Real resummations in Quantum Field Theories

Pierre J. Clavier

Institut für Mathematik Universität Potsdam

Mathematics of interacting QFT models

Table of contents

1 Motivation

2 Basics of Resurgence theory

- Borel-Laplace resummation
- Resurgent functions
- Alien derivatives
- Dotted alien operators

3 Well-behaved averages

- Averages
- Well-behaved averages

Application to QFT

- Application to the two-point function
- The Wess-Zumino model

5 Outlook

References

General introductions to resurgence:

- Jean Ecalle; Les fonctions résurgentes; Vol.1, 2, 3; 1981.
- ② David Sauzin; Introduction to 1-summability and resurgence; 2014.
- Daniele Dorigoni; An Introduction to Resurgence, Trans-Series and Alien Calculus; 2014.

Real resummations:

- Jean Ecalle; Introduction aux fonctions analysables et preuve constructive de la conjecture de Dulac; 1992.
- Frédéric Menous; Les bonnes moyennes uniformisantes et leurs applications à la resommation réelles; 1996.
- Emmanuel Vieillard-Baron; From resurgent functions to real resummation through combinatorial Hopf algebras; 2014.

Resurgence in Physics:

- Inês Aniceto, Ricardo Schiappa; Nonperturbative Ambiguities and the Reality of Resurgent Transseries; 2013.
- Inês Aniceto, Gökçe Başar, Ricardo Schiappa; A Primer on Resurgent Transseries and Their Asymptotics; 2018.
- Marc P. Bellon and Pierre J. Clavier; Alien calculus and a Schwinger–Dyson equation: two-point function with a nonperturbative mass scale; 2016.
- Marc P. Bellon and Pierre J. Clavier; Analyticity domain of a quantum field theory and accelero-summation 2018.

Motivation	Basics of Resurgence theory	Well-behaved averages 0000	Application to QFT 0000	Outlook
Pertubat	ion theory			

Perturbative series:

$$O(a) \simeq A_0 + A_1 a + A_2 a^2 + A_3 a^3 + A_4 a^4 + A_5 a^5 + A_6 a^6 + \cdots$$

Fixing all kinematic parameters:

 $O(a) \in \mathbb{C}[[a]]$

Issues with perturbative approach:

- Soon very tricky!
- O(a) typically not convergent; nor Borel summable.
- When $a \sim 1$: perturbative approach not efficient.

Motivation	Basics of Resurgence theory	Well-behaved averages	Application to QFT	Outlook
Beyond p	pertubation theory	/		

$O(a) \simeq A_0 + A_1 a + A_2 a^2 + A_3 a^3 + A_4 a^4 + A_5 a^5 + A_6 a^6 + \cdots$

Open questions:

- Can we give a meaning to O(a)?
- Can we reach non-perturbative data?

Non-perturbative \sim fonctions with vanishing Taylor development.

Exemple: instantons $e^{-1/a}$

(Hopefully) YES with resurgence theory

Motivation	Basics of Resurgence theory ●0000000	Well-behaved averages	Application to QFT 0000	Outlook			
Borel-L	Borel-Laplace resummation I						
D							

Borel transform:

$$\mathcal{B}: (z^{-1} \mathbb{C}[[z^{-1}]], .) \longrightarrow (\mathbb{C}[[\xi]], \star)$$
$$\tilde{f}(z) = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{c_n}{z^n} \longrightarrow \hat{f}(\xi) = \sum_{n=0}^{+\infty} \frac{c_n}{n!} \xi^n.$$

Definition:

A formal series $\tilde{f}(z) = \frac{1}{z} \sum_{n=0}^{+\infty} \frac{c_n}{z^n}$ is **1-Gevrey** if

 $\exists A, B > 0: |a_n| \leq AB^n n! \ \forall n \in \mathbb{N}.$

We write $\tilde{f}(z) \in z^{-1}\mathbb{C}[[z^{-1}]]_1$.

Theorem:

The Borel transform \hat{f} of a formal series \tilde{f} is convergent if and only if \tilde{f} is 1-Gevrey.

Motivation	Basics of Resurgence theory ○●○○○○○	Well-behaved averages 0000	Application to QFT 0000	Outlook		
Borel-Laplace resummation II						

Laplace integral:

$$\mathcal{L}^{ heta}[\hat{f}](z) = \int_{0}^{e^{i heta}\infty} \hat{f}(\zeta) e^{-\zeta z} \mathsf{d}\zeta.$$

Well-defined if:

- $\hat{f}(\zeta) \in \mathbb{C}\{\zeta\} \iff \tilde{f}(z) \in z^{-1}\mathbb{C}[[z^{-1}]]_1;$
- existence of an analytic continuation in the direction θ .
- in the direction $\theta \in [0, 2\pi]$, \hat{f} bounded by an exponential.

