Classical dynamics, arrow of time, and genesis of the Heisenberg commutation relations

Detlev Buchholz & Klaus Fredenhagen

Mathematics of interacting QFT models University of York, July 1st 2019 Perturbative AQFT led to a new constructive scheme for quantum physics

Ingredients:

- classical systems, orbits in configuration space, Lagrangeans
- operations (perturbations of system), labelled by functionals on orbits (fixed by potentials, durations in time)
- arrow (direction) of time; entering into the microworld by order (succession) of operations

Result: dynamical C*-algebra for given Lagrangean; commutation relations *etc* arise from its intrinsic structure.

New look at quantum physics; no a priori "quantization rules"

This talk: application of scheme to classical mechanics

Classical mechanics

Notation:

N particles in \mathbb{R}^{s} , equal masses, distinguishable positions $\mathbf{x} = (\mathbf{x}_{1}, \dots, \mathbf{x}_{N}) \in \mathbb{R}^{sN}$ continuous orbits $\mathbf{x} : \mathbb{R} \to \mathbb{R}^{sN}$, family denoted by \mathscr{C} , loops $\mathbf{x}_{0} : \mathbb{R} \to \mathbb{R}^{sN}$ with compact support, form vector space $\mathscr{C}_{0} \subset \mathscr{C}$, velocities $\dot{\mathbf{x}} : \mathbb{R} \to \mathbb{R}^{sN}$

Perturbations:

(given by potentials, time dependencies) are described by space \mathscr{F} of functionals $F: \mathscr{C} \to \mathbb{R}$

$$F[\mathbf{x}] \doteq \int dt F(t, \mathbf{x}(t))$$

$$t, \mathbf{x} \mapsto F(t, \mathbf{x}) = \mathbf{f}_0(t) \mathbf{x} + \sum_k g_k(t) V_k(\mathbf{x})$$

where $f_0 \in \mathscr{C}_0, g_k \in \mathcal{D}(\mathbb{R}^s)$, V_k continuous, bounded **Support** of F: union of supports of underlying test functions **Shifts:** $F \mapsto F^{\mathbf{x}_0}, \mathbf{x}_0 \in \mathscr{C}_0$ given by $\mathbf{x} \mapsto F^{\mathbf{x}_0}[\mathbf{x}] \doteq F[\mathbf{x} + \mathbf{x}_0]$

Lagrangeans:

$$t\mapsto \mathcal{L}(\boldsymbol{x}(t))\doteq (1/2)\,\dot{\boldsymbol{x}}(t)^2-V(\boldsymbol{x}(t))\,,\quad \boldsymbol{x}\in\mathscr{C}\,;$$

action $\int dt \mathcal{L}(\mathbf{x}(t))$; relative action for loops $\mathbf{x}_0 \in \mathscr{C}_0$:

$$\delta \mathcal{L}(\boldsymbol{x}_0)[\boldsymbol{x}] = \int dt \, \chi(t) \big(\mathcal{L}(\boldsymbol{x}(t) + \boldsymbol{x}_0(t)) - \mathcal{L}(\boldsymbol{x}(t)) \big)$$

with $\chi \upharpoonright \text{supp } \mathbf{x}_0 = 1$ (**note:** element of \mathscr{F} , linear term \mathbf{x} appears)

Stationary points of action: Euler-Lagrange equation

$$\ddot{\boldsymbol{x}}(t) + \partial V(\boldsymbol{x}(t)) = 0$$

Propagators: "inverses" of $K = -\frac{d^2}{dt^2}$ *i.e.* $K\Delta_{\bullet} = \Delta_{\bullet}K = 1$ advanced Δ_A , retarded Δ_R , mean $\Delta_D \doteq (1/2)(\Delta_A + \Delta_R)$ commutator function: $\Delta \doteq \Delta_R - \Delta_A$, $K\Delta = \Delta K = 0$ Step 1: given a Lagrangean \mathcal{L} , construct a dynamical group $\mathcal{G}_{\mathcal{L}}$

Definition: $\mathcal{G}_{\mathcal{L}}$ is the free group generated by symbols $S_{\mathcal{L}}(F)$, $F \in \mathscr{F}$, modulo the relations

