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Introduction

Two pictures say more than thousand words ...

pa(t,x)/pgr, P = Too je(t:xa)/jn, j= Ta

free m > 0 Klein-Gordon in d =1 + 3,

limit state is stationary and homogeneous but not KMS



Introduction

Other models - conformal hydrodynamics in d =1 + 2

Energy density
T,=7Tg=19

[Bhaseen et al., Nature
Phys. 11 (2015) 5]




Introduction

Other models - CFTsind=1+1
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~_ impenetrable walls
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left reservoir at fp, probe right reservoir at p

[Bernard & Doyon 2012-2014, Hollands & Longo 2016 (pic.)]



Introduction

Plan of the talk

@ ... and other models / initial states, axiomatic analysis in quant. stat.
mech. by [Ruelle 2000], different NESS-setup in 143 QFT [Drago,
Faldino, Pinamonti 2017]

@ [Doyon et. al 2014] have studied the free Klein-Gordon field w/ m > 0 in
d =1+ n, “"semi-box" Fock space picture, sharp contact surface

@ we analyse the case of a “smooth contact” to have better regularity of
the initial state (Hadamard state), the limit NESS is the same as the one
of [Doyon et. al 2014]

@ with better regularity of the initial state, we can also construct and
analyse interacting case (at first order)

@ the interacting NESS does not appear to be closer to equilibrium than the
free NESS, but both are stable w.r.t. spatially localised perturbations



Free field

NESS for the free Klein-Gordon field



Free field

Basic idea

@ basic idea: construct an initial state wg by gluing together initial data of
Wightman correl. fct. of ws,, wg,, B1 = (ke T1)™* # B2 = (ke T2) 7",
evolve initial data in time

@ (technical) problem: positivity (unitarity) of correl. fct. for observables in
the contact region and cross-correl.

Ay 6(F, ) = we(d(F)d(F)) é 0 f any test function

o(F) = / dx p(x)F (x)

@ consider wj, i =1,2,3 with A} ; > A4 3, i = 1,2, p; initial data for A4 ;,
1 = x1(x1) + x2(x1) smooth part. of 1 for x;-axis = initial data for
Ay ¢ > 0 constructed by

pe =@ x)m+0e@x2) +2(x1 @x2 +x2 @ x1)us > U3



Free field

Thermal domination

@ we choose x1 = —x2 of compact support = “contact region”, x1
determines contact profile, ws is “state in contact region and for
cross-correlations”

@ correl. fct. of thermal (KMS) state

AL g(x1, %) = At o (x1, x2)

1 [dpcos (wp(t1 —t2) —p- (x1 — x2)) _ 2 2
et e exp(Bup) — 1 “p = VipEEm

@ Ay g > A4, for f1 < B2 = ws can be chosen e.g. as mixture of wg

with 8 > max(S1, B2), for practical computations vacuum is simplest
choice

@ physically we expect that contact state can also be “hotter” than
left/right reservoirs



Free field

Generalisation of gluing procedure

@ consider a smooth partition of unity 1 =t + (1 — 1) of the time-axis
such that ¥ has compact support and v vanishes for large negative times

@ K=0O+m? g=[K, 0] =1+ 28, A=Ar—Anp

6= Dgd = / dyA(x, y)[K, 6 (8,)]6(y)

is well-defined for any smooth function ¢ and the identity on solutions of
the KGE, g¢ is “thickened initial data” for ¢ localised in supp ¥

@ forwi, i=1,23with AL;>Ay3, i=1,2 0 =7xi =Axig
A, 6 = (01®01)A1 1+ (02002) A 2+ (01R024+02Q@01) Ay 3 > Ay

defines Gaussian Hadamard state, ¢(t) = ©(t) gluing at t =0



Free field

The limit NESS

@ consider large time limit of A, ¢

A+7N(t1,X1,t2,X2)i |Lm A+,G(t1+T7X1,t2+T7X2)
T oo

@ for any (admissible) contact state w3, any contact/switch-on profiles X,

1) we find
AL n(x, %) = Af oo(x1, x2)
n 1 dp cos (wp(ts — t2) — p - (x1 — x2))
T 1) wp exp(Blpws) -1

B(p1) = S10(p1) + B20(—p1)

@ convergence is O(771), limit exists for any m>0and d =1+ n
(for m=0,d =1+ {1,2} limit of derivatives exist)

@ A, y defines Gaussian Hadamard state wpy



Free field

Chemical potentials and condensates

@ we obtain analogous results for non-vanishing chemical potentials
(complex ¢)

@ ... and for Bose-Einstein condensates



Free field

NESS is mode-wise KMS

@ form of 2PF suggests: wy is a state in which “left/right-movers” are
separately in equilibrium at different temperatures 81, 5> (compare with
Unruh state in Schwarzschild)

@ rigorously: define time-translation afl’ﬁz, shifts “left/right-moving

Fourier modes” by Bit, B2t, well-def. in the sense of exp. val. in states
with tempered correl. fcts.

