

Cosmological Solutions to the Semiclassical Einstein Equation with Minkowski-like Vacua

Class. Quantum Gravity: Vol. 39, No 12 • arXiv: 2112.15050 joint work with H. Gottschalk & D. Siemssen

Nicolai Rothe

Department of Mathematics, TU Berlin

04 April, 2025

Outline

Classical Cosmology

Semiclassical Einstein Equation

Cosmological SCE with Minkowski Vacuum-like States

Attractive de Sitter solutions

Classical Cosmology

Cosmological model

- Cosmological principle:
 On the largest observable scales the universe appears (spatially) homogeneous and isotropic.
- ▶ Space-time: $M=I_t\times\mathbb{R}^3$, $I_t\subset\mathbb{R}$ time interval, with metric: $g=-\mathrm{d}t^2+a(t)^2g_{\mathbb{R}^3}$
- Cosmological model: ODE for a, usually by Einstein equation $G_{\mu\nu} + \Lambda \, g_{\mu\nu} = R_{\mu\nu} \tfrac{1}{2} R \, g_{\mu\nu} + \Lambda \, g_{\mu\nu} = \kappa \, T_{\mu\nu}$

with $T_{\mu\nu} = T_{\mu\nu}[(g_{\alpha\beta}), \ldots]$, typically IV's are set today

e.g.:

Source:

Wikipedia

 ${\sf Cosmological_constant}$

Friedmann's cosmology

- Simplest (relevant) cosmological model
- \blacktriangleright From the cosmological principle $(T^{\mu}{}_{\nu})=\mathrm{diag}(-\varrho,p,p,p)$
- Assume that p, ϱ are functions $I_t \to \mathbb{R}$ (SE tensor of perfect fluid)
 - → Friedmann equations:

$$\frac{(\dot{a})^2}{a^2} = \frac{\kappa}{3}\varrho + \frac{\Lambda}{3}, \qquad \frac{\ddot{a}}{a} = -\frac{\kappa}{6}(\varrho + 3p) + \frac{\Lambda}{3}$$

State equation: $\frac{p}{\varrho} = \gamma$ (and $\Lambda = 0$) $\Rightarrow \quad a \propto (t - t_{\mathrm{BB}})^{\frac{2}{3(\gamma + 1)}} \quad \text{if } \gamma \neq -1$ $\quad a \propto \quad \exp(Ht) \qquad \text{if } \gamma = -1$ $\quad \Rightarrow \quad \varrho \propto \frac{1}{e^{3(\gamma + 1)}}$

$\Lambda \mathsf{CDM}$ model

Ansatz: Plug

$$\varrho = T_{00} = \sum_{\gamma} \frac{\Omega_{\gamma}}{a^{3(\gamma+1)}}, \qquad \Omega_{\gamma} \in [0, 1], \quad \sum_{\gamma} \Omega_{\gamma} = 1$$

into Friedmann (energy) equation $\frac{(\dot{a})^2}{a^2}=\frac{\kappa}{3}\varrho+\frac{\Lambda}{3}$

 \blacktriangleright $\Lambda \mathsf{CDM} \colon \gamma \in \left\{\frac{1}{3}, 0, -1\right\}$,

$$\frac{(\dot{a})^2}{a^2} = H_0^2 \left(\frac{\Omega_{\mathsf{rad}}}{a^4} + \frac{\Omega_{\mathsf{dust}}}{a^3} + \Omega_{\mathsf{DE}} \right)$$

Standard values (PDG):

$$\begin{array}{llll} \Omega_{\rm rad} & = & 5.38 \cdot 10^{-5} \,, & \Omega_{\rm dust} & = & 0.315 \,, \\ \Omega_{\rm DE} & = & 0.685 \,, & H_0 & = & 2.2 \cdot 10^{-18} \, \frac{1}{\rm s} \end{array}$$

 $\qquad \qquad \text{Note:} \quad \Lambda > 0 \,, \; \Omega_{\mathsf{DE}} = 0 \quad \longleftrightarrow \quad \Lambda = 0 \,, \; \Omega_{\mathsf{DE}} > 0$

