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Motivation: Waiting for Unruh CJF, Juárez-Aubry & Louko, 2016

Unruh effect (1976)
Thermalisation of an eternally uniformly accelerated detector in Minkowski spacetime,
coupled to a QFT in the vacuum state.
I Robust prediction of QFT – holds for many states, rigorous nonperturbative proof

de Bièvre and Merkli (2006)
I Closely related to the Hawking effect

Detailed balance relation

p(+) = e−β∆E p(−)

for a 2-level detector with energy gap ∆E .
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Motivation: Waiting for Unruh CJF, Juárez-Aubry & Louko, 2016

Unruh effect (1976)
Thermalisation of an eternally uniformly accelerated detector in Minkowski spacetime,
coupled to a QFT in the vacuum state.
I Robust prediction of QFT – holds for many states, rigorous nonperturbative proof

de Bièvre and Merkli (2006)
I Closely related to the Hawking effect

How long does thermalisation take?
I Couple detector for time T
I Approx. detailed balance requires T to grow

faster than polynomially in ∆E.
I You have to wait for Unruh!

T
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Motivation: Waiting for Unruh CJF, Juárez-Aubry & Louko, 2016

Unruh effect (1976)
Thermalisation of an eternally uniformly accelerated detector in Minkowski spacetime,
coupled to a QFT in the vacuum state.
I Robust prediction of QFT – holds for many states, rigorous nonperturbative proof

de Bièvre and Merkli (2006)
I Closely related to the Hawking effect

Wald’s question

Where do you wait for Unruh?
I Is detailed balance seen at finite times, or only

at infinity?

T
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Motivation: Waiting for Unruh CJF, Juárez-Aubry & Louko, 2016

Unruh effect (1976)
Thermalisation of an eternally uniformly accelerated detector in Minkowski spacetime,
coupled to a QFT in the vacuum state.
I Robust prediction of QFT – holds for many states, rigorous nonperturbative proof

de Bièvre and Merkli (2006)
I Closely related to the Hawking effect

Wald’s question is natural.

But the UdW literature does not discuss probe
measurement, nor its interpretation
as a measurement of the field.

In fact the problem is wider.

T

CJ Fewster University of York Measurement schemes for QFT in CST 2 / 22



A gap, and our goals
Algebraic Quantum Field Theory (AQFT) is founded on the idea of local observables
but little has been said about how they would actually be measured.

Quantum Measurement Theory (QMT) has a well-developed operational account of
measurement schemes by which observables can be measured using probe systems.
Almost never discussed in a spacetime context, and still less in curved spacetimes.
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A gap, and our goals
Algebraic Quantum Field Theory (AQFT) is founded on the idea of local observables
but little has been said about how they would actually be measured.

Quantum Measurement Theory (QMT) has a well-developed operational account of
measurement schemes by which observables can be measured using probe systems.
Almost never discussed in a spacetime context, and still less in curved spacetimes.

I How is a measurement of a probe expressed in terms of a local QFT observable?
I How does the state change after selective measurement?
I What (if anything) is the analogue of ‘instantaneous collapse’?
I Can all this be adapted covariantly to curved spacetimes?
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A gap, and our goals
Algebraic Quantum Field Theory (AQFT) is founded on the idea of local observables
but little has been said about how they would actually be measured.

Quantum Measurement Theory (QMT) has a well-developed operational account of
measurement schemes by which observables can be measured using probe systems.
Almost never discussed in a spacetime context, and still less in curved spacetimes.

Aim: Develop QMT for AQFT, to provide better operational foundations for both
subjects, and giving concrete results in models.

Take measurement theory out of Hilbert space,
and put it back in spacetime, where it belongs.
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Measurement basics

One part of the world (probe) is used to learn about another (system).

This relies on there being a coupling between probe and system which can be
controlled to some extent.

We should be able, at least to a good approximation, to
I prepare probe and system independently
I measure the probe in isolation from the system

Measurements are performed on the coupled system–probe set-up, but are described in
the language of a fictitious uncoupled system.