@ — wy is a KMS state w.r.t. afl"BZ at inverse temp. 8 = 1.



Free field

Reasons for non-equilibrium asymptotics

@ expectation in the literature: generic state will evolve to generalised Gibbs
ensemble (GGE) [Rigol et al. 2007. ...], where entropy is maximised for
all conserved quantities /; of system, formally

—exp Z)\I)

if only H (and N) conserved, proper thermalisation

@ formal density matrix for limit NESS wy is [Doyon et. al 2014]

/31+/5'2

pN = z exp(—Hn)  Hy = fiHi+pHr = ﬂ2(P1+Q)

V4

H:/ dx Too(x) Py :/ dx Toi(x) Q:/ non-local
Rd—1 Rd—1



Free field

Improving thermalisation

@ expectation [Doyon et. al 2014]: in a non-linear QFT only conserved
quantities are H and P;, initial state should thermalise, at least in a
different rest frame.

@ before looking at non-linear QFT, we analysed linear inhomogeneous
models

Ke=0 K=0O+m"+U(x")

@ two toy-models: U = §, “phase-shift at x! = 0" — no (apparent)
improved thermalisation in initial rest-frame



Interacting field

NESS for the interacting Klein-Gordon field



Interacting field

Finally ... a proper interaction

@ consider d =1+ 3 and Klein-Gordon field with homogeneous linear part
and interaction

V=V()= )\/dx f(x)p*(x)

@ f(x) is a coupling-cutoff function, we would like to consider adiabatic
limit f — 1

@ however direct definition of adiabatic limit is already problematic for
equilibrium states at T > 0, presumably because interacting field does
not behave like a free field at large times [Buchholz & Bros 2002]

@ solution given by [Fredenhagen & Lindner 2014] in perturbative algebraic
QFT (pAQFT) based on earlier work by [Hollands & Wald 2003]



Interacting field

pAQFT for pedestrians

@ in pAQFT [Brunetti, Diitsch, Fredenhagen, Hollands, Wald, ...] one
defines interacting observables in the algebra of the free theory 2% which
is “the algebra of normal ordered (Wick) polynomials”

@ elements of .a% are functionals of smooth field configurations ¢ : R? — R
A=A(4) = a0 —Q—i/dxl...dxn O(x1) ... P(xn) F(x1y...,%n)
n=1
corresponding to
(A(@) = a0l + i / dxy...dxy tp(x1) ... d(xn): fa(x1,. .., Xn)
n=1

f, symm. distributions with prescribed singularity (wave front set), e.g.
fo = f(x1)dn(x1, ..., xn), but generic f, is not localised on diagonal



Interacting field

Products

@ the product x on % is implementing the Wick theorem

AxB = Z < e A f$¢€> = “sum of contractions with A o."

2n-fold integration

corresponding to : A::B:=:AB: +...

@ . also contains all time ordered product of local (f, o d,) observables

1 /6"A 5"B

T(A®B) :E — A®" ~ T(GA:B:))=:AB:+...

( ® :On <5¢,, Foo (5¢7"> ( ) +
renormalised

AF 0o(x1, %) = Woo (T (d(x1) ® ¢(x2))



Interacting field

Expectation values and interacting observables

@ for a Gaussian Hadamard state w with two-point fct. Ay ., the
expectation value of A € & is

w(A) =y, (A)le=0  Wo =Dt 0 - A4

. ) )
W = P (<W“(X’”’ 5909 © 56(y) >)
eq w(E(0)) 2 w(@(0) = (620 + Welx.3) oo = Welx.%)

@ algebra of interacting observables @7y C 2% generated via x by
Ry (A) = T(expg(iV)) ™ * T(expg(iV)A),

A=TA® - ®A,), Alocal



Interacting field

Definition of interacting thermal states

@ construction and adiabatic limit of wg, KMS state for interaction V
[Fredenhagen & Lindner 2014]:

@ consider ¥ € C*°(R) with ¢(t) =1, t > ¢, ¥(t) =0, t < —e and
h € C§°(R?)

@ construct wy, V = V/(iph) for obs. localised where ¢ = 1, spatial
adiabatic limit h — 1 exists for m > 0 (m = 0 [Drago, TPH, Pinamonti
2016]) and is independent of 1, i.e. temporal cutoff “invisible”, temporal
adiabatic limit is “implicit”



Interacting field

Definition of interacting thermal states cont.