Matter type coefficient Γ

- Introduce: $\Gamma[a] := -\frac{1}{3} \left(2 \frac{a \ddot{a}}{\dot{a}^2} + 1 \right)$
- ▶ The ODEs $\Gamma[a] \stackrel{!}{=} \gamma$ are solved by

$$a \propto (t - t_{\rm BB})^{\frac{2}{3(\gamma+1)}}$$
 if $\gamma > -1$
 $a \propto \exp(Ht)$ if $\gamma = -1$

$$\qquad \qquad \Gamma[a] = -\frac{G[a]^j{}_j}{G[a]^0{}_0}, \quad \text{i.e. if } (T^\mu{}_\nu) = \mathrm{diag}(-\varrho,p,p,p)$$

and a solves $G_{\mu\nu}=\kappa\,T_{\mu\nu}$, then $\Gamma[a]=rac{p}{\varrho}$

ho $\Gamma[a]
ightarrow -1$ as $a
ightarrow \infty$ is interpreted as Dark Energy-dominated late-time

Dark Energy Behavior

► Wald proved:

$$\begin{array}{ccc} T_{\mu\nu}t^{\mu}t^{\nu} & \geq 0 \\ \left(T_{\mu\nu}-\frac{1}{2}g_{\mu\nu}T^{\sigma}{}_{\sigma}\right)t^{\mu}t^{\nu} \geq 0 \end{array} \qquad \text{and} \qquad \Lambda>0$$

for any future-directed vector field t^μ

$$\Rightarrow \qquad a(t) \cdot \exp\left(-\sqrt{\tfrac{\Lambda}{3}} \ t\right) \ \to \mathrm{const.} \qquad \text{as} \ t \to \infty$$

$$\left(\ \Rightarrow \qquad \Gamma[a] \to -1 \ \right)$$

- ▶ Recall that $a \propto \exp\left(\sqrt{\frac{\Lambda}{3}} \ t\right)$ solves $\frac{\dot{a}^2}{a^2} = \frac{\Lambda}{3}$.
- ho $\Omega_{
 m DE} pprox 0.7$ in $\Lambda{
 m CDM} \ \Rightarrow \ \ {
 m Dark \ Energy \ should \ be \ present!}$

Semiclassical Einstein Equation

SCE

$$G_{\mu\nu} \quad \left(+ \Lambda g_{\mu\nu} \right) = \kappa \ T_{\mu\nu} [\left(g_{\alpha\beta} \right), \dots] \langle T_{\mu\nu}^{\text{ren}} \rangle_{\omega}$$

- $lacktriangleright T_{\mu
 u}^{
 m ren}$: Renormalized stress-energy tensor of a quantum field ϕ
- $ightharpoonup \langle \; \cdot \; \rangle_{\omega}$: Expectation value in state ω
- Choose free scalar field

$$-\nabla^{\mu}\nabla_{\mu}\phi + m^2\phi + \xi R\phi = 0$$

 \longrightarrow AQFT approach of quantizing ϕ

Point-splitting regularization for $\langle T_{\mu u}^{ m ren} angle_{\omega}$

lackbox Classical stress-energy tensor $rac{\delta \mathcal{S}_{ ext{KG}}}{\delta g_{\mu
u}}$:

$$T_{\mu\nu} = (1 - 2\xi)(\nabla_{\mu}\phi)(\nabla_{\nu}\phi)$$
$$- \frac{1}{2}(1 - 4\xi)g_{\mu\nu}(\nabla^{\sigma}\phi)(\nabla_{\sigma}\phi)$$
$$- \frac{1}{2}g_{\mu\nu}m^{2}\phi^{2}$$
$$+ \xi(G_{\mu\nu}\phi^{2} - 2\phi\nabla_{\mu}\nabla_{\nu}\phi + 2g_{\mu\nu}\phi\nabla^{\sigma}\nabla_{\sigma}\phi)$$

- lacktriangle Introduce quantum field and (quasi-free) Hadamard state ω
- Determine ω 's two-point function ω_2 and its singular part H (Hadamard parametrix)
- ▶ For convenience, set $\omega_1 = 0$
- Replace ϕ , its derivatives and products thereof by quantum analogs, e.g.

$$\phi^2 \mapsto \langle : \phi^2 : \rangle_{\omega}(x) := \lim_{y \to x} \left[\omega_2(x, y) - H(x, y) \right]$$

