
Quantum Gravity
Random Geometry

QFT on Random Trees

Quantum Field Theory on Random Trees

Vincent Rivasseau
Laboratoire de Physique Théorique

CNRS UMR8627 and Université Paris-Sud,
Orsay, European Union

Mathematics of interacting QFT Models,
York, July 4, 2019

Vincent Rivasseau Laboratoire de Physique Théorique CNRS UMR8627 and Université Paris-Sud, Orsay, European UnionQuantum Field Theory on Random Trees



Quantum Gravity
Random Geometry

QFT on Random Trees

Introduction

Work based on arXiv:1905.12783, with N. Delporte.

Why QFT on random trees ?

• Quantum gravity: space-time as random geometry

• Random trees: simplest example of non-trivial random geometry, with
effective dimension ds = 4/3 and large N limit of tensor models (melonic
graphs)

• Fluctuations around melons (subleading in N) may be studied as QFT on
melons? Higher dimensions accessible via Sachdev-Ye-Kitaev holography?

• Mathematics are fun!
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Space, Time, Quantum Gravity and All That

At the Planck scale we expect space and time to change drastically as gravity
becomes quantized.

There are currently competing attempts to understand what could happen then.

Mainstream proposal (≥ 35yrs): superstring theory.

Alternative proposal: space time an emergent fluid (modern ether).

In the first point of view a main problem is to reduce the dimension, typically
from 10 to 4.

In the second point of view, a main problem is to increase the dimension,
typically from 0 to 4.
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Quantum Gravity and Discrete Random Geometry

A popular tool to decrease dimension is compactification

A popular tool to increase dimension is holography

Usually holography is implemented as AdS/CFT , eg N = 4YM4/AdS5...

However no CFT in d = 0, 1, hence first steps are special... is time as emergent
as space?

Recently (2015) the [Sachdev-Ye-Kitaev] (SYK) NCFT1/NADS2 correspondence
provided first toy models of quantum black holes.

It is related [Carrozza, Gurau, Klebanov, Tarnopolsky, Witten, 2016-] to the tensor
models of the tensor track [R, 2011-], as it crucially uses the same leading
melonic graphs. These melonic graphs are also random trees [Gurau, Ryan 2014].
They could provide the crucial step, d = 0 => d = 4/3, from where to
continue with holography and AdS/CFT .
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Matrix and Tensor Models

They are combinatorial (d = 0) quantum field theories which provide a kind of
equilateral version of Regge calculus.

Quantum field theories of space time, not on space time

Their Feynman graphs realize a (background independent) sum over
piecewise-linear manifolds with discretized Einstein-Hilbert action in arbitrary
dimension d = r . Matrices correspond to d = 2, tensors to d ≥ 3.

The main analytic tool is the 1/N-expansion:

• topological for matrices (planar graphs, 2d gravity, strings)

• not topological for tensors (melons, tensor track)
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Random Spaces

Probabllity measure on the space of all spaces (Gromov-Hausdorff space).

Right now (2019) probabilists study essentially two universal non-trivial
"continuous" random spaces:

• The Continuous Random Tree [Aldous, ' 1990]

• The Brownian Sphere [Le Gall, Miermont ' 2011]

The second space can be thought of as a set of random labels living on the first.

In practice: these spaces can be discretized as random graphs.

• Infinite trees with single spine

• Planar ribbon graphs at critical point [Miller, Sheffield, 2015]
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Finite Galton-Watson trees

Galton-Watson trees have independent branching rates wi at each vertex.

In the simplest case (binary trees) the critical Galton-Watson process
corresponds to offspring probabilities p0 = p2 = 1

2 , pi = 0 for i 6= 0, 2. .

The generating function for such trees obeys the simple Catalan equation

Z(ζ) = ζ(1 + Z 2(ζ)), which solves to Z =
1−
√

1−4ζ2

2ζ (Menous?).

Aldous universality class is the Gromov-Hausdorff limit of such critical
Galton-Watson trees with fixed branching rate conditioned on non-extinction.