Resummation operator:

$$S_{\theta} = \mathcal{L}^{\theta} \circ \mathcal{B}.$$

Possible obstructions:

• \hat{f} not subexponential \implies Accelero-summation (not today);

2 singularities in the direction $\theta \implies$ Alien calculus.

Motivation	Basics of Resurgence theory	Well-behaved averages 0000	Application to QFT 0000	Outlook
Resurge	nt functions I			

Definition:

 $\Omega \subset \mathbb{C}$ non-closed, discret, closed. $\hat{\phi}(\zeta) \in \mathbb{C}\{\zeta\}$ is an Ω -continuable germ if it is continuable along any path in $\mathbb{C} \setminus \Omega$.

 $\widehat{\mathcal{R}}_{\Omega} := \{ \text{all } \Omega \text{-continuable germs} \} \subset \mathbb{C}\{\zeta\}.$

Figure: Continuation along a path & Resurgent functions

Motivation	Basics of Resurgence theory ○○○●○○○○	Well-behaved averages	Application to QFT 0000	Outlook
Resurge	ent functions II			

Theorem

The convolution product \star extends to $\widehat{\mathcal{R}}_{\Omega}$ and $(\widehat{\mathcal{R}}_{\Omega}, \star)$ is an algebra if, and only if, $(\Omega, +)$ is a semigroup.

Motivation	Basics of Resurgence theory ○○○●○○○○	Well-behaved averages	Application to QFT 0000	Outlook
Resurge	ent functions II			

Theorem

The convolution product \star extends to $\widehat{\mathcal{R}}_{\Omega}$ and $(\widehat{\mathcal{R}}_{\Omega}, \star)$ is an algebra if, and only if, $(\Omega, +)$ is a semigroup.

Example: $\hat{f}_1(\zeta) = \frac{1}{\zeta - \omega_1}$, $\hat{f}_2(\zeta) = \frac{1}{\zeta - \omega_2}$, then:

$$egin{aligned} &(\widehat{f}_1\star\widehat{f}_2)(\zeta):=\int_0^\zeta\widehat{f}_1(\eta)\widehat{f}_2(\zeta-\eta)d\eta\ &=&rac{1}{\zeta-\omega_1-\omega_2}\left[\int_0^\zetarac{d\eta}{\eta-\omega_1}+\int_0^\zetarac{d\eta}{\eta-\omega_2}
ight] \end{aligned}$$

Motivation	Basics of Resurgence theory ○○○●●○○○	Well-behaved averages	Application to QFT	Outlook
Lateral	alien derivatives			

Definition:

For $\omega \in \Omega$ the lateral alien derivatives $\Delta^{\pm}_{\omega} : \widehat{\mathcal{R}}_{\Omega} \longrightarrow \widehat{\mathcal{R}}_{\Omega}$ are

$$\left(\Delta_{\omega}^{\pm}\hat{f}
ight)(\zeta)=\overline{(\operatorname{cont}_{\gamma_{\pm}(\omega)}\hat{f})(\zeta+\omega)}$$

with $\gamma_{\pm}(\omega)$ the path from 0 to ω contourning every singularities from the left (resp. from the right).

Figure: The paths $\gamma_{\pm}(\omega)$

Motiva	ation	Basics of Resurgence	e theory	Well-behaved 0000	averages	Application to QFT		Outlook
Ali	en der	ivatives						
	Take Ω	$=\omega\mathbb{N}^{*}.$						
	Definiti	on:						
	For $n\omega$	$\in \Omega$ the (sta	indard) a l	lien deriv	vative $\Delta_{n\omega}$	$: \widehat{\mathcal{R}}_{\Omega} \longrightarrow \widehat{\mathcal{R}}_{\Omega}$	Ω is	L
		$\Delta_{n\omega} = \sum_{n=1}^{n}$	$\frac{(-1)^{p-1}}{p}$	$\sum_{p_1+\cdots+p_n=}$	$\Delta^+_{n_1\omega} \circ \cdot$	$\cdots \circ \Delta^+_{n_p\omega}.$		L

Properties:

•
$$\Delta_{n\omega}(\hat{f}\star\hat{g}) = (\Delta_{n\omega}\hat{f})\star\hat{g} + \hat{f}\star(\Delta_{n\omega}\hat{g}).$$

•
$$\hat{f}$$
 regular in $n\omega \Longrightarrow \Delta_{n\omega}\hat{f} = 0.$

• Reciprocal not true!