Point-splitting regularization for $\langle T_{\mu u}^{ m ren} angle_{\omega}$

Two more ingredients:

- ▶ Since $\nabla^{\mu}G_{\mu\nu}=0$, also $\nabla^{\mu}\langle T_{\mu\nu}^{\rm ren}\rangle_{\omega}=0$ must hold.
 - → Add trace anomaly term (or Moretti/Hollands & Wald)
- ▶ "Correct way" to regularize ω_2 ?
 - → Add renormalization freedoms

Point-splitting regularization for $\langle T_{\mu u}^{ m ren} angle_{\omega}$

$$\langle T_{\mu\nu}^{\rm ren} \rangle_{\omega} = (1 - 2\xi) \langle : (\nabla_{\mu}\phi)(\nabla_{\nu}\phi) : \rangle_{\omega}$$

$$- \frac{1}{2}(1 - 4\xi)g_{\mu\nu} \langle : (\nabla^{\sigma}\phi)(\nabla_{\sigma}\phi) : \rangle_{\omega}$$

$$- \frac{1}{2}g_{\mu\nu}m^{2} \langle : \phi^{2} : \rangle_{\omega}$$

$$+ \xi \Big(G_{\mu\nu} \langle : \phi^{2} : \rangle_{\omega} - 2 \langle : \phi\nabla_{\mu}\nabla_{\nu}\phi : \rangle_{\omega} \Big)$$

$$+ 2g_{\mu\nu} \langle : \phi\nabla^{\sigma}\nabla_{\sigma}\phi : \rangle_{\omega} \Big)$$

$$+ \frac{1}{4\pi^{2}}g_{\mu\nu} [\nu_{1}]$$

$$+ c_{1} m^{4}g_{\mu\nu} + c_{2} m^{2}G_{\mu\nu} + c_{3} I_{\mu\nu} + c_{4} J_{\mu\nu}$$

- \blacktriangleright $[\nu_1]$ st. $\nabla^{\mu} \langle T_{\mu\nu}^{\rm ren} \rangle_{\omega} = 0$
- $ightharpoonup c_j$: Renormalization constants
- $I_{\mu\nu} := 2RR_{\mu\nu} 2\nabla_{\mu}\nabla_{\nu}R \frac{1}{2}g_{\mu\nu}(R^2 + 4\nabla^{\sigma}\nabla_{\sigma}R)$ $J_{\mu\nu} := 2R^{\sigma\varrho}R_{\sigma\mu\varrho\nu} \nabla_{\mu}\nabla_{\nu}R \nabla^{\sigma}\nabla_{\sigma}R_{\mu\nu} \frac{1}{2}g_{\mu\nu}(R_{\sigma\varrho}R^{\sigma\varrho} + \nabla^{\sigma}\nabla_{\sigma}R)$

Cosmological SCE with Minkowski Vacuum-like States

State at fixed time?

- ▶ A cosmological model requires something like $\omega_2(t, y, t, y')$.
- ▶ The Hadamard parametrix expresses the singularities of ω_2 in terms of geodesic distance between (t,y) and (t,y').
- ► But:

Follow Gottschalk & Siemssen ('21):

- Assume ω "cosmological" (spatially homogeneous & isotropic), $\omega_2(t,y,t',y')=\omega_2(t,t',|y-y'|)$
- ightharpoonup Construct new (non-geometric/cosmological) parametrix \widetilde{H}
- ► Insert "fruitful zero":

"Moments" m:

- Sequences in Banach space B
- ▶ Somewhat like radial, even-order Taylor coefficients of $\omega_2 \widetilde{H}$ at some coincidence time t
- Only "concrete information" on the state which enters the SCE

Theorem: (Gottschalk - Siemssen, '21)

The SCE can be written in the form

$$\begin{cases} \dot{A}(t) = F(A(t), m(t)) \\ \dot{m}(t) = G(A(t)) \cdot m(t) \end{cases}$$
 (*)

with $A := (a, \dot{a}, \ddot{a}, a^{(3)})$. The dynamical system (*) has a solution for all $m_0 = m(0)$ and almost all $A_0 = A(0)$.

