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Introduction Free field Interacting field

Two pictures say more than thousand words ...

ρG (t, x1)/ρβ1 , ρ = T00 jG (t, x1)/jN , j = T01

free m > 0 Klein-Gordon in d = 1 + 3,

limit state is stationary and homogeneous but not KMS
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Other models - conformal hydrodynamics in d = 1 + 2

[Bhaseen et al., Nature

Phys. 11 (2015) 5]
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Other models - CFTs in d = 1 + 1

[Bernard & Doyon 2012-2014, Hollands & Longo 2016 (pic.)]
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Plan of the talk

... and other models / initial states, axiomatic analysis in quant. stat.
mech. by [Ruelle 2000], different NESS-setup in 1+3 QFT [Drago,
Faldino, Pinamonti 2017]

[Doyon et. al 2014] have studied the free Klein-Gordon field w/ m ≥ 0 in
d = 1 + n, “semi-box” Fock space picture, sharp contact surface

we analyse the case of a “smooth contact” to have better regularity of
the initial state (Hadamard state), the limit NESS is the same as the one
of [Doyon et. al 2014]

with better regularity of the initial state, we can also construct and
analyse interacting case (at first order)

the interacting NESS does not appear to be closer to equilibrium than the
free NESS, but both are stable w.r.t. spatially localised perturbations
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NESS for the free Klein-Gordon field
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Basic idea

basic idea: construct an initial state ωG by gluing together initial data of
Wightman correl. fct. of ωβ1 , ωβ2 , β1 = (kBT1)−1 6= β2 = (kBT2)−1,
evolve initial data in time

(technical) problem: positivity (unitarity) of correl. fct. for observables in
the contact region and cross-correl.

∆+,G (f , f )
.

= ωG (φ(f )φ(f ))
!

≥ 0 f any test function

φ(f )
.

=

∫
dx φ(x)f (x)

consider ωi , i = 1, 2, 3 with ∆+,i ≥ ∆+,3, i = 1, 2, µi initial data for ∆+,i ,
1 = χ1(x1) + χ2(x1) smooth part. of 1 for x1-axis ⇒ initial data for
∆+,G ≥ 0 constructed by

µG
.

= (χ1 ⊗ χ1)µ1 + (χ2 ⊗ χ2)µ2 + 2(χ1 ⊗ χ2 + χ2 ⊗ χ1)µ3 ≥ µ3
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Thermal domination

we choose χ̇1 = −χ̇2 of compact support = “contact region”, χ̇1

determines contact profile, ω3 is “state in contact region and for
cross-correlations”

correl. fct. of thermal (KMS) state

∆+,β(x1, x2) = ∆+,∞(x1, x2)

+
1

(2π)d−1

∫
dp
ωp

cos (ωp(t1 − t2)− p · (x1 − x2))

exp(βωp)− 1
ωp =

√
|p|2 + m2

∆+,β1 ≥ ∆+,β2 for β1 ≤ β2 ⇒ ω3 can be chosen e.g. as mixture of ωβ
with β ≥ max(β1, β2), for practical computations vacuum is simplest
choice

physically we expect that contact state can also be “hotter” than
left/right reservoirs
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Generalisation of gluing procedure

consider a smooth partition of unity 1 = ψ + (1− ψ) of the time-axis
such that ψ̇ has compact support and ψ vanishes for large negative times

K
.

= � + m2, g
.

= [K , ψ] = ψ̈ + 2ψ̇∂t , ∆
.

= ∆R −∆A

τφ
.

= ∆gφ =

∫
dy∆(x , y)[K , ψ(ty )]φ(y)

is well-defined for any smooth function φ and the identity on solutions of
the KGE, gφ is “thickened initial data” for φ localised in supp ψ̇

for ωi , i = 1, 2, 3 with ∆+,i ≥ ∆+,3, i = 1, 2, σi
.

= τχi = ∆χig

∆+,G
.

= (σ1⊗σ1)∆+,1+(σ2⊗σ2)∆+,2+(σ1⊗σ2+σ2⊗σ1)∆+,3 ≥ ∆+,3

defines Gaussian Hadamard state, ψ(t) = Θ(t) gluing at t = 0
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The limit NESS

consider large time limit of ∆+,G

∆+,N(t1, x1, t2, x2)
.

= lim
τ→∞

∆+,G (t1 + τ, x1, t2 + τ, x2)

for any (admissible) contact state ω3, any contact/switch-on profiles χi ,
ψ we find

∆+,N(x1, x2) = ∆+,∞(x1, x2)

+
1

(2π)d−1

∫
dp
ωp

cos (ωp(t1 − t2)− p · (x1 − x2))

exp(β(p1)ωp)− 1

β(p1) = β1Θ(p1) + β2Θ(−p1)

convergence is O(τ−1), limit exists for any m ≥ 0 and d = 1 + n
(for m = 0, d = 1 + {1, 2} limit of derivatives exist)

∆+,N defines Gaussian Hadamard state ωN
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Chemical potentials and condensates

we obtain analogous results for non-vanishing chemical potentials
(complex φ)

... and for Bose-Einstein condensates
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NESS is mode-wise KMS

form of 2PF suggests: ωN is a state in which “left/right-movers” are
separately in equilibrium at different temperatures β1, β2 (compare with
Unruh state in Schwarzschild)

rigorously: define time-translation αβ1,β2
t , shifts “left/right-moving

Fourier modes” by β1t, β2t, well-def. in the sense of exp. val. in states
with tempered correl. fcts.