- (i) $S_{\mathcal{L}}(F) = S_{\mathcal{L}}(F^{\boldsymbol{x}_0} + \delta \mathcal{L}(\boldsymbol{x}_0))$ for all $F \in \mathscr{F}, \ \boldsymbol{x}_0 \in \mathscr{C}_0$
- (ii) $S_{\mathcal{L}}(F_1)S_{\mathcal{L}}(F_2) = S_{\mathcal{L}}(F_1 + F_2)$ whenever F_1 has support in the future of F_2

Remarks: the elements of $\mathcal{G}_{\mathcal{L}}$ describe the effects of perturbations on the underlying system without stipulating their concrete action

(i) F = 0 implies $S_{\mathcal{L}}(\delta \mathcal{L}(\boldsymbol{x}_0)) = S(0) = 1$ (Euler-Lagrange equation)

(ii) constant functionals $F_h : \mathscr{F} \to h \in \mathbb{R}$ have arbitrary support in time; thus $S(F)S(F_h) = S(F + F_h) = S(F_h)S(F)$ (form central subgroup) Step 2: proceed from $\mathcal{G}_{\mathcal{L}}$ to *-algebra $\mathcal{A}_{\mathcal{L}}$ sums: $\sum cS$, $c \in \mathbb{C}$, $S \in \mathcal{G}_{\mathcal{L}}$ span $\mathcal{A}_{\mathcal{L}}$ adjoints: $(\sum cS)^* \doteq \sum \overline{c}S^{-1}$ (*S* unitary operators) products: fixed by distributive law fixing scale: $S(F_h) = e^{ih} 1$, $h \in \mathbb{R}$ (amounts to atomic units) norm: algebra has faithful states and thus a (maximal) C*-norm

Definition: Given \mathscr{L} , the corresponding dynamical algebra $\mathcal{A}_{\mathcal{L}}$ is the C*-algebra determined by the dynamical group $\mathcal{G}_{\mathcal{L}}$.

No quantization conditions, functional integrals *etc*; only classical concepts used ("common language", cf. Bohr's doctrine)

Derivation of Heisenberg relations

Consider non-interacting Lagrangean

 $t\mapsto \mathcal{L}_0(\pmb{x}(t))=(1/2)\,\dot{\pmb{x}}(t)^2$

Simplest (linear) perturbations $\langle \mathbf{f}_0, \mathbf{x} \rangle \doteq \int dt \, \mathbf{f}_0(t) \, \mathbf{x}(t)$

$$\boldsymbol{x} \mapsto F_{\boldsymbol{f}_0}[\boldsymbol{x}] \doteq \langle \boldsymbol{f}_0, \boldsymbol{x} \rangle + (1/2) \langle \boldsymbol{f}_0, \Delta_D \boldsymbol{f}_0 \rangle, \quad \boldsymbol{f}_0 \in \mathscr{C}_0$$

Definition: $W(f_0) \doteq S_{\mathcal{L}_0}(F_{f_0}), f_0 \in \mathscr{C}_0.$

Theorem

(1)
$$W(K\boldsymbol{x}_0) = 1$$
, $\boldsymbol{x}_0 \in \mathscr{C}_0$

$$(2) \ \ W(f_0)W(\boldsymbol{g}_0) = e^{-(i/2)\langle f_0, \Delta \boldsymbol{g}_0 \rangle}W(f_0 + \boldsymbol{g}_0), \quad f_0, \boldsymbol{g}_0 \in \mathscr{C}_0$$

Interpretation: Weyl operators $W(\boldsymbol{x}_0) \doteq e^{i \langle \boldsymbol{x}_0, \boldsymbol{Q} \rangle}, \, \boldsymbol{x}_0 \in \mathscr{C}_0$

(1) generators solutions of Heisenberg eq.: $t \mapsto \boldsymbol{Q}(t) = \boldsymbol{Q} + t \dot{\boldsymbol{Q}}$