Note:

- Linear evolution for m
- lacktriangle Evolution equation for m is derived from KG, not (!) from the full SCE
- ightharpoonup Warning: Not clear whether arbitrarily selected m_0 belongs to a state
- ▶ Rather: (SCE) \Rightarrow (*) and (*) + positivity of $\omega_2 \Rightarrow$ (SCE)

Lemma:

On Minkowski spacetime

$$A(t) = (1, 0, 0, 0), \quad t \in \mathbb{R}$$

the Minkowski vacuum for the massless, free Klein-Gordon field has moments

$$m(t) = 0, \quad t \in \mathbb{R}$$
.

- First try: $m_0 = 0$ in (*) equation (with m = 0)
- ▶ Linearity of m's evolution equation $\Rightarrow m(t) = 0$ for all t
- ▶ The SCE reduces to an ODE for a

e.g.
$$-R = g^{\mu\nu}\kappa \langle T^{\rm ren}_{\mu\nu}\rangle_{\omega}\Big|_{m=0}$$
 constrained by
$$G_{00} = \kappa \langle T^{\rm ren}_{00}\rangle_{\omega}\Big|_{m=0}$$

Minkowski-like vacua

Theorem: (Gottschalk - R. - Siemssen, '22)

On any cosmological space-time such that \boldsymbol{a} solves

$$-R = g^{\mu\nu} \kappa \langle T_{\mu\nu}^{\text{ren}} \rangle_{\omega} \Big|_{m=0}$$

$$G_{00} = \kappa \langle T_{00}^{\text{ren}} \rangle_{\omega} \Big|_{m=0}$$
(*)

there exists a Hadamard state ω for the massless, free KG field with $m(t)=0 \ \forall t$ such that (a,ω) is a solution for the SCE.

Minkowski-like vacua

Idea of proof: Tow-in argument

- ► Choose initial values for $a, \dot{a}, \ddot{a}, a^{(3)}$
- ▶ Solution a of (*) (e.g. numerically)
- ightharpoonup Smoothly deform into Minkowski $(a_{
 m tow})$
- ▶ Solve KG on a_{tow} ($m_0 = 0$)
- ▶ Solve KG on $a \to \text{still } m_0 = 0$

Our model

► Trace equation:

$$0 = \left(k_2 \log(\lambda_0 a) - k_1\right) \left(\frac{a^{(4)}}{a} + 3\frac{\dot{a}a^{(3)}}{a^2} + \frac{\ddot{a}^2}{a^2} - 5\frac{\dot{a}^2\ddot{a}}{a^3}\right)$$
$$+ \frac{k_2}{2} \left(4\frac{\dot{a}a^{(3)}}{a^2} + 3\frac{\ddot{a}^2}{a^2} + 12\frac{\dot{a}^2\ddot{a}}{a^3} - 3\frac{\dot{a}^4}{a^4}\right) - k_3\frac{\dot{a}^2\ddot{a}}{a^3} + k_4\left(\frac{\dot{a}^2}{a^2} + \frac{\ddot{a}}{a}\right)$$

Energy constraint:

$$0 = -\left(k_2 \log(\lambda_0 a) - k_1\right) \left(\dot{a}a^{(3)} - \frac{1}{2}\ddot{a}^2 + \frac{\dot{a}^2\ddot{a}}{a} - \frac{3}{2}\frac{\dot{a}^4}{a^2}\right)$$
$$-k_2 \left(\frac{\dot{a}^2\ddot{a}}{a} + \frac{\dot{a}^4}{a^2}\right) + \frac{k_3}{4}\frac{\dot{a}^4}{a^2} - \frac{k_4}{2}\dot{a}^2$$

where
$$k_1 = 12(3c_3 + c_4) + \frac{1}{480\pi^2} - \frac{6\xi - 1}{48\pi^2},$$
 $k_2 = \frac{(6\xi - 1)^2}{16\pi^2} \ge 0, \qquad k_3 = \frac{1}{240\pi^2} > 0, \qquad k_4 = \frac{6}{\kappa} > 0.$