Motivation	Basics of Resurgence theory	Well-behaved averages	Application to QFT 0000	Outlook
Alien d	erivatives			
Take	$\Omega = \omega \mathbb{N}^*.$			

Definition:

For $n\omega \in \Omega$ the (standard) alien derivative $\Delta_{n\omega} : \widehat{\mathcal{R}}_{\Omega} \longrightarrow \widehat{\mathcal{R}}_{\Omega}$ is

$$\Delta_{n\omega} = \sum_{p=1}^{n} \frac{(-1)^{p-1}}{p} \sum_{n_1 + \dots + n_p = n} \Delta^+_{n_1\omega} \circ \dots \circ \Delta^+_{n_p\omega}.$$

Properties:

•
$$\Delta_{n\omega}(\hat{f}\star\hat{g}) = (\Delta_{n\omega}\hat{f})\star\hat{g} + \hat{f}\star(\Delta_{n\omega}\hat{g}).$$

•
$$f$$
 regular in $n\omega \Longrightarrow \Delta_{n\omega} f = 0.$

• Reciprocal not true!

Example:
$$\hat{f}_1(\zeta) = \frac{1}{\zeta - \omega_1}, \ \hat{f}_2(\zeta) = \frac{1}{\zeta - \omega_2}.$$

$$\begin{split} \Delta_{\omega_1+\omega_2}(\hat{f}_1\star\hat{f}_2) &= (\Delta_{\omega_1+\omega_2}\hat{f}_1)\star\hat{f}_2 + \hat{f}_1\star(\Delta_{\omega_1+\omega_2}\hat{f}_2) = 0\\ (\Delta_{\omega_1}\circ\Delta_{\omega_2})(\hat{f}_1\star\hat{f}_2) &= (\Delta_{\omega_1}\hat{f}_1)\star(\Delta_{\omega_2}\hat{f}_2) \neq 0 \end{split}$$

Motivation	Basics of Resurgence theory ○○○○○○●○	Well-behaved averages 0000	Application to QFT 0000	Outlook
Dotted a	alien operators I			

Take $\Omega = \mathbb{N}^* \subset \mathbb{R}_+$. Resurgent functions:

$$\widehat{\mathcal{R}}_{\Omega}
i \widehat{f} : \mathbb{R}//\Omega \longrightarrow \mathbb{C}$$

 $\zeta^{\varepsilon_1 \cdots \varepsilon_n} \longmapsto \widehat{f}(\zeta^{\varepsilon_1 \cdots \varepsilon_n}).$

with

 $\mathbb{R}//\Omega := \text{Ramified line above } \mathbb{R}_+ \subset \mathbb{C}//\Omega,$ $\mathbb{C}//\Omega := \{\text{homotopy classes } [\gamma] \text{ of rectifiable paths } \gamma : [0,1] \longrightarrow \mathbb{C} \setminus \Omega \}.$

Observation:

Need to extend the Borel transform to include nonperturbative terms e^{-nz} .

Motivation	Basics of Resurgence theory ○○○○○○●	Well-behaved averages	Application to QFT 0000	Outlook
Dotted a	alien operators II			

Extend Borel transform:

$$\mathcal{B}:\widetilde{\mathcal{R}}_{\Omega}[[e^{-nz}]]\longrightarrow \widehat{\mathcal{R}}_{\Omega}\oplus_{n\geq 0}\mathbb{C}\delta_n.$$

By setting $\mathcal{B}(e^{-nz}) =: \delta_n$. Characterisation: $\delta_n \star \delta_m = \delta_{n+m}$;

$$(\delta_m \star \hat{f})(\zeta^{\varepsilon_1 \cdots \varepsilon_n}) \begin{cases} \hat{f}(\zeta^{\varepsilon_1 \cdots \varepsilon_{n-m}}) & \text{if } n \ge m \\ 0 & \text{otherwise.} \end{cases}$$

Definition:

For $m\omega \in \Omega$ the **dotted lateral alien derivatives** $\dot{\Delta}^{\pm}_{m\omega}$ are

$$(\dot{\Delta}_{m}^{\pm}\hat{f})(\zeta^{\varepsilon_{1}\cdots\varepsilon_{n}})=\left(\delta_{m}\star(\Delta_{m}^{\pm}\hat{f})\right)(\zeta^{\varepsilon_{1}\cdots\varepsilon_{n}})$$