In physics, such random trees are often called branched polymers.
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Infinite trees

The condition of non-extinction creates an ensemble T of trees with a single
infinite spine S = N or Z decorated at each node v by an independent finite
Galton-Watson branch Tv . The corresponding measure is

dν(Γ) =
∏
v∈S

dνGW (Tv )

The spectral dimension is dspectral = 4/3 [Durhuus, Johnson, Wheather] is defined by

the averaged return probability of Brownian walks. In QFT language it is the
infrared scaling of the tadpole.
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Turning around the tree

One can understand the metric properties of a large random tree via a nice
one-to-one map.

The Dyck walk turns around the tree to identify the tree to its contour
function quotiented by an equivalence relation. The contour function is exactly
a Brownian excursion.

This map is the heart of the proof that dHausdorff = 2 and dspectral = 4/3.
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QFT on a Graph

On a graph Γ

• we have no longer translation and rotation or Lorenz invariance and the
notion of momenta is lost

• what remains: the Laplace operator. LΓ = DΓ − AΓ (DΓ: degree matrix ;
AΓ: incidence matrix). It inverse has the random path expansion:

Cm
Γ (x , y) =

∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

∼
∫ ∞

0
dt e−m2tpt(x , y),

Spectral dimension ds : if pt(x) is the probability for a random walk starting at
x to be at x in a time t, then

pt(x , x) ∼
t→∞

1
tds/2

.
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Field theory and Observables

Partition function on a graph Γ:

Z(Γ;λ) =

∫
e
−λ

∑
x∈VΓ

φq (x)
dµCΓ (φ) =

∫
dνΓ(φ).

Correlation functions:

SN (Γ; z1, ..., zN ) =

∫
φ(z1)...φ(zN ) dνΓ(φ) =

∞∑
V =0

(−λ)V

V !

∑
G

AG (Γ; z1, ..., zN ).

The spine is common to all Γ ∈ T . Hence we can define the observables as
averaged Schwinger functions with arguments {z1, ..., zN} ∈ S on this spine

E[SN (Γ; z1, ..., zN )] =

∫
dν(Γ)SN (Γ; z1, ..., zN )
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Summary of Results

We developed the essential elements for a full perturbative renormalization
group analysis of this type of QFT on random trees.

• We identify the fractional power of the Laplacian which makes the theory
just-renormalizable

• We introduce a multiscale analysis by slicing the propagator according to
the time of its random path representation

• We combine this analysis with precise heat kernel estimates of [Barlow,
Kumagai]

• We obtain uniform bounds on convergent graphs and localization
estimates for the divergent subgraphs which require renormalization

• We perform mass and coupling constant renormalization at all orders

Our analysis justify the intuition that the theory truly behaves as in dimension
d = 4/3.
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Propagating the matter field

The propagator is the inverse of the Lapacian

Cm
Γ (x , y) =

∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

∼
∫ ∞

0
dt e−m2tpt(x , y),

with an IR regulator m.
We then use the Euler β-function identity:

L−α =
sinπα

π

∫ ∞
0

dm
2m1−2α

L+ m2 ,

(0 < α ≤ 1) to define the rescaled propagator as

CαΓ (x , y) =
sinπα

π

∫ ∞
0

dm 2m1−2α
∑
ω:x→y

∏
v∈Γ

[
1

dv + m2

]nv (ω)

.
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Divergence degree

The standard degree of divergence for a φq Feynman graph G in dimension d
(V vertices, E internal edges and N external legs, qV = 2E + N) is:

ω(G) = (d − 2α)E − d(V − 1) = (d − 2α)(qV − N)/2− d(V − 1),

The just-renormalizable case occurs for

α =
d

2
− d

q

since then the divergence degree depends only on N:

ω(G) = d

(
1− N

q

)
.

For q = 4, 2- and 4-point functions need renormalization.
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RG: multiscale analysis (towards the IR)

(1) Decompose the propagators into “proper time" scales Ij = [M2(j−1),M2j ]:
C =

∑ρ
j=0 C

j (note that j = 0 is the UV scale in our setting; for simplicity,
external propagators are taken at IR cutoff scale ρ).
Each amplitude becomes a sum over all scale assignments µ.

(2) Identify superficial degree of divergence ω and divergent graphs.
Given µ, high subgraphs (quasi-local) control the divergences:

HS : (scales of internal legs) < (scales of external legs)

|AG ,µ| ≤
∏

Gi∈HS

Mω(Gi ).