Generic solution:

$$\begin{split} H_0 = 2.2 \cdot 10^{-18} \, \tfrac{1}{\mathrm{s}}, \, q_0 = -\tfrac{a(0)\ddot{a}(0)}{\dot{a}(0)^2} = -0.538, \, \, \tfrac{\kappa}{8\pi} = 8 \cdot 10^{40}, \\ \xi = \tfrac{1}{12} \text{ and } \varepsilon := 3c_3 + c_4 = 0.5 \end{split}$$

Generic solution:

$$\begin{split} H_0 = 2.2 \cdot 10^{-18} \, \tfrac{1}{\mathrm{s}}, \, q_0 &= -\tfrac{a(0)\ddot{a}(0)}{\dot{a}(0)^2} = -0.538, \ \ \tfrac{\kappa}{8\pi} = 8 \cdot 10^{40}, \\ \xi &= \tfrac{1}{12} \text{ and } \varepsilon := 3c_3 + c_4 = 0.5 \\ \Lambda \text{CDM: standard PDG values} \end{split}$$

Generic solution:

- ▶ Radiation dominated early phase & curvature singularity
- ▶ Dark Energy dominated late time expansion
- ightharpoonup Zero of \ddot{a} in the past

Some more solutions

Some more solutions

▶ Plotted for longer times:

Attractive de Sitter solutions

De Sitter solutions

▶ Plugging the Ansatz $a(t) \propto \exp(Ht)$ into

$$g^{\mu\nu}ig(ig\langle T^{
m ren}_{\mu
u}ig
angle_{\omega}-rac{1}{\kappa}G_{\mu
u}ig)$$
 and $ig\langle T^{
m ren}_{00}ig
angle_{\omega}-rac{1}{\kappa}G_{00}$ yields
$$(8k_2-k_3)H^4+2k_4H^2=0$$

Consistency equation for parameters

Solution:
$$(H^{dS})^2 = \frac{2k_4}{k_3 - 8k_2} \ (>0 \Leftrightarrow |\xi - \frac{1}{6}| < 4320^{-1/2})$$

De Sitter solutions

Lemma:

Any cosmological solution of $G_{\mu\nu} = \kappa \langle T_{\mu\nu}^{\rm ren} \rangle_{\omega}$ has a strictly increasing a (if $\dot{a}(0) > 0$).

- ▶ Substitution: $\mathcal{H} := H \circ a^{-1} = \left(\frac{\dot{a}}{a}\right) \circ a^{-1}$
- $G_{\mu\nu} = \kappa \langle T_{\mu\nu}^{\rm ren} \rangle_{\omega}$ implies

$$0 = -\left(k_2 \log(\lambda_0 a) - k_1\right) \left(\mathcal{H}^3 \mathcal{H}'' + \frac{4}{a} \mathcal{H}^3 \mathcal{H}' + \frac{1}{2} \mathcal{H}^2 (H')^2\right) - k_2 \left(\frac{\mathcal{H}^3 \mathcal{H}'}{a} + 2\frac{\mathcal{H}^4}{a^2}\right) + \frac{k_3}{4} \frac{\mathcal{H}^4}{a^2} - \frac{k_4}{2} \frac{\mathcal{H}^2}{a^2}.$$

De Sitter solutions

Proposition:

If $\xi=\frac{1}{6}$ (i.e. $k_2=0$) and $3c_3+c_4>-\frac{1}{5760\pi^2}$ (i.e. $k_1>0$), then $(H^{\mathsf{dS}},0)$ is an asymptotic stable fixpoint in the $(\mathcal{H},\mathcal{H}')$ -plane of $0=k_1\left(\mathcal{H}^3\mathcal{H}''+\frac{4}{a}\mathcal{H}^3\mathcal{H}'+\frac{1}{2}\mathcal{H}^2(H')^2\right)+\frac{k_3}{4}\frac{\mathcal{H}^4}{a^2}-\frac{k_4}{2}\frac{\mathcal{H}^2}{a^2}$ as $a\to\infty$.