NB: We restrict to a single step in the measurement chain.
Quis metietur ipsos mensores? (HCE Fewster, after Juvenal)
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Scenario
A QFT (system) is coupled to another QFT (probe) in a compact spacetime region K
(a proxy for the experimental design). The probe is measured elsewhere.

K

Prepare system and probe

Measure probe New state

Prepare system

?≈ Hypothetical
local system
measurement
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Local modification of couplings in QFT

ψ1 ψ2

An interaction term

ψ1ψ2ϕ1ϕ2

provides a tunable coupling
between ϕ1 and ϕ2.
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Algebraic QFT
Describe a QFT on M in terms of a ∗-algebra A(M) with unit and subalgebras
A(M; N) for suitable open regions N ⊂M.

Minimal conditions
Isotony N1 ⊂ N2 =⇒ A(M; N1) ⊂ A(M; N2)

Timeslice A(M; N) = A(M) if N contains a Cauchy surface of M
Einstein [A(M; N1),A(M; N2)] = 0 if N1,2 are causally disjoint

NB A given observable may be localisable in many distinct regions.
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Algebraic QFT
Describe a QFT on M in terms of a ∗-algebra A(M) with unit and subalgebras
A(M; N) for suitable open regions N ⊂M.

Minimal conditions
Isotony N1 ⊂ N2 =⇒ A(M; N1) ⊂ A(M; N2)

Timeslice A(M; N) = A(M) if N contains a Cauchy surface of M
Einstein [A(M; N1),A(M; N2)] = 0 if N1,2 are causally disjoint

NB A given observable may be localisable in many distinct regions.

A state is a positive, normalised linear functional ω : A(M)→ C, assigning an
expectation value ω(A) to A ∈ A(M).
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Algebraic QFT
Describe a QFT on M in terms of a ∗-algebra A(M) with unit and subalgebras
A(M; N) for suitable open regions N ⊂M.

Minimal conditions
Isotony N1 ⊂ N2 =⇒ A(M; N1) ⊂ A(M; N2)

Timeslice A(M; N) = A(M) if N contains a Cauchy surface of M
Einstein [A(M; N1),A(M; N2)] = 0 if N1,2 are causally disjoint

NB A given observable may be localisable in many distinct regions.

A ∈ A(M; N) is interpreted by fiat as
I an observable localisable in N if A = A∗

I an operation performable in N in general.
No discussion of how observables are measured or operations performed.
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Coupled combinations and scattering
Describe both the system and the probe by AQFTs A, B on M.

Their uncoupled combination is described by U = A⊗B.

Theory C is a coupled combination of A and B with compact coupling region K .

ch K
L

ch (K ) = J+(K ) ∩ J−(K ) (Minimal) abstract definition:
∀L outside the causal hull ch (K )
∃ an isomorphism

U(M; L)→ C(M; L)

compatible with isotony.
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Coupled combinations and scattering
Describe both the system and the probe by AQFTs A, B on M.

Their uncoupled combination is described by U = A⊗B.

Theory C is a coupled combination of A and B with compact coupling region K .

ch (K )

M+ Defining in/out regions

M± = M \ J∓(K )

we obtain isomorphisms

τ± : U(M)→ C(M)

τ± : U(M) = U(M; M±) −→ C(M; M±) = C(M)
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Coupled combinations and scattering
Describe both the system and the probe by AQFTs A, B on M.

Their uncoupled combination is described by U = A⊗B.

Theory C is a coupled combination of A and B with compact coupling region K .

Upshot: covariantly described advanced/retarded response maps

τ−/+ : U(M) −→ C(M)

are isomorphisms identifying the uncoupled and coupled combinations at early/late
times. The scattering map is

Θ = (τ−)−1 ◦ τ+ ∈ Aut(U(M))

Locality: Θ � U(M; N) = id, if N ⊂ K⊥.
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Measurement scheme: prepare early, measure late
Describe measurements of C(M) in uncoupled language.
Fixing a probe preparation state σ and system state ω, the state

ω˜σ = ((τ−)−1)∗(ω ⊗ σ)

of C(M) is uncorrelated at early times.
An observable B̃ := τ+(1⊗ B) tests probe d.o.f. at late times.

