mu^2)} \frac{1}{(u + t + \mu^2)} \frac{u}{(u + \mu^2)} \psi(u)
$$

Theorem [Seiringer 19]

The integral operator has spectrum $[0, \pi]$. Consequently, the Φ_4^4 -model on Moyal space exists for $\lambda > -\frac{1}{\pi}$.

- Proves that $J(t)$ stays positive!
- Solved as convergent(!) power series in hyperlogarithms.
- It is here where number theory meets QFT!

Raimar Wulkenhaar (Münster) in [Solution of all quartic matrix models](#page-0-0) in Solution of all quartic matrix models in Solution of all quartic matrix models in Solution of all quartic matrix models in Solution of all quartic mat

Beyond the 2-point function

Recursive equations for all planar functions [Grosse, W 12]:

$$
G_{b_0...b_{N-1}}^{(0)}=-\lambda\sum_{l=1}^{\frac{N-2}{2}}\frac{G_{b_0...b_{2l-1}}^{(0)}\cdot G_{b_{2l}...b_{N-1}}^{(0)}-G_{b_1...b_{2l}}^{(0)}\cdot G_{b_0b_{2l+1}...b_{N-1}}^{(0)}}{(E_{b_0}-E_{b_{2l}})(E_{b_1}-E_{b_{N-1}})}
$$

Theorem [de Jong, Hock, W 19]

The solution is in 1:1-correspondence with Catalan tables of length $\frac{N}{2}$. There are $d_{(N-2)/2}$ of them, where $d_n = \frac{1}{n+1} \binom{3n+1}{n}$ $\binom{n+1}{n}$

Definition (Catalan tuple $\tilde{e} = (e_0, \ldots, e_n)$ of length $|\tilde{e}| = n$)

 $\text{consists of } \bm{e}_j \in \mathbb{N} \text{ with } \sum_{j=0}^n \bm{e}_j = n \text{ and } \sum_{j=0}^k \bm{e}_j > k \text{ for all } k\!<\!n.$

Definition (Catalan table $\langle \tilde{e}^{(0)}, \tilde{e}^{(1)}, \ldots, \tilde{e}^{(n)} \rangle$ of length *n*)

 $(n + 1)$ -tuple of Catalan tuples, such that $(1+|\tilde{e}^{(0)}|,|\tilde{e}^{(1)}|,\ldots,|\tilde{e}^{(n)}|)$ is itself a Catalan tuple.

Higher topology

Fact: Moments in matrix models have topological expansion

$$
\log\left(\frac{\int_{M^*_{\mathcal{N}}} d\Phi\ \Phi_{k_1l_1}\cdots\Phi_{k_nl_n}e^{-\mathcal{N}\ S(\Phi)}}{\int_{M^*_{\mathcal{N}}} d\Phi\ e^{-\mathcal{N}\ S(\Phi)}}\right)=\sum_{g=0}^{\infty}\sum_{B=1}^n \mathcal{N}^{2-2g-B}G^{(g)}_{k_1^1\ldots k_{n_1}^1|\ldots|k_1^B\ldots k_{n_B}^B}
$$

(the *l*'s are a permutation of *k*'s which has *B* cycles)

- These $G^{(g)}_{\cdots}$ satisfy a hierarchy of Dyson-Schwinger equations, which holomorphically extend to linear singular integral equations.
- There is a general solution theory [Carleman 21]. In some sense, everything is already solved.
- However, we expect that the solution simplifies enormously and shows universal properties: topological recursion.
- This is not yet done. The outcome could be exciting!

Topological recursion [Eynard, Orantin 07]

- Main ingredient is a polynomial equation $\mathcal{E}(x, y) = 0$ for a plane algebraic curve: the (classical) spectral curve.
- Any such curve gives rise to topological invariants. It defines a partition function which is a τ -function for Hirota equations: Integrability can be made precise.
- Solutions of $\mathcal{E}(x, y) = 0$ parametrised by meromorphic functions $x(z)$, $y(z)$.
- In the Kontsevich model, $y(z)$ is the expectation value of a single resolvent $W(z) = Tr((z - M)^{-1})$, and $x(z) = z^2 - c$.
- Starting from a universal 2-form $\omega_{0,2}(z_1, z_2) = \frac{dz_1 dz_2}{(z_1 z_2)^2}$, a family $\omega_{\bm{g},\bm{s}}$ of *s*-forms on $\overline{\mathbb{C}}^{\bm{s}}$ is constructed which satisfy universal recursive equations.

These equations can be solved by residue operations!

What is the spectral curve of the quartic matrix model

Almost surely: $y(z) = z - \frac{\lambda}{\lambda}$ $\mathcal N$ \sum *d k*=1 %*k* $\varepsilon_{\bm{k}}$ + \bm{z}

(because it describes the solution of the 2-point function).

- We don't know yet $x(z)$. The same $x = z^2 c$ as in the Kontsevich model works, but it would be a little disappointing.
- \bullet The 1+1-point function (genus 0) should be decisive. It solves

$$
\lambda \pi \rho_0(t) \cot \tau_a(a) G(a|c)
$$

= $\lambda \pi \mathcal{H}_a[\rho_0(\bullet)G(\bullet|c)] + \lambda \frac{G(a,c) - G(c,c)}{a-c}$

- Work in progress, procedure is clear, but lengthy.
- There might be difficulties with the $2 + 2$ -point functions, but most is routine once we have the spectral curve.

.

- I hope I convinced you that we have the fish.
- It remains to determine the species.
- I invite you to join us. There is no longer any risk.

Agenda

- Write the dictionary between differential forms in the spectral curve and correlations functions of the quartic matrix model (see Harald's talk).
- Identify Hirota equations and integrability.
- Compute the rational numbers in the partition function. They should be topological invariants: of what?

For your interacting QFT model: Think of implicitly defined functions.

If the free theory has variable p^2 , you cannot expect that p^2 is a good variable in the interacting model.

It will be an inverse *z* of $p^2 = z + f(z)$.

Even very simple functions *f* produce extremely rich inverses *z*! This richness makes QFT so interesting.