@ for Ain &, V = V(ibh), A localised where ¢ = 1, define

wa(Ax Uv(iB))

v -
s (A) = = (i)

@ Uy(t) intertwines free and interacting time evolution

al (Bv(A)) = v (ax(A)) = Uv(t) ar(%v(A)) Uy (t)

> t th—1
Uv(t)zl—f—Z/ dt1-~~/ dt, Oétn(K\/)*~~~*Oztl(K\/)
n=1"0 0

Kv = Zv(V(9h))  a¢(x",x)) = ¢(x" + t,x)

@ formally Uy (t) = exp(it(Ho + V)) exp(—itHo)



Interacting field

Gluing of interacting KMS states

@ in order to define a prescription of gluing interacting KMS states,
consider wg for a free field with mass m? + dm? and expand correl. fcts.
perturbatively in §m?

@ result should correspond to glued state wy in interacting theory with
interaction V = [ dx %7 ¢(x)?

@ — we define wf — for general polynomial V — perturbatively by
prescribing “Feynman rules”

@ consider data §;, i = 1,2,3, xi, i = 1,2, 9 used for defining w¢ in free
theory as before (wpg, is contact state), V = V(¢h)



Interacting field

Gluing Feynman rules

@ consider Feynman graphs for wy (%v (A1) x - - - x %v(An)), where 3 is
considered as a dummy variable

@ these graphs contain propagators of wg, and can be computed using
[Fredenhagen & Lindner 2014]

w%/(A)=Z(—1)”/ wE™ (A® ain (Kv) ® - -+ ® i, (Kv)) dun . . . dup,

where S, is n-dim. unit simplex and «;,, is considered in the sense of
analytic continuation of expectation values

@ the graphs have external vertices from the A;, internal vertices from the
V in Zv(A;), and internal vertices from Ky = Zv(V (¥ h))



Interacting field

Gluing Feynman rules (cont.)

@ for any connected subgraph - a of such graph, consider all subgraphs of
~ which are connected and contain only Ky-vertices, where all lines
connected to these vertices are taken as part of such a subgraph, i.e. the
external vertices of these subgraph are all from the Zv(A;)

@ let Fy(xi,...,xx) denote the product of the amplitudes of these
subgraphs, where k is the total number of their external vertices

@ decompose F, as
Fy= (014 0)%F, =F1+Fyo+ Fy3
F%iiff:g)n,:w =12 Fra=F —Fa1—-F.»
@ replace all propagators in F, ; by those of wg,, replace all other

propagators in 7y by those of wg, perform the simplex integral for 3;
(factorises for unconnected subgraphs) and sum over i



Interacting field
Gluing Feynman rules - example - 2PF at first order

G G ﬁt/
,/"\\ /’—\\ /7T
‘\ l’ + ‘\ /, + E |\ ,I‘
N_7 \N_z 2',.7' N
G G By By /
—<— A s w e V(yh)
—<<— A, —<— (0®)A, = V(yh)
3

w& (Bv(p(x)) x Zv($(y))) at st order, B11 = B1, B = Bo, P2 = Bo1 = B3



Interacting field

Properties and large time limit of w

@ w! is well-defined, positive in the sense of formal power series, equal to
wy | wk, on “left” / “right” observables

v . v v
wy = lim wg o oy
t—o0

exists (at first order), both with and without spatial adiabatic limit
h — 1, independent of 1, X/, B3, convergence is O(t™')

@ only apparent problem for all-order statement: closed expressions



Interacting field

I-NESS = KMS?

@ wy is again separately KMS for left-/right-movers at 1, B (at first order)

@ wy can not be KMS in a different rest-frame, because it is not at Oth
order (wn)

@ — proper thermalisation is (presumably, and unsurprisingly) a
non-perturbative effect

@ cross-check: production of “relative entropy” [..., Jaksi¢ & Pillet
2001-2002, Drago, Faldino & Pinamonti 2017] between wy and wy is
vanishing — wy and wy are “thermodynamically similar”



Interacting field

NESS are stable

@ [Drago, Faldino, Pinamonti 2017] showed that KMS state wy is stable
under spatially localised perturbations.

@ wy and wy have the same property! proved at first order, expected to
hold at all orders:

@ V = V(yphy) with hy — 1, W = W(hw) = W(bhw), hw € C°(R?)

- Vo VW(h V+W(h
lim wy ooy TV (W) =wy’ (hw)
t— o0
. w(h w(h
lim wy o o (hw) :wN( w)
t—o00
. . VAW(h
@ interpretation: w), stable w.r.t. a1 and [af172 o/ TV = 0.



Interacting field

Thanks a lot for your attention!
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