(3) Expand the divergent subgraphs around some reference point (localization
of external propagators). Kill the first diverging terms by (local)
counterterms.

(4) A renormalizable theory is defined at scale i by a finite number of
parameters, with all parameters associated to lower scales j < i having
been integrated out. (→ RG flow)
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of external propagators). Kill the first diverging terms by (local)
counterterms.

(4) A renormalizable theory is defined at scale i by a finite number of
parameters, with all parameters associated to lower scales j < i having
been integrated out. (→ RG flow)
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Probabilistic estimates

For a parameter λ ≥ 1, the ball B(x , r) is said λ–good if (essentially):

r2λ−2 ≤ |B(x , r)| ≤ r2λ.

Crucially, [Barlow, Kumagai] showed that λ–good balls occur more and more likely
for larger and larger λ:

P[B(x , r) is not λ–good] ≤ c1e
−c2λ.

Then, they obtained the (quenched) bounds:
Given r > 0 and that B(x , r) is λ–good, if t ∈ [r3λ−6, r3λ−5], then

• for any K ≥ 0 and any y ∈ T with d(x , y) ≤ Kt1/3

pt(x , y) ≤ c
(
1 +
√
K
)
t−2/3λ3 ,

• for any y ∈ T with d(x , y) ≤ c1rλ
−19

pt(x , y) ≥ ct−2/3λ−17.
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Propagators

Slicing the propagator into proper time slices Ij = [M2(j−1),M2j ]

C j
T (x , y) =

u=m2

∫ ∞
0

du u−α
∫

Ij

dt pt(x , y)e−ut = Γ(1− α)

∫
Ij

dt pt(x , y)tα−1

Lemma (Single Line)

• cM−2j/3 ≤ E
[
C j

T (x , x)
]
≤ c ′M−2j/3,

• cM2j/3 ≤ E
[∑

y C
j
T (x , y)

]
≤ c ′M2j/3.

Interpretation: a typical volume integration corresponds to d = 4/3 while in
proper time t the propagator scales as t−1/3. c, c ′ are dummy names for
inessential constants.

Idea of proof: slice the y -sum into rings and sum over all possible volumes
inside with associated λ–not-goodness probability factors.
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Convergent graphs

Theorem (N > 4)
For a completely convergent graph (no 2- or 4- point subgraphs) G of order
V (G) = n, the limit as limρ→∞ E(AG ) of the averaged amplitude exists and
obeys the uniform bound

E(AG ) ≤ cn(n!)β

where β = 52
3 .

Comment: essentially uses the bounds above, Cauchy-Schwarz and again
slicing the space into rings that are asked to be λ-good.

However intersecting rings don’t have independent probabilities. This is what
leads to the (non-optimal) factorial growth.

Vincent Rivasseau Laboratoire de Physique Théorique CNRS UMR8627 and Université Paris-Sud, Orsay, European UnionQuantum Field Theory on Random Trees



Quantum Gravity
Random Geometry

QFT on Random Trees

Convergent graphs

Theorem (N > 4)
For a completely convergent graph (no 2- or 4- point subgraphs) G of order
V (G) = n, the limit as limρ→∞ E(AG ) of the averaged amplitude exists and
obeys the uniform bound

E(AG ) ≤ cn(n!)β

where β = 52
3 .

Comment: essentially uses the bounds above, Cauchy-Schwarz and again
slicing the space into rings that are asked to be λ-good.

However intersecting rings don’t have independent probabilities. This is what
leads to the (non-optimal) factorial growth.

Vincent Rivasseau Laboratoire de Physique Théorique CNRS UMR8627 and Université Paris-Sud, Orsay, European UnionQuantum Field Theory on Random Trees



Quantum Gravity
Random Geometry

QFT on Random Trees

Convergent graphs

Theorem (N > 4)
For a completely convergent graph (no 2- or 4- point subgraphs) G of order
V (G) = n, the limit as limρ→∞ E(AG ) of the averaged amplitude exists and
obeys the uniform bound

E(AG ) ≤ cn(n!)β

where β = 52
3 .

Comment: essentially uses the bounds above, Cauchy-Schwarz and again
slicing the space into rings that are asked to be λ-good.