(2)
$$[\boldsymbol{Q}_k, \dot{\boldsymbol{Q}}_l] = i\delta_{kl}\mathbf{1}, \quad [\boldsymbol{Q}_k, \boldsymbol{Q}_l] = [\dot{\boldsymbol{Q}}_k, \dot{\boldsymbol{Q}}_l] = \mathbf{0}$$

Physics: operators of position \boldsymbol{Q} and momentum $\boldsymbol{P} \doteq \boldsymbol{Q}$

Proofs:

(1) (dynamics)
$$\mathbf{x}_0 \in \mathscr{C}_0$$
 recall: $K = -\frac{d^2}{dt^2}$
 $\mathbf{x} \mapsto F_{K\mathbf{x}_0}[\mathbf{x}] = \langle K\mathbf{x}_0, \mathbf{x} \rangle + (1/2) \langle K\mathbf{x}_0, \Delta_D K\mathbf{x}_0 \rangle$
 $= \langle \dot{\mathbf{x}}_0, \dot{\mathbf{x}} \rangle + (1/2) \langle \dot{\mathbf{x}}_0, \dot{\mathbf{x}}_0 \rangle = \delta \mathcal{L}_0(\mathbf{x}_0)[\mathbf{x}]$
hence $S_{\mathcal{L}_0}(F_{K\mathbf{x}_0}) = S_{\mathcal{L}_0}(\delta \mathcal{L}_0(\mathbf{x}_0)) = S_{\mathcal{L}_0}(0) = 1;$
similarly $S_{\mathcal{L}_0}(F_{\mathbf{f}_0 + K\mathbf{x}_0}) = S_{\mathcal{L}_0}(F_{\mathbf{f}_0})$

(2) (Weyl relations) Given f_0, g_0 , let $f_0 + K x_0$ be later than g_0 . Then $S_{\mathcal{L}_0}(F_{f_0})S_{\mathcal{L}_0}(F_{g_0}) = S_{\mathcal{L}_0}(F_{f_0+Kx_0})S_{\mathcal{L}_0}(F_{g_0}) = S_{\mathcal{L}_0}(F_{f_0+Kx_0} + F_{g_0})$. Linearity of $F_f[x]$ with regard to x implies

$$S_{\mathcal{L}_{0}}(F_{f_{0}+Kx_{0}}+F_{g_{0}}) = S_{\mathcal{L}_{0}}(F_{f_{0}+Kx_{0}+g_{0}}+F_{h_{f_{0}+Kx_{0},g_{0}}})$$
$$= e^{ih_{f_{0}+Kx_{0},g_{0}}}S_{\mathcal{L}_{0}}(F_{f_{0}+Kx_{0}+g_{0}}) = e^{ih_{f_{0}+Kx_{0},g_{0}}}S_{\mathcal{L}_{0}}(F_{f_{0}+g_{0}})$$

where

$$h_{\boldsymbol{f}_0+\boldsymbol{K}\boldsymbol{x}_0,\boldsymbol{g}_0} = \cdots = -(1/2)\langle \boldsymbol{f}_0 + \boldsymbol{K}\boldsymbol{x}_0, \Delta \boldsymbol{g}_0 \rangle = -(1/2)\langle \boldsymbol{f}_0, \Delta \boldsymbol{g}_0 \rangle. \qquad \checkmark$$

Proofs:

(1) (dynamics)
$$\mathbf{x}_0 \in \mathscr{C}_0$$
 recall: $\mathcal{K} = -\frac{d^2}{dt^2}$
 $\mathbf{x} \mapsto \mathcal{F}_{\mathcal{K}\mathbf{x}_0}[\mathbf{x}] = \langle \mathcal{K}\mathbf{x}_0, \mathbf{x} \rangle + (1/2) \langle \mathcal{K}\mathbf{x}_0, \Delta_D \mathcal{K}\mathbf{x}_0 \rangle$
 $= \langle \dot{\mathbf{x}}_0, \dot{\mathbf{x}} \rangle + (1/2) \langle \dot{\mathbf{x}}_0, \dot{\mathbf{x}}_0 \rangle = \delta \mathcal{L}_0(\mathbf{x}_0)[\mathbf{x}]$
hence $S_{\mathcal{L}_0}(\mathcal{F}_{\mathcal{K}\mathbf{x}_0}) = S_{\mathcal{L}_0}(\delta \mathcal{L}_0(\mathbf{x}_0)) = S_{\mathcal{L}_0}(0) = 1;$
similarly $S_{\mathcal{L}_0}(\mathcal{F}_{\mathbf{f}_0 + \mathcal{K}\mathbf{x}_0}) = S_{\mathcal{L}_0}(\mathcal{F}_{\mathbf{f}_0})$
(2) (Weyl relations) Given $\mathbf{f}_0, \mathbf{g}_0$, let $\mathbf{f}_0 + \mathcal{K}\mathbf{x}_0$ be later than \mathbf{g}_0 . Then