Motivation	Basics of Resurgence theory	Well-behaved averages ●000	Application to QFT 0000	Outlook
Averages	;			

$$\widehat{\mathcal{U}}_{\Omega}$$
 univariate functions over $\mathbb{C}//\Omega$:

$$\phi \in \widehat{\mathcal{U}}_{\Omega} \iff \begin{cases} \phi \in \widehat{\mathcal{R}}_{\Omega}, \\ \forall \zeta^{\varepsilon_{1}, \cdots, \varepsilon_{n}}, \zeta^{\sigma_{1}, \cdots, \sigma_{n}} \in \mathbb{C}//\Omega, \ \phi(\zeta^{\varepsilon_{1}, \cdots, \varepsilon_{n}}) = \phi(\zeta^{\sigma_{1}, \cdots, \sigma_{n}}). \end{cases}$$

Definition:

An **average** is a linear map $\mathbf{m}: \widehat{\mathcal{R}}_{\Omega} \longrightarrow \widehat{\mathcal{U}}_{\Omega}$ defined by its weights $\{\mathbf{m}^{\varepsilon_1, \cdots, \varepsilon_n}\}$ and

$$(\mathbf{m}\phi)(\zeta) = \sum_{\varepsilon_1,\cdots,\varepsilon_n=\pm} \mathbf{m}^{\varepsilon_1,\cdots,\varepsilon_n} \phi(\zeta^{\varepsilon_1,\cdots,\varepsilon_n})$$

for any $\zeta \in \mathbb{C} \setminus \Omega$ with $\zeta \in]n, n+1[$; with the coherence relations $\mathbf{m}^{\emptyset} = 1$ and

$$\mathbf{m}^{\varepsilon_1,\cdots,\varepsilon_{n-1},+}+\mathbf{m}^{\varepsilon_1,\cdots,\varepsilon_{n-1},-}=\mathbf{m}^{\varepsilon_1,\cdots,\varepsilon_{n-1},-}$$

Motivation	Basics of Resurgence theory	Well-behaved averages ○●○○	Application to QFT 0000	Outlook
Example	of averages			

• Left lateral average:

$$\mathbf{mur}^{\varepsilon_1\cdots\varepsilon_n} = \begin{cases} 1 & \text{if } \varepsilon_1 = \cdots = \varepsilon_n = + \\ 0 & \text{otherwise.} \end{cases}$$

• Median average:
set
$$p = \#$$
 of $+$ in $\{\varepsilon_1, \dots, \varepsilon_n\}$, $q = \#$ of $-$ in $\{\varepsilon_1, \dots, \varepsilon_n\}$

$$\mathbf{mun}^{\varepsilon_1 \dots \varepsilon_n} = \frac{(2p)!(2q)!}{4^{p+q}(p+q)!p!q!}$$

Catalan average:

 Ca_n the *n*-th Catalan number, $Qa_n(x)$ the *n*-th Catalan polynomial, $\alpha, \beta \in \mathbb{R}$, $\alpha + \beta = 1$. Write $\boldsymbol{\varepsilon} = \varepsilon_1 \cdots \varepsilon_n = (\pm)^{n_1} (\mp)^{n_2} \cdots (\varepsilon_s)^{n_s}$, set

$$\operatorname{\mathsf{man}}_{(\alpha,\beta)}^{\boldsymbol{\varepsilon}} = (\alpha\beta)^n \operatorname{\mathsf{Ca}}_{n_1} \cdots \operatorname{\mathsf{Ca}}_{n_{s-1}} \operatorname{\mathsf{Qa}}_{n_s}((\alpha/\beta)^{\varepsilon_n}).$$

Motivation	Basics of Resurgence theory	Well-behaved averages ○○●○	Application to QFT 0000	Outlook
Well-beh	aved averages			

Definition:

An average m is called well-behaved if

- (P1) It preserves the convolution $\mathbf{m}(\phi \star \psi) = (\mathbf{m}\phi) \star (\mathbf{m}\psi)$.
- (P2) It preserves reality: $\mathbf{m}^{\varepsilon_1\cdots\varepsilon_n} = \overline{\mathbf{m}}^{\overline{\varepsilon}_1\cdots\overline{\varepsilon}_n}$, with $\overline{\pm} = \mp$.
- (P3) It preserves exponential growths: $\forall \phi \in \widehat{\mathcal{R}}_{\Omega}, \zeta \in \mathbb{C} \setminus \Omega$

$$|\phi(\zeta^{\pm\cdots\pm})| \leq K e^{c|\zeta|} \implies |(\mathbf{m}\phi)(\zeta)| \leq K e^{c|\zeta|}$$

- (P1) \Rightarrow The resummed function solves the initial problem.
- (P2) \Rightarrow The resummed function is real.
- (P3) \Rightarrow We can take the Laplace transform.