Measurement of B̃ in state ω˜σ gives expectation value

ω˜σ(B̃) = (ω ⊗ σ)(Θ(1⊗ B)) = ω(ησ(Θ(1⊗ B)))

where ησ : A(M)⊗B(M)→ A(M) linearly extends A⊗ B 7→ σ(B)A.

Definition: εσ(B) = ησ(Θ(1⊗ B)) is the induced system observable
corresponding to probe observable B.
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Induced system observables
True and hypothetical expectation values agree, by construction

ω˜σ(B̃) = ω(εσ(B)) for all B ∈ B(M).

I In QMT language, (C, τ±, σ) is a measurement scheme for the system observables
εσ(B) ∈ A(M) (B ∈ B(M))

I εσ : B(M)→ A(M) is linear, completely positive, and obeys

εσ(1) = 1, εσ(B∗) = εσ(B)∗, εσ(B)∗εσ(B) ≤ εσ(B∗B).

Consequently, the true measurement displays greater variance than the hypothetical
one due to detector fluctuations

Var(εσ(B);ω) ≤ Var(B̃;ω˜σ).
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Localisation

Recall: Θ acts trivially on U(M; L) if L ⊂ K⊥.

Theorem (a) If B ∈ B(M; L) with L ⊂ K⊥ then

εσ(B) = ησ(Θ(1⊗ B)) = ησ(1⊗ B) = σ(B)1.

(b) If A ∈ A(M; L) with L ⊂ K⊥ then, for any B,

[εσ(B),A] = [ησ(Θ(1⊗ B)),A] = ησ(Θ[1⊗ B,A⊗ 1]) = 0

Corollary If A obeys a Haag property,

εσ(B) ∈ A(M; L) for all B ∈ B(M),

where L is any open connected causally convex set containing K .
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Effects and effect-valued measures

An effect is an observable s.t. B and 1− B are positive, corresponding to a true/false
measurement

Prob(B | ω) = ω(B), Prob(¬B | ω) = ω(1− B)

QMT refines observables to effect-valued measures (EVMs)

E : X → Effects(B(M))

for σ-algebra X , with the interpretation

ω(E(X )) = probability a result in range X is observed in state ω

Each probe EVM induces a system EVM εσ ◦ E (generally unsharp).
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Summary so far
To every local probe observable B and probe preparation state σ there is an induced
system observable, εσ(B) which can be localised in any connected region containing
the causal hull of K

ch (K ) = J+(K ) ∩ J−(K ) K ch K
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system observable, εσ(B) which can be localised in any connected region containing
the causal hull of K

ch (K ) = J+(K ) ∩ J−(K ) K ch K

Expectation values of the true and hypothetical measurements match, but the true
measurement has greater variance.
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Summary so far
To every local probe observable B and probe preparation state σ there is an induced
system observable, εσ(B) which can be localised in any connected region containing
the causal hull of K

ch (K ) = J+(K ) ∩ J−(K ) K ch K

Expectation values of the true and hypothetical measurements match, but the true
measurement has greater variance.

Probe observables localisable in K⊥ induce trivial system observables.
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Summary so far
To every local probe observable B and probe preparation state σ there is an induced
system observable, εσ(B) which can be localised in any connected region containing
the causal hull of K

ch (K ) = J+(K ) ∩ J−(K ) K ch K

Expectation values of the true and hypothetical measurements match, but the true
measurement has greater variance.

Justifies regarding A ∈ A(M; L) as ‘measureable within’ L in the sense that the system
and probe are coupled there.
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States and instruments
Idealised instantaneous state reduction is potentially frame dependent if
‘instantaneous’ means ‘constant time’.

Reduced state

Original state

Manifestly covariant proposal of Hellwig and Kraus: Declare that
reduction occurs across the backward lightcone of the measurement.
Our framework permits the post-selected state to be calculated.
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Post-selection and pre-instruments
Suppose a probe-effect B is tested when the system state is ω.

