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Operator-algebraic approaches to lattice-gauge theory
Hamiltonian formulation [Kogut, Susskind; 1975]

Operator-algebraic formulations
Mathematical framework
→ fixed finite lattices [Kijowski, Rudolph; 2002]
→ fixed infinite lattice [Grundling, Rudolph; 2013]
→ inductive limit over finite lattices [Arici, Stienstra, van Suijlekom; 2017]

(loop quantum gravity approach, e.g. [Thiemann, 2002],[AS, Thiemann, 2016])
Common aspect
→ Replace the classical edge phase space T ∗G by the C∗-algebra C(G) o G (G-CCR).

Problem
C(G) oG is not unital. This complicates constructions.

Observation
Equivariant Duflo-Weyl quantization is related to C(G) oG as well. It requires a unital
extension to be well-defined.
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CFTs and unitary representations of Thompson’s groups
Reconstruction of CFTs from subfactors [Jones; 2014]

1+1 dimensional chiral CFTs
{A(I)}I⊂S1 (conformal net of type III factors)
A(I) ⊂ B(I), extensions give subfactors
→ Characterized by algebraic data (planar algebras).

Main idea [Jones; 2014]

Use planar-algebra data to reconstruct CFTs from subfactors.
→ Define a functor from binary planar forest to Hilbert spaces (tensor networks).

Y︸︷︷︸
basic forest

7−→ (H1 → H2)︸ ︷︷ ︸
“spin doubling”

→ Gives discrete-CFT models (Thompson group symmetry).

Observation
These discrete-CFT models fit into the same framework as lattice-gauge theories defined
by equivariant Duflo-Weyl quantization.

Functor ←→ Inductive limit over lattices/graphs
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Construction for a lattice with a single edge
The classical phase space of time-zero gauge fields

Basic ingredients
The gauge-field phase space Γ will be modeled on T ∗G (cf. [Creutz, 1983]).
→ T ∗G ∼= G× g with the canonical symplectic structure.

The canonical Poisson structure
The following Poisson structure is induced on C∞(T ∗G):

{σf , σf ′}T∗G = 0,
{σX , σf}T∗G = σRXf ′ ,

{σX , σY }T∗G = −σ[X,Y ],

for σf (θ, g) = f(g), f ∈ C∞(G), and σX(θ, g) = θ(X), X ∈ g (momentum map of the
Hamiltonian G-action).

Gauge transformations
The gauge transformations are associated with the left and right Hamiltonian G-actions
on T ∗G. But, there are various forms of gauge groups available depending on the
“boundary topology” of the edge (open/closed, finite/infinite, etc.).
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Construction for a lattice with a single edge
The C∗-algebra of time-zero gauge fields

Basic ingredients
The gauge-field C∗-algebra A will be based on C(G) oG ⊂ C(G) ∨C∗ C∗λ(G)
(cf. [Creutz, 1983]).
→ The crossed product structure is to be thought of as the “quantum” Poisson structure.

This is motivated by the following theorem:

Theorem - Duflo-Weyl quantization (generalization of [Landsman; 1993]))

QDWε : C∞PW,U (g) ⊗̂C∞(G) ⊂ C∞(T ∗G) −→ K(L2(G)) ∼= C(G) oG

is a non-degenerate, strict deformation quantization on (0, 1] w.r.t. to the canonical
Poisson structure on T ∗G. Furthermore, the G-CCR are satisfied:

QDWε ({σf , σf ′}T∗G) = i
ε
[QDWε (σf ), QDWε (σf ′)] = 0,

QDWε ({σX , σf}T∗G) = i
ε
[QDWε (σX), QDWε (σf )] = RXf,

QDWε ({σX , σY }T∗G) = i
ε
[QDWε (σX), QDWε (σY )] = iεR[X,Y ].

The Weyl form of the G-CCR corresponds to the crossed product relations.
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A projective phase space for lattice-gauge theories

(M, g) ∼= R×Σ

Hamiltonian formulation:
· M ∼= R×Σ - Cauchy foliation

{t−∆t} × Σ

{t} × Σ

{t + ∆t} × Σ

(M, g) ∼= R×Σ

initial data formulation
temporal gauge

Σ
U

V ∼= U ×G
P

Hamiltonian gauge-field formulation:
· Σ - Cauchy surface
· G - structure group (compact)
· A,E - gauge field, conjugate electric field
· DAE = 0 - Gauß constraint

finite-dimensional
projections

e

Se
γ

Basic functionals:
· ge(A) - Holonomy
· PeX (A,E;Se) - Flux

Phase space:

Γ ⊂ Γ = lim←−γ Γγ , cp. [Federbush, 1987]

Γγ = T∗G|E(γ)|
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A projective phase space for lattice-gauge theories
Structure of the finite-dimensional phase spaces

The induced Poisson structure, e.g. [Thiemann, 2002]

Using a suitable regularization of the infinite-dimensional Poisson structure, the basic
functionals w.r.t. a given graph γ generate the G-CCR of T ∗G|E(γ)|:

{f(ge), f ′(ge′)}γ(A,E) = 0,

{P eX , f ′(ge′)}γ(A,E) = δe,e
′
(RXf ′)(ge′(A)),

{P eX , P e
′
Y }γ(A,E) = −δe,e′P e[X,Y ](A,E)

Operations on graphs
The basic functionals behave naturally w.r.t. operations on graphs:

e = e2 ◦ e1 : ge(A) = ge2 (A)ge1 (A), (composition)

e 7→ e−1 : ge−1 (A) = ge(A)−1, P e
−1
X (A,E) = −P eAdge(A)(X)(A,E), (inversion)

e 7→ ∅ : drop dependence. (removal)

Composition for fluxes
The behavior of fluxes w.r.t. composition is more complicated:

P eX(A,E) = cP e2
X (A,E) + (1− c)P e1

Ad
g
−1
e2

(A)
(X)(A,E)

is compatible with the right action of G, but only c = 0, 1 preserve the Poisson structure
for non-Abelian G.

