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Classical Cosmology



Cosmological model

» Cosmological principle:
On the largest observable scales the universe appears
(spatially) homogeneous and isotropic.

» Space-time: M = I, x R3, I, C R time interval, with metric:
g = —dt® + a(t)’gps

» Cosmological model: ODE for a, usually by Einstein equation

G;w + Ag;w = R;w - %Rguu +Ag;w = “T;w

with T, = T) [ (9ap) s - - -], typically IV's are set today
e.g.. Source:
Wikipedia

Cosmological _constant




Friedmann's cosmology

» Simplest (relevant) cosmological model
» From the cosmological principle (T*,) = diag(—o, p,p,p)

> Assume that p, o are functions I; — R
(SE tensor of perfect fluid)

— Friedmann equations:

. 2 .
Togers - gy
> State equation: £ = (and A = 0)
2
= ax (t—tp)30+D ify# -1
a x exp(Ht) if y=-1

1
= Q x a3("/+1)



ACDM model

» Ansatz: Plug

Q,
QZTOOZZae,(m)’ Q,€[0,1], ZQ.Y:l
v v

into Friedmann (energy) equation “—5- = §0 + %

> ACDM: v € {4,0,—-1},

@ Hg ( Qrad Qd ust

az at + a3 +QDE)

Standard values (PDG):

Qad = 5.38-107°, Qque = 0.315,
Qpe = 0.685, Hy = 22-107181

» Note: A>0, Qpg=0 <+— A=0, Qpg>0



Matter type coefficient I"

1 .
» Introduce: I'[a] := —3 (2(1_3 + 1>
a

» The ODEs I'[a] = ~v are solved by

2
ax (t—tgg)30+) ify>—1

a < exp(Ht) if v=-1
Gla
> Tfa] = : ]0 , e if (T,) = diag(—o,p,p, p)
- Gla]%
and a solves G, = KT}, then T'la] = %

» T'[a] = —1 as a — oo is interpreted as Dark
Energy-dominated late-time



Dark Energy Behavior

» Wald proved:
Tt >0
and A>0
(T — 39T 6)tH” > 0
for any future-directed vector field t#
A
3

= a(t) - exp < -1/ % t) — const. as t — oo

(= Ta--1)

» Recall that a o< exp (\/g t) solves Z—; = %
» Qpg ~ 0.7in ACDM = Dark Energy should be present!



Semiclassical Einstein Equation



SCE

Guu < +Aguu ) =K Tuu[(gaﬁ)a ]<T/£10/n w

> T, Renormalized stress-energy tensor of a quantum field ¢
» (- ),: Expectation value in state w
» Choose free scalar field

~VHV b +m*p+ ERp =0

—  AQFT approach of quantizing ¢



Point-splitting regularization for <Tlen>

1%
55KG
0guv

T,ul/ = (1 - 25)( H¢)( ¢)
- 7( 4£)guu(va¢)(va¢)
- §g,u1/m2¢2

+ &(Gd® — 20V, V0 + 29,00V V50)

» Introduce quantum field and (quasi-free) Hadamard state w

» Classical stress-energy tensor

» Determine w's two-point function wy and its singular part H
(Hadamard parametrix)

» For convenience, set w; =0

» Replace ¢, its derivatives and products thereof by quantum
analogs, e.g.

$° <:¢2;>w(x) ::Z}i_rgc wo(z,y) — H(z,y)



Point-splitting regularization for <Tren>w

jn%

Two more ingredients:
> Since VXG ), =0, also V“<T/§f,n ,, = 0 must hold.
— Add trace anomaly term (or Moretti/Hollands & Wald)

» "Correct way" to regularize wo?

— Add renormalization freedoms



Point-splitting regularization for <Tren>w

jn%

(Tir), = (1-26) (:(Vud)(Vod):),
= 3(1=48)gm (:(V70)(Vo0):),,
- %g,w/m2 <:¢2:>w
+6(G (16%1), =2 (:0V,Vu00),
+ 2 (:0V7V00:),)

1
+ ngu [Vl]

+ermigu +com?Guy + 3 Ly + ca Ju
w ren —
> [v] st. V(T3 =0
> cj: Renormalization constants

» I, :=2RR,, —2V,V,R - 19, (R*>+4V°V,R)
Juv = 2R Ry o0 — Vu VR — VoV, Ry — 2, (RopR7? + VOV R)



Cosmological SCE with Minkowski
Vacuum-like States



State at fixed time?