→ ωN is a KMS state w.r.t. αβ1,β2
t at inverse temp. β = 1.
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Reasons for non-equilibrium asymptotics

expectation in the literature: generic state will evolve to generalised Gibbs
ensemble (GGE) [Rigol et al. 2007. ...], where entropy is maximised for
all conserved quantities Ii of system, formally

ρ =
1

Z
exp(−

∑
λi Ii )

if only H (and N) conserved, proper thermalisation

formal density matrix for limit NESS ωN is [Doyon et. al 2014]

ρN =
1

Z
exp(−HN) HN = β1HL+β2HR =

β1 + β2

2
H+

β1 − β2

2
(P1+Q)

H =

∫
Rd−1

dxT00(x) P1 =

∫
Rd−1

dxT01(x) Q =

∫
non-local
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Improving thermalisation

expectation [Doyon et. al 2014]: in a non-linear QFT only conserved
quantities are H and Pi , initial state should thermalise, at least in a
different rest frame.

before looking at non-linear QFT, we analysed linear inhomogeneous
models

Kφ = 0 K = � + m2 + U(x1)

two toy-models: U = δ, “phase-shift at x1 = 0” → no (apparent)
improved thermalisation in initial rest-frame
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NESS for the interacting Klein-Gordon field
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Finally ... a proper interaction

consider d = 1 + 3 and Klein-Gordon field with homogeneous linear part
and interaction

V = V (f ) = λ

∫
dx f (x)φ4(x)

f (x) is a coupling-cutoff function, we would like to consider adiabatic
limit f → 1

however direct definition of adiabatic limit is already problematic for
equilibrium states at T > 0, presumably because interacting field does
not behave like a free field at large times [Buchholz & Bros 2002]

solution given by [Fredenhagen & Lindner 2014] in perturbative algebraic
QFT (pAQFT) based on earlier work by [Hollands & Wald 2003]
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pAQFT for pedestrians

in pAQFT [Brunetti, Dütsch, Fredenhagen, Hollands, Wald, . . . ] one
defines interacting observables in the algebra of the free theory A0 which
is “the algebra of normal ordered (Wick) polynomials”

elements of A0 are functionals of smooth field configurations φ : Rd → R

A = A(φ) = a0 +
∞∑
n=1

∫
dx1 . . . dxn φ(x1) . . . φ(xn) f (x1, . . . , xn)

corresponding to

:A(φ) := a01 +
∞∑
n=1

∫
dx1 . . . dxn :φ(x1) . . . φ(xn) : fn(x1, . . . , xn)

fn symm. distributions with prescribed singularity (wave front set), e.g.
fn = f (x1)δn(x1, . . . , xn), but generic fn is not localised on diagonal
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Products

the product ? on A0 is implementing the Wick theorem

A ? B
.

=
∞∑
n=0

1

n!

〈
δnA

δφn
,∆⊗n

+,∞
δnB

δφn

〉
︸ ︷︷ ︸

2n-fold integration

= “sum of contractions with ∆+,∞”

corresponding to :A ::B :=:AB : + . . .

A0 also contains all time ordered product of local (fn ∝ δn) observables

T (A⊗B)
.

=
∞∑
n=0

1

n!

〈
δnA

δφn
, ∆⊗n

F ,∞︸ ︷︷ ︸
renormalised

δnB

δφn

〉
' T (:A ::B :) =:AB : + . . .

∆F ,∞(x1, x2) = ω∞(T (φ(x1)⊗ φ(x2))
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Expectation values and interacting observables

for a Gaussian Hadamard state ω with two-point fct. ∆+,ω, the
expectation value of A ∈ A0 is

ω(A) = γWω (A)|φ=0 Wω
.

= ∆+,ω −∆+,∞

γWω

.
= exp

(〈
Wω(x , y),

δ

δφ(x)
⊗ δ

δφ(y)

〉)
e.g. ω(:φ2(x) :) ' ω(φ2(x)) =

(
φ2(x) + Wω(x , x)

)
|φ=0 = Wω(x , x)

algebra of interacting observables AV ⊂ A0 generated via ? by

RV (A)
.