$$S_{\mathcal{L}_0}(F_{\boldsymbol{f}_0})S_{\mathcal{L}_0}(F_{\boldsymbol{g}_0})=S_{\mathcal{L}_0}(F_{\boldsymbol{f}_0+\boldsymbol{K}\boldsymbol{x}_0})S_{\mathcal{L}_0}(F_{\boldsymbol{g}_0})=S_{\mathcal{L}_0}(F_{\boldsymbol{f}_0+\boldsymbol{K}\boldsymbol{x}_0}+F_{\boldsymbol{g}_0}).$$

Linearity of $F_f[\mathbf{x}]$ with regard to \mathbf{x} implies

$$S_{\mathcal{L}_0}(F_{f_0+Kx_0}+F_{g_0}) = S_{\mathcal{L}_0}(F_{f_0+Kx_0+g_0}+F_{h_{f_0+Kx_0,g_0}})$$

= $e^{ih_{f_0+Kx_0,g_0}} S_{\mathcal{L}_0}(F_{f_0+Kx_0+g_0}) = e^{ih_{f_0+Kx_0,g_0}} S_{\mathcal{L}_0}(F_{f_0+g_0})$

where

$$h_{\boldsymbol{f}_0+\boldsymbol{K}\boldsymbol{x}_0,\boldsymbol{g}_0} = \cdots = -(1/2)\langle \boldsymbol{f}_0 + \boldsymbol{K}\boldsymbol{x}_0, \Delta \boldsymbol{g}_0 \rangle = -(1/2)\langle \boldsymbol{f}_0, \Delta \boldsymbol{g}_0 \rangle. \qquad \checkmark$$

Interacting theories

Change of Lagrangean (potentials V as before)

$$t\mapsto \mathcal{L}(\boldsymbol{x}(t))=\mathcal{L}_0(\boldsymbol{x}(t))-V(\boldsymbol{x}(t))$$

temporary perturbation (χ smooth characteristic function)

$$t \mapsto \mathcal{L}_{\chi}(\boldsymbol{x}(t)) \doteq \mathcal{L}_{0}(\boldsymbol{x}(t)) - \underbrace{\chi(t)V(\boldsymbol{x}(t))}_{V_{\chi}(t,\boldsymbol{x}(t))}$$

Definition: (cf. relative scattering matrices)

$$\mathcal{S}_{\mathcal{L}_{\chi}}(F)\doteq\mathcal{S}_{\mathcal{L}_{0}}(-V_{\chi})^{-1}\mathcal{S}_{\mathcal{L}_{0}}(F-V_{\chi})\in\mathcal{A}_{\mathcal{L}_{0}},\quad F\in\mathscr{F}$$

Properties: (elementary computation)

$$S_{\mathcal{L}_{\chi}}(F^{\mathbf{x}_{0}} + \delta \mathcal{L}_{\chi}(\mathbf{x}_{0})) = S_{\mathcal{L}_{\chi}}(F)$$
(i)
$$S_{\mathcal{L}_{\chi}}(F_{1})S_{\mathcal{L}_{\chi}}(F_{2}) = S_{\mathcal{L}_{\chi}}(F_{1} + F_{2})$$
if F_{1} is later than F_{2} (ii)