Projective phase space
{Γγ}γ becomes a directed set w.r.t. inclusion of oriented, T ∗G-labeled subgraphs.
→ The graph operations induce symplectic surjections (block-spin transformation, cp.

[Balaban et al., Federbush, 1980’s]):

pγγ′ : Γγ′ −→ Γγ .

→ The Duflo-Weyl quantization induces injective ∗-morphisms (equivariance):

QDWε (p∗γγ′) = αγ′γ : L(C∞(Γγ)) −→ L(C∞(Γγ′)).
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A projective phase space for lattice-gauge theories
Some inductive constructions

Action of the gauge group
The gauge group G has a natural action on the finite-dimensional phase spaces.
→ Gauge transformations act at the vertices of the graphs.
→ The action on L(C∞(Γγ)) is induced by the action on convolution kernels:

αγ({gv}v∈V (γ))(F )({(he, ge)}e∈E(γ)) = F ({(α
g−1
e(1)

(he), g−1
e(1)gege(0))}e∈E(γ)).

A non-commutative analog of Γ
Construct an inductive system of C∗-algebras {Aγ}γ , A = lim−→γ

Aγ .

First try: Aγ = (C(G) oG)⊗̂|E(γ)| ∼= K(L2(G|E(γ)|))
→ Does not work (non-unital).

Second try: Aγ = M((C(G) oG)⊗̂|E(γ)|) ∼= B(L2(G|E(γ)|))
→ Works and has nice extension properties:
(a) Unique extension of morphisms,
(b) Embedding of C(G|E(γ)|) and G|E(γ)|,
(c) Recovery of states on (C(G) o G)⊗̂|E(γ)| as strictly-continuous states of Aγ .
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A projective phase space for lattice-gauge theories
Some questions

Some related questions

Different choices of Aγ? Unital extensions of (C(G) oG)⊗̂|E(γ)|?
Control on the state space of the inductive-limit algebra?

→ The natural representation on L2(lim←−γ G
|E(γ)|, dµ0) = lim−→γ

L2(G|E(γ)|, dµ
×|E(γ)|
G )

is the GNS representation of the Ashtekar-Isham-Lewandowski state.
Extensions to quantum groups?
More refined block spin transformations (cp. [Balaban et al., Federbush, 1980’s])?
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An example: YM2 on a space-time cylinder

Construction of time-zero data
A local C∗-algebra A(I) is given as inductive limit over dyadic partitions of I ⊂ [0, 1]:

A(I) = {[ t
a

] : t a binary tree, a ∈
⊗

J∈Pt(I)

AJ ⊗1},

Pt(I) is the partition given by t subordinate to I. AJ is the algebra corresponding to the
leaf in J .

A = A([0, 1]) = lim−→t
At, H = lim−→t

Ht,
A = A′′, A(I) = A(I)′′ (requires a state).

Hamiltonian YM2 on R × S1
L

Consider the Kogut-Susskind Hamiltonian on complete dyadic trees of depth N :

HN = gN
2aN

2N−1∑
n=1

1⊗ ...⊗∆(n)
G ⊗ ...⊗ 1, aN = L

2N−1 . (lattice spacing)

→ No magnetic terms in one spatial dimension.
At depth N , we have the following Hilbert spaces and algebras:

HN = L2(G)⊗̂2N−1
, AN = B(L2(G))⊗̄2N−1

.
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An example: YM2 on a space-time cylinder

Locally thermal states
Consider the β-KMS states associated with HN :

ω
(N)
β = (ω(1)

β )⊗n, ω
(1)
β ( . ) = Zβ(a−1

1 g2
1)−1 tr(exp(−βH1) . ).

State consistency
The requirement that the β-KMS states are consistent

ω
(N)
β ◦ αNN−1 = ω

(N−1)
β ,

leads to (renormalization group flow):

g2
N−1 = 2g2

N ⇒
g2
N

aN
= g2

1
L

= g2
0︸︷︷︸

bare coupling

L.

→ The maps αNN−1 : AN−1 → AN are non-trivial (block-spin transformations).
→ The state on the field algebra Aβ has a Thompson-group symmetry (discrete CFT).
→ The β-limit Hamiltonian H(∞)

β is given by the modular Hamiltonian of ω(∞)
β .

A. Stottmeister An operator algebraic-approach to Yang-Mills theory in two dimensionsLQP 42, Wuppertal June 22, 2018 15 / 17



An example: YM2 on a space-time cylinder

Field algebra
The net of gauge-field algberas {Aβ(I)}I⊂S1 forms a local, Thompson-covariant net:
(a) [Aβ(I),Aβ(J)] = {0} if I ∩ J = ∅,
(b) ρg(Aβ(I)) = Aβ(gI),
(c) ω(∞)

β ◦ ρg = ω
(∞)
β .

The algebras are expected to be generically of type III by an argument related to he
construction of the Powers factors [Powers, 1967].

Observable algebra
Implementing gauge-invariance, i.e. constructing AGβ , H

G
β , gives

HGβ=0 = L2(G)AdG , HGβ = HS(L2(G))AdG , H = − 1
2g

2
0L∆G,

as expected. The Hamiltonian and the “area law” can be read of from the “state sum”:

Zβ(a−1
1 g2

1) =
∑
π∈Ĝ

dπ e
−β2 g

2
0Lλπ L→∞−→

{
“δ(G)
e (e)” : β = 0

1 : β ∈ (0,∞]
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Thank you for your attention!
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