- ▶ For $\xi \neq \frac{1}{6}$ similar behavior can be observed numerically and one can show that there exists an attractive direction in the $(\mathcal{H}, \mathcal{H}')$ -plane
- ▶ The value $H^{\text{dS}} = \sqrt{\frac{2k_4}{k_3 8k_2}}$ appears as effective cosmological constant/Dark Energy (recall: $\Lambda = 0$ and $\Lambda m^4c_1 = 0$)
- ▶ For $\xi = \frac{1}{6}$ similarly observed by Pinamonti, Dappiaggi et. al. and Haensel & Verch

Far from $\xi = \frac{1}{6}$: Box-R model

▶ Note, for $a \neq a_{\mathsf{crit}} := \frac{1}{\lambda_0} \exp\left(\frac{k_1}{k_2}\right)$

$$\frac{g^{\mu\nu}\left(\left\langle T_{\mu\nu}^{\rm ren}\right\rangle_{\omega}-\frac{1}{\kappa}G_{\mu\nu}\right)}{k_{2}\log(\lambda_{0}a)-k_{1}}=-\frac{1}{6}\nabla^{\mu}\nabla_{\mu}R+\frac{r_{1}\left(a,\dot{a},\ddot{a},a^{(3)}\right)}{k_{2}\log(\lambda_{0}a)-k_{1}}$$

and

$$\frac{\langle T_{00}^{\text{ren}} \rangle_{\omega} - \frac{1}{\kappa} G_{00}}{k_2 \log(\lambda_0 a) - k_1} = \frac{a^2}{36} I_{00} + \frac{r_2(a, \dot{a}, \ddot{a}, a^{(3)})}{k_2 \log(\lambda_0 a) - k_1}$$

► Far from $a_{\rm crit}$ (easily achieved far from $\xi = \frac{1}{6}$) our model is well approximated by

$$I_{\mu\nu} = 0$$

- \rightarrow Box-R model (note $I^{\mu}_{\ \mu} = 6 \nabla^{\mu} \nabla_{\mu} R$)
- ▶ Recall: $\frac{1}{4\pi^2}[\nu_1]$, $c_3I_{\mu\nu}+c_4J_{\mu\nu}$ and $\widetilde{H}-H$ contribute into $k_1-k_2\log(\lambda_0a)$ -terms

Box-R model

Theorem:

- (a) $I_{00} = 0 \Rightarrow I^{\mu}{}_{\mu} = 0.$
- (b) Any solution of $I_{00}=0$ is either Minkowski (a=const, if $a(t_0)=\dot{a}(t_0)=\ddot{a}(t_0)=0$) or strictly increasing/decreasing.
- (c) For any stritly increasing solution a of $I_{00}=0$ we have either
 - $a \propto (t t_{\text{BB}})^{1/2}$ if $\Gamma[a](t_0) = \frac{1}{3}$ (implying $\Gamma[a](t) = \frac{1}{3} \ \forall t$)

or

a exist for all late times and

$$a(t) \stackrel{\propto}{\sim} \mathrm{e}^{Ht}$$
 as $t \to \infty$ for some $H>0$ ($\Gamma[a](t) \to -1$).

Box-R model

Proof:

Solve $0 = a^2 I_{00} = \dot{a} a^{(3)} - \frac{1}{2} \ddot{a}^2 + \frac{\dot{a}^2 \ddot{a}}{a} - \frac{3}{2} \frac{\dot{a}^4}{a^2}$ Depending on initial values we have (a rescaling of)

- a(t) = const.
- $a(t) \propto t^{1/2}$,
- $a(t) \propto e^{Ht}$ or
- $a(t) = a_{\pm}(t) := \chi_{\pm}^{-1}(t)$,

where

$$\chi_{\pm}(x) = \frac{1}{6} \log \left(x^2 \pm x (1 \pm x^3)^{1/3} + (1 \pm x^3)^{2/3} \right)$$
$$- \frac{1}{3} \log \left((1 \pm x^3)^{1/3} \mp x \right)$$
$$- \frac{1}{\sqrt{3}} \arctan \left(\frac{\sqrt{3} x}{x \pm 2(1 \pm x^3)^{1/3}} \right)$$
$$\in \log(x) + \mathcal{O}(1) \qquad \text{as } x \to \infty.$$

Box-R model

- Exponential/Dark Energy-dominated late-time is generic (up to null-set of initial values).
- No effective cosmological constant/distingished value for $H(t) = \frac{\dot{a}(t)}{a(t)}$ in the limit $t \to \infty$: Any value is possible! \to No cosmological constant problem?

Thanks for your attention!