Motivation	Basics of Resurgence theory	Well-behaved averages ○○○●	Application to QFT	Outlook
(Count	ar_) examples of w	vell_beboved ov	erages	

	(P1)	(P2)	(P3)
mur	N	N	\checkmark
mun	\checkmark	\checkmark	N
man	\checkmark	\checkmark	\checkmark

Theorem (Menous):

The Catalan averages $man_{(\alpha,\beta)}$ is a well-behaved average.

Remarks:

- (P1), (P2) and (P3) have a tendancy to exclude each other: not many well-behaved averages!
- Physicists use mun! Big deal?

Motivation	Basics of Resurgence theory	Well-behaved averages	Application to QFT ●○○○	Outlook
Applicati	on to the two-poi	nt function		

$$G(a, L = \log(p^2)) \simeq 1 + A_1(L)a + A_2(L)Ca^2 + A_3(L)a^3 + A_4(L)a^4 + \cdots$$

- Borel transform in z = 1/a.
- Show that $\hat{G}(\zeta, L)$ is a resurgent function with exponential bound $\hat{G}(\zeta, L) \leq Ke^{c|\zeta|}$.
- Apply a well-behaved average
- Apply Laplace transform.
- \Rightarrow $G^{res}(z=1/a,L)$, analytic for $\Re(z)>c$

Motivation	Basics of Resurgence theory	Well-behaved averages 0000	Application to QFT ○●○○	Outlook
The We	ss-Zumino mode	l		

We study a model which is:

- Massless,
- Exactly supersymmetric,
- Without vertex renormalisation.

Motivation	Basics of Resurgence theory	Well-behaved averages	Application to QFT ○●○○	Outlook
The Wess-Zumino model		I		

We study a model which is:

- Massless,
- Exactly supersymmetric,
- Without vertex renormalisation.

Renormalization Group Equation (RGE):

$$\partial_L G(a,L) = \gamma \left(1 + 3a \partial_a\right) G(a,L)$$

Theorem (Bellon, C.):

The solution $\hat{G}(\zeta, L)$ of the RGE and SDE written in the Borel plane is a resurgent function with singular locus $\mathbb{Z}^*/3$.

 $\hat{\gamma}(\zeta) := \partial_L \hat{G}(\zeta, L)|_{L=0}.$ Assumption (based on numerics): along the path γ_+

$$\exists C, D > 0 : |\hat{\gamma}(\zeta)| \leq C, \ |\hat{\gamma}'(\zeta)| \leq D$$

in an open neighborhood of $[R, +\infty[.$

Proposition:

Under the above assumption, along the path γ_+

$$\exists K, \tau > 0 : |\hat{G}(\xi, L)| \le K e^{\tau L|\zeta|}$$

in an open neighborhood of $[R, +\infty[.$

Motivation	Basics of Resurgence theory	Well-behaved averages	Application to QFT ○00●	Outlook
The Wes	s-Zumino model:	consequences		

$$G^{res}(a, L = \log(p^2))$$
 analytic for

$$a \leq rac{1}{ au L} \iff p^2 \leq M_{NP}(a) = e^{1/ au a}.$$

Observations:

- In computations: pole $\Rightarrow M_{NP}(a) = mass$.
- Resurgence \Rightarrow NP contributions \Rightarrow mass generation mechanism.

•
$$M_{NP}(a) \longrightarrow +\infty$$
 as $a \to 0^+$.

Motivation	Basics of Resurgence theory	Well-behaved averages 0000	Application to QFT 0000	Outlook
Outlook				

Resurgence theory

- allows to deal with divergent perturbative series from physics.
- is a powerful tool to compute NP contributions;
- in QFT, these contributions can give rise to a mass generation mechanism;

Motivation	Basics of Resurgence theory	Well-behaved averages 0000	Application to QFT 0000	Outlook
Outlook				

Resurgence theory

- allows to deal with divergent perturbative series from physics.
- is a powerful tool to compute NP contributions;
- in QFT, these contributions can give rise to a mass generation mechanism;

Future projects:

- Characterisation of *f*^{res}.
- Asymptotically free theories \Rightarrow Accelero-summation.
- More complicated theories (QCD?).

THANK YOU FOR YOUR ATTENTION.