However intersecting rings don’t have independent probabilities. This is what
leads to the (non-optimal) factorial growth.

Vincent Rivasseau Laboratoire de Physique Théorique CNRS UMR8627 and Université Paris-Sud, Orsay, European UnionQuantum Field Theory on Random Trees



Quantum Gravity
Random Geometry

QFT on Random Trees

Divergent graphs I

We want to know how an amplitude changes when moving an external leg from
one point z to a close point y :

Lemma
Defining ∆j

T (x ; y , z) :=
∣∣∣C j

T (x , y)− C j
T (x , z)

∣∣∣, we obtain

E[∆j
T (x ; y , z)] ≤ cM−2j/3M−j/3√d(y , z).

Comment: uniform in x and the factor M−j/3
√

d(y , z) is the gain, provided
d(y , z)� rj = M2j/3. The precise inequality for y , z ∈ T is

|f (y)− f (z)|2 ≤ d(y , z)
∑
x∼y

(f (x)− f (y))2
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Divergent graphs II

For jm � jM , we want to compare the “bare" amplitude

Abare
T (x , z) :=

∑
y∈T

C jM
T (x , y)C jm

T (y , z)

to the “localized" amplitude at z

Aloc
T (x , z) := C jM

T (x , z)
∑
y∈T

C jm
T (y , z).

Lemma
Introducing the averaged “renormalized" amplitude
Āren(x , z) := E[Abare

T (x , z)− Aloc
T (x , z)], we have∣∣Āren(x , z)
∣∣ ≤ cM−2(jM−jm)/3−(jM−jm)/3.

Vincent Rivasseau Laboratoire de Physique Théorique CNRS UMR8627 and Université Paris-Sud, Orsay, European UnionQuantum Field Theory on Random Trees



Quantum Gravity
Random Geometry

QFT on Random Trees

Divergent graphs II

For jm � jM , we want to compare the “bare" amplitude

Abare
T (x , z) :=

∑
y∈T

C jM
T (x , y)C jm

T (y , z)

to the “localized" amplitude at z

Aloc
T (x , z) := C jM

T (x , z)
∑
y∈T

C jm
T (y , z).

Lemma
Introducing the averaged “renormalized" amplitude
Āren(x , z) := E[Abare

T (x , z)− Aloc
T (x , z)], we have∣∣Āren(x , z)
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Divergent graphs III

The previous lemma allows to write 4-point subgraphs as a local 4-vertex, plus
corrections unseen by the external scale, defining hence an effective amplitude
Aeff :

Theorem (N ≥ 4)
For a graph G with N(G) ≥ 4 and no 2-point subgraph G of order V (G) = n,
the averaged effective-renormalized amplitude E[Aeff

G ] = limρ→∞ E[Aeff
G ,ρ] is

convergent as ρ→∞ and obeys the same uniform bound than in the
completely convergent case, namely

E(Aeff
G ) ≤ cn(n!)β .
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Divergent graphs IV

In order to deal with multiple subtractions (e.g. for N = 2), we need to
consider higher-order derivatives. In random or fractal spaces, a well-studied
operator useful for transport is the Laplacian.

We can expand in powers of L; Writing ∆yzg := g(z)− g(y) and
f̄ (u) := 1

du

∑
v∼u f (v), we have

f (z) =
[
f̄ + Lf + L2f + · · ·+ Lpf

]
(y)

+ ∆yz

[
f̄ + Lf + L2f + · · ·+ Lpf

]
+ Lp+1f (z).

Lemma
There exists constants cr , cp such that uniformly for tj ∈ [M2(j−1),M2j ]

E[|∆yzLrC j
T (x , z)|] ≤crM

−(2r+1)j
√

d(y , z),

E[|Lp+1C j
T (x , z)|] ≤cpM

−(2p+1)j .

However, we did not perform the wave-function renormalization in this model
since the fractional power of the Laplacian creates additional complications.
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What comes next?

• Understand better the locality issue in order to perform wave-function
renormalization

• Develop thermal physics in d = 4/3 by compactifying the spine

• Define and study SYK and tensor models on random trees

• Develop a theory of random holography

• Develop the corresponding constructive theory
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