= T (exp⊗(iV ))?−1 ? T (exp⊗(iV )A) ,

A = T (A1 ⊗ · · · ⊗ An) , Ai local
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Definition of interacting thermal states

construction and adiabatic limit of ωV
β , KMS state for interaction V

[Fredenhagen & Lindner 2014]:

consider ψ ∈ C∞(R) with ψ(t) = 1, t > ε, ψ(t) = 0, t < −ε and
h ∈ C∞0 (R3)

construct ωV
β , V = V (ψh) for obs. localised where ψ = 1, spatial

adiabatic limit h→ 1 exists for m > 0 (m = 0 [Drago, TPH, Pinamonti
2016]) and is independent of ψ, i.e. temporal cutoff “invisible”, temporal
adiabatic limit is “implicit”

Thomas-Paul Hack Non-equilibrium steady states for the Klein-Gordon field in 1+3 dimensions



Introduction Free field Interacting field

Definition of interacting thermal states cont.

for A in AV , V = V (ψh), A localised where ψ = 1, define

ωV
β (A)

.
=
ωβ(A ? UV (iβ))

ωβ(UV (iβ))

UV (t) intertwines free and interacting time evolution

αV
t (RV (A))

.
= RV (αt(A)) = UV (t) αt(RV (A)) U−1

V (t)

UV (t) = 1 +
∞∑
n=1

∫ t

0

dt1· · ·
∫ tn−1

0

dtn αtn (KV ) ? · · · ? αt1 (KV )

KV
.

= RV (V (ψ̇h)) αt(φ(x0, x))
.

= φ(x0 + t, x)

formally UV (t) = exp(it(H0 + V )) exp(−itH0)
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Gluing of interacting KMS states

in order to define a prescription of gluing interacting KMS states,
consider ωG for a free field with mass m2 + δm2 and expand correl. fcts.
perturbatively in δm2

result should correspond to glued state ωV
G in interacting theory with

interaction V =
∫
dx δm

2

2
φ(x)2

→ we define ωV
G – for general polynomial V – perturbatively by

prescribing “Feynman rules”

consider data βi , i = 1, 2, 3, χi , i = 1, 2, ψ used for defining ωG in free
theory as before (ωβ3 is contact state), V = V (ψh)
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Gluing Feynman rules

consider Feynman graphs for ωV
β (RV (A1) ? · · · ?RV (An)), where β is

considered as a dummy variable

these graphs contain propagators of ωβ , and can be computed using
[Fredenhagen & Lindner 2014]

ωV
β (A) =

∞∑
n=0

(−1)n
∫
βSn

ωconn.
β (A⊗ αiu1 (KV )⊗ · · · ⊗ αiun (KV )) du1 . . . dun,

where Sn is n-dim. unit simplex and αiui is considered in the sense of
analytic continuation of expectation values

the graphs have external vertices from the Ai , internal vertices from the
V in RV (Ai ), and internal vertices from KV

.
= RV (V (ψ̇h))
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Gluing Feynman rules (cont.)

for any connected subgraph γ a of such graph, consider all subgraphs of
γ which are connected and contain only KV -vertices, where all lines
connected to these vertices are taken as part of such a subgraph, i.e. the
external vertices of these subgraph are all from the RV (Ai )

let Fγ(x1, . . . , xk) denote the product of the amplitudes of these
subgraphs, where k is the total number of their external vertices

decompose Fγ as

Fγ = (σ1 + σ2)⊗kFγ = Fγ,1 + Fγ,2 + Fγ,3

Fγ,i
.

= σ⊗
n

i Fγ i = 1, 2 Fγ,3
.

= Fγ − Fγ,1 − Fγ,2

replace all propagators in Fγ,i by those of ωβi , replace all other
propagators in γ by those of ωG , perform the simplex integral for βi
(factorises for unconnected subgraphs) and sum over i
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Gluing Feynman rules - example - 2PF at first order

ωV
G

(
RV (φ(x)) ?RV (φ(y))

)
at 1st order, β1,1

.
= β1, β2,2

.
= β2, β1,2

.
= β2,1

.
= β3
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Properties and large time limit of ωV
G

ωV
G is well-defined, positive in the sense of formal power series, equal to
ωV
β1

/ ωV
β2

on “left” / “right” observables

ωV
N = lim

t→∞
ωV
G ◦ αV

t

exists (at first order), both with and without spatial adiabatic limit
h→ 1, independent of ψ, χi , β3, convergence is O(t−1)

only apparent problem for all-order statement: closed expressions
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I-NESS = KMS?

ωV
N is again separately KMS for left-/right-movers at β1, β2 (at first order)

ωV
N can not be KMS in a different rest-frame, because it is not at 0th

order (ωN)

→ proper thermalisation is (presumably, and unsurprisingly) a
non-perturbative effect

cross-check: production of “relative entropy” [..., Jakšić & Pillet
2001-2002, Drago, Faldino & Pinamonti 2017] between ωV

N and ωN is
vanishing → ωV

N and ωN are “thermodynamically similar”
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NESS are stable

[Drago, Faldino, Pinamonti 2017] showed that KMS state ωV
β is stable

under spatially localised perturbations.

ωN and ωV
N have the same property! proved at first order, expected to

hold at all orders:

V = V (ψhV ) with hV → 1, W = W (hW ) = W (ψhW ), hW ∈ C∞0 (R3)

lim
t→∞

ωV
N ◦ α

V+W (hW )
t = ω

V+W (hW )
N

lim
t→∞

ωN ◦ αW (hW )
t = ω

W (hW )
N

interpretation: ωV
N stable w.r.t. αβ1,β2

t and [αβ1,β2
t , α

V+W (hW )
t ] = 0.
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Thanks a lot for your attention!
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