Conclusion: defining relations for dynamical algebra $\mathcal{A}_{\mathcal{L}_{\chi}} \simeq \mathcal{A}_{\mathcal{L}_{0}}$

Goal: limit $\chi \to 1$ (global dynamics) Note: Let $\mathbb{I} \subset \mathbb{R}$ and $\chi \upharpoonright \mathbb{I} = 1$, then $\delta \mathcal{L}_{\chi}(\mathbf{x}_0) = \delta \mathcal{L}(\mathbf{x}_0)$ if $\mathbf{x}_0 \in \mathscr{C}_0(\mathbb{I})$

Definition: $\mathcal{A}_{\mathcal{L}_{\chi}}(\mathbb{I})$ algebra generated by $\mathcal{S}_{\mathcal{L}_{\chi}}(F), F \in \mathscr{F}(\mathbb{I}).$

Observation: $\mathcal{A}_{\mathcal{L}_{\chi}}(\mathbb{I}) \simeq \mathcal{A}_{\mathcal{L}}(\mathbb{I})$ and algebras $\mathcal{A}_{\mathcal{L}_{\chi}}(\mathbb{I})$ for different χ are related by inner automorphisms of $\mathcal{A}_{\mathcal{L}_{0}}$

Detailed analysis: for increasing intervals \mathbb{I}_n and functions χ_n there exist injective homomorphisms $\beta_n : \mathcal{A}_{\mathcal{L}}(\mathbb{I}_n) \to \mathcal{A}_{\mathcal{L}_0}(\mathbb{I}_{n+1})$ such that

$$\gamma \doteq \lim_{n} \beta_n$$

point-wise in norm on $\mathcal{A}_{\mathcal{L}} = \overline{\bigcup_{\mathbb{I}} \mathcal{A}_{\mathcal{L}}(\mathbb{I})}$.

Theorem

Let $\mathcal{L}_0, \mathcal{L}$ be Lagrangeans. There exist monomorphisms $\gamma : \mathcal{A}_{\mathcal{L}} \to \mathcal{A}_{\mathcal{L}_0}$ such that $\gamma(\mathcal{A}_{\mathcal{L}}(\mathbb{I})) \subset \mathcal{A}_{\mathcal{L}_0}(\widehat{\mathbb{I}})$ for any \mathbb{I} and bounded $\widehat{\mathbb{I}} \supset \mathbb{I}$. Consider Schrödinger representation of $\boldsymbol{Q}, \boldsymbol{P}$ on \mathcal{H}_S with dynamics \mathcal{L}_0 Claim: operators S(F) are represented by time ordered exponentials. **Problem:** For $F \in \mathscr{F}$, determine $T(F) \doteq T e^{i \int_{-\infty}^{\infty} dt F(\boldsymbol{Q}+t\boldsymbol{P})}$

• bounded functionals *F*_b: Dyson expansion

 $T(F_b) = 1 + \sum_k i^k \int_{-\infty}^{\infty} dt_1 \dots \int_{-\infty}^{t_{k-1}} dt_k F_b(\mathbf{Q} + t_1 \mathbf{P}_1) \cdots F_b(\mathbf{Q} + t_k \mathbf{P}_1)$ • linear (unbounded) *L*: solution of linear differential equation $T(L_{f_0}) = e^{i \int dt f_0(t)(\mathbf{Q} + t\mathbf{P})} e^{-(i/2)\langle f_0, \Delta_D f_9 \rangle} = W(f_0) e^{-(i/2)\langle f_0, \Delta_D f_9 \rangle}$

• combination: $\overline{T}(F_b + L_{f_0}) \doteq T(F_b^{-\Delta_A f_0}) T(L_{f_0})$