» A cosmological model requires something like ws(t, y,t, /).

» The Hadamard parametrix expresses the singularities of ws in
terms of geodesic distance between (¢,y) and (¢,7/).

> But:
(tU 79/)
RB
(to,y)
I;
to
a /

I



Follow Gottschalk & Siemssen ('21):

» Assume w "cosmological" (spatially homogeneous &
isotropic), w2 (ta Y, tlv y,) = w?(tv tlu ‘y - y/|)
> Construct new (non-geometric/cosmological) parametrix H

» Insert "fruitful zero":

wgeg = wy— H
= wy— H + H-H
—_———
— meB — a,a,d,a® a® log(a)
(for all Hadamard states)
n .
Moments" m:

» Sequences in Banach space B

» Somewhat like radial, even-order Taylor coefficients of ws — H
at some coincidence time ¢

» Only "concrete information™ on the state which enters the SCE



Theorem: (Gottschalk - Siemssen, '21)

The SCE can be written in the form

{ At) =F(A(t),m()) )
m) =G(A®))- m()

with A := (a,a,d,a®). The dynamical system (x) has
a solution for all 719 = 1(0) and almost all Ay = A(0).

Note:
» Linear evolution for m
» Evolution equation for 777 is derived from KG, not (!) from the
full SCE
» Warning: Not clear whether arbitrarily selected 1719 belongs to
a state
» Rather: (SCE) = (%) and (x) + positivity of wy = (SCE)



Lemma:

On Minkowski spacetime
A(t) = (1,0,0,0), teR
the Minkowski vacuum for the massless, free Klein-
Gordon field has moments
m() =0, teR.

» First try: 770 = 0 in (x) equation (with m = 0)
» Linearity of 1's evolution equation = 11(¢) = 0 for all ¢
» The SCE reduces to an ODE for a

eg. R = g"R(TI ‘
& g > m=0

constrained b G = k(TR ‘
Y 00 < 00 >w -



Minkowski-like vacua

Theorem: (Gottschalk - R. - Siemssen, '22)

On any cosmological space-time such that a solves

—R= g‘“’m Tren> ‘
G, Tren (*)
00 = "'f 00 >“‘m 0

there exists a Hadamard state w for the massless,
free KG field with 1m(t) = 0 V¢ such that (a,w) is
a solution for the SCE.



Minkowski-like vacua

Idea of proof: Tow-in argument

» Choose initial values for a, @, d, a®

Solution a of () (e.g. numerically)

Solve KG on asow (1110 = 0)

| 2

M =0 » Smoothly deform into Minkowski (atow)
| 2
» Solve KG on a — still 770 =0




Our model
» Trace equation:

a® aa® 42 a2
a3

0= (leOg()\Qa) — kl) <a +37 + ﬁ -

ky [ aa® a2 a?a _at a%i a2 a
‘*2(4a2'+%ﬂ+12@"%ﬁ B e

» Energy constraint:

1 a’a  3at
- (3 2
O:—(kglog(/\oa)—k)<aa()—2 +a_2aQ>
a’a  a* ks a kg .
_b<a+ﬁ>4ﬁ_2
1 66 —1

where k1 =12(3c3 + c4) + 1802 As2

—1)2 1 6
k2:M>O ks > 0, ky=—>0.

1602 = = 24072 P



Generic solution:

2
a(t) % [T T T T T T \j
L 4 0r -
- | T[a](¢)
-1 _
1 -
10734
I | )]
10736 in %
| -38
0 -4 -2 0 2 v
tin 1017s

Hy=22-10"%1, g = —“080) — 0538, £ =8 10%,

5:%3nd5::363+04:0.5




Generic solution:

2
I — ——
a(t) 3k .
L 1 oFf
-1
1,
10734
I 710'36
0’/‘ 10 | I
-4 -2 0 2 4 -2 0 2

tin 10175 tin 10178

=8.10%,

— -181 0)a) _
Hy=22-10""%35, qo = =% 5 = —0.538, &

fzﬁ and € :=3c3+ ¢4 = 0.5
ACDM: standard PDG values



Generic solution:

2
[T
a(t) 3t
L i 0
-1
1|
1073
I | 10°3¢
0’/‘ 0% | L
-4 -2 0 2 4 9 0 9
tin 10178 tin 10175

» Radiation dominated early phase & curvature singularity
» Dark Energy dominated late time expansion
» Zero of d in the past



Some more solutions




Some more solutions

>

3\\\\\\\\\\\
(t)

0 I N |
-12 -9 -6 0 3 6 9
tin 10'7s
Plotted for longer times:
: : — 1
a(t) - exp (v gL t) 4 0
1 -1
! ! L 9
200 400 600 0 200 400

[la)(t)]

600

24/33



Attractive de Sitter solutions



De Sitter solutions

» Plugging the Ansatz a(t) x exp(Ht) into
T, ~ 1Guw) and (TR, — 1o yieds

(8kg — k3)H* + 2k, H? = 0

» Consistency equation for parameters
2ky

Solution: (H9%)? = ——=2__
olution: (H®) T

(>0 & |[¢—1[<43207"2)

Hy/k




De Sitter solutions

Any cosmological solution of G, = H<Tﬁﬁ“>w has
a strictly increasing a (if a(0) > 0).

» Substitution: H:= Hoa ! = (2) oa~!

> G = ﬁ<T,§ﬁn>w implies
0 = —(kelog(Xoa) — k1) (H*H" + 2H*H + JH*(H')?)

3947 4 4 2
_kZ(%JrQ%)ijfsi_kfmi,

4 a? 2 a?



De Sitter solutions

Proposition

If ¢ =% (i.e. k2 = 0) and 3c3 + ¢4 > — =t (i.e.
k1 > 0), then (H9,0) is an asymptotic stable
fixpoint in the (H,#H')-plane of

= ki (HPH" + 2H3H + V12 (H)?) + ke )b 30
as a — 0.

> For £ # % similar behavior can be observed numerically and
one can show that there exists an attractive direction in the
(H,H')-plane

» The value HY = k32k4k appears as effective cosmological
constant/Dark Energy
(recall: A =0 and A —m?*c; = 0)

» For & = % similarly observed by Pinamonti, Dappiaggi et. al.
and Haensel & Verch



Far from £ = l: Box- R model

» Note, for a # acit := ,\ exp (l?l)

pv ((ren _ lG 5 <o (3)
g (< v >w =Cu ) :—EV“VMR%— rl(a,a,a,a )
/€2 log()\ga) — k‘l 6 ]{?2 log()\oa) — k‘l
and
<T58n> - *GOO B a? T (a a, d a(3))

00 T+

ko log(Aoa) — k1 " 36 ko log(Aoa) — k1

» Far from ait (easily achieved far from £ = %) our model is
well approximated by
I, =0
— Box-R model (note I*, = 6V*V,R)
» Recall: ﬁ[ul], c3lyy + cady, and H — H contribute into
k1 — kolog(Aoa)-terms



Box- R model

(a) IOO:O:IMHZO'

(b) Any solution of Ipp = 0 is either Minkowski
(a =const, if a(ty) = a(to) = a(ty) = 0) or
strictly increasing/decreasing.

(c) For any stritly increasing solution a of
Ioo = 0 we have either

e ao (t—tgg)” if Tla](ty) = &
(implying T[a](t) = % Vt)
or
e q exist for all late times and
a(t) % eflt

as t — oo for some H > 0 (T'[a](t) — —1).



Box- R model

Proof:

. .. 52 a4
Solve 0 = Iy = aa®® — %az + 22— %%
Depending on initial values we have (a rescaling of)

e a(t) =const.,

1
X+ () = G log <I2 +o(1+2) +(1+ $3)2/3)

- %log ((1 + 233 F 3:)

— L arctan \/g z )
V3 x4 2(1 £ 23)Y3

€ log(x) + O(1) as & — 00.




Box- R model

» Exponential/Dark Energy-dominated late-time is generic (up
to null-set of initial values).

» No effective cosmological constant/distingished value for
H(t) = 41 i the limit £ — oo: Any value is possible!

a(t)
— No cosmological constant problem?



Thanks for your attention!
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