Ansatz based on results of structural analysis; it has all required properties

Proof: E.g. "dynamical relation" for bounded functionals F_b

$$\overline{T}(F_b^{\boldsymbol{x}_0} + \delta \mathcal{L}_0(\boldsymbol{x}_0)) = \overline{T}(F_b^{\boldsymbol{x}_0} + F_{\boldsymbol{K}\boldsymbol{x}_0}) = \overline{T}(F_b^{\boldsymbol{x}_0} + F_h + L_{\boldsymbol{K}\boldsymbol{x}_0})$$
$$= T(F_b^{\boldsymbol{x}_0 - \Delta_A \boldsymbol{K}\boldsymbol{x}_0}) e^{ih} T(L_{\boldsymbol{K}\boldsymbol{x}_0}) = T(\underbrace{F_b^{\boldsymbol{x}_0 - \Delta_A \boldsymbol{K}\boldsymbol{x}_0}}_{F_b}) \underbrace{T(F_{\boldsymbol{K}\boldsymbol{x}_0})}_{1} = \overline{T}(F_b) \quad \checkmark$$

Definition: Representation (π_S, \mathcal{H}_S) of $\mathcal{A}_{\mathcal{L}_0}$ fixed by putting $\pi_S(\mathcal{S}_{\mathcal{L}_0}(F)) \doteq \overline{T}(F), \quad F \in \mathscr{F}.$

Other algebras $\mathcal{A}_{\mathcal{L}}$ are represented by $(\pi, \mathcal{H}_{\mathcal{S}})$, where $\pi \doteq \pi_{\mathcal{S}} \circ \gamma$

Theorem

(i) The representations (π, \mathcal{H}_S) of $\mathcal{A}_{\mathcal{L}}$ are "regular" and irreducible (ii) This holds also true for $\pi \upharpoonright \mathcal{A}_{\mathcal{L}}(\mathbb{I})$ for any finite interval \mathbb{I}

Observables, statistics and operations

Task: Using only operations, (i) compute probability that a state has the property described by a projection E and (ii) determine properties of the state after the operation.

Definition: Let (π, \mathcal{H}) be irreducible representation of $\mathcal{A}_{\mathcal{L}}$, let $\Omega \in \mathcal{H}$, and consider vector state $\omega(\cdot) = \langle \Omega, \pi(\cdot) \Omega \rangle$ on $\mathcal{A}_{\mathcal{L}}$. The operations $S \in \mathcal{A}_{\mathcal{L}}$ induce maps $\omega \mapsto \omega_{S} \doteq \omega \circ \text{Ad } S^{-1}$

Transition probability: ("fidelity of operation")

$$\omega \cdot \omega_{\mathcal{S}} \doteq |\langle \Omega, \pi(\mathcal{S}) \Omega \rangle|^2 = |\omega(\mathcal{S})|^2$$

Theorem

Let $\mathcal{H}_N \subset \mathcal{H}$ be finite dimensional, let E be infinite projection, and let $\varepsilon > 0$. There exists unitary operator $S_{\varepsilon} \in \mathcal{A}_{\mathcal{L}}$ such that for any $\Omega \in \mathcal{H}_N$ $|\omega \cdot \omega_{S_{\varepsilon}} - \omega(E)^2| < \varepsilon, \quad \omega_{S_{\varepsilon}}(1-E) < \varepsilon.$

Note: **no** collapse of wave functions (Lüders, von Neumann); suitable operations determine "primitive observables" [DB, E. Størmer]

Conclusions

New look at quantum mechanics, based on classical concepts

- system: configuration space, orbits, Lagrangean
- operations: perturbations of system (with or without observer)
- time: directed; its arrow matters already in microphysics
- Effect of operations on system
 - described by dynamical group (composition of operations)
 - extension to C*-algebra standard procedure
 - no quantization rules; non-commutativity due to arrow of time

Consequences

- commutation relations, familiar framework recovered
- representation theory based on time ordered products
- statistical interpretation can be deduced from operations

Approach works also in QFT

Conclusions

New look at quantum mechanics, based on classical concepts

- system: configuration space, orbits, Lagrangean
- operations: perturbations of system (with or without observer)
- time: directed; its arrow matters already in microphysics
- Effect of operations on system
 - described by dynamical group (composition of operations)
 - extension to C*-algebra standard procedure
 - no quantization rules; non-commutativity due to arrow of time

Consequences

- commutation relations, familiar framework recovered
- representation theory based on time ordered products
- statistical interpretation can be deduced from operations

Approach works also in QFT: Klaus Fredenhagen