The post-selected system state, conditioned on the effect being observed, should
correctly predict the probability of any system effect being observed, given that B was.
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Post-selection and pre-instruments
Probability of a joint successful measurement of system effect A and probe effect B is

Prob(A&B) = ω(ησ(Θ(A⊗ B)))

so Prob(A|B) = Prob(A&B)
Prob(B) = (Iσ(B)(ω))(A)

(Iσ(B)(ω))(1) ,

where (Iσ(B)(ω))(A) := (ω ⊗ σ)(Θ(A⊗ B)).

Call Iσ(B) : A(M)∗+ → A(M)∗+ a pre-instrument.

If defined, the normalized post-selected state, conditioned on B, is

ω′ = Iσ(B)(ω)
(Iσ(B)(ω))(1) .
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Locality and post-selection
For A localisable in K⊥, the pre-instrument may be rewritten

Iσ(B)(ω)(A) = ω(ησ(Θ(A⊗ B))) = ω(Aεσ(B))

so also ω′(A) = ω(Aεσ(B))
ω(εσ(B)) .

Theorem ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.
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Locality and post-selection
For A localisable in K⊥, the pre-instrument may be rewritten

Iσ(B)(ω)(A) = ω(ησ(Θ(A⊗ B))) = ω(Aεσ(B))

so also ω′(A) = ω(Aεσ(B))
ω(εσ(B)) .

Theorem ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.

Equality or otherwise of expectation values is not determined by the localisation region
of A. E.g., if ω has a Reeh–Schlieder property, and A can be localised in K⊥ then

ω′(A) = ω(A) =⇒ εσ(B) = ω(εσ(B))1

Post-selection on any nontrivial measurement alters expectation values in K⊥ [and the
rest of M – including the past]. This is attributable to correlation.
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Locality and post-selection
For A localisable in K⊥, the pre-instrument may be rewritten

Iσ(B)(ω)(A) = ω(ησ(Θ(A⊗ B))) = ω(Aεσ(B))

so also ω′(A) = ω(Aεσ(B))
ω(εσ(B)) .

Theorem ω′(A) = ω(A) iff A is uncorrelated with εσ(B) in ω.

Equality or otherwise of expectation values is not determined by the localisation region
of A. E.g., if ω has a Reeh–Schlieder property, and A can be localised in K⊥ then

ω′(A) = ω(A) =⇒ εσ(B) = ω(εσ(B))1

No need to declare that ω changes to ω′ across a surface in M.
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Successive measurement of two probes
For i = 1, 2 consider Bi with coupling regions Ki and scattering morphisms Θi .

Also consider B1 ⊗B2 as a combined probe with coupling region K1 ∪ K2 and
morphism Θ̂.

Suppose K2 ∩ J−(K1) = ∅, so K2 is later than K1 according to some observers and
assume that causal factorisation holds, i.e.,

Θ̂ = Θ̂1 ◦ Θ̂2, where Θ̂1 = Θ1 ⊗3 id and Θ̂2 = Θ2 ⊗2 id

Theorem Coherence of successive measurement

Iσ2(B2) ◦ Iσ1(B1) = Iσ1⊗σ2(B1 ⊗ B2)

Post-selection on B1 and then B2 agrees with post-selection on B1 ⊗ B2.
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Successive measurement of two probes
For i = 1, 2 consider Bi with coupling regions Ki and scattering morphisms Θi .

Also consider B1 ⊗B2 as a combined probe with coupling region K1 ∪ K2 and
morphism Θ̂.

Suppose K2 ∩ J−(K1) = ∅, so K2 is later than K1 according to some observers and
assume that causal factorisation holds, i.e.,

Θ̂ = Θ̂1 ◦ Θ̂2, where Θ̂1 = Θ1 ⊗3 id and Θ̂2 = Θ2 ⊗2 id

Corollary If K1 and K2 are causally disjoint,

Iσ2(B2) ◦ Iσ1(B1) = Iσ1⊗σ2(B1 ⊗ B2) = Iσ1(B1) ◦ Iσ2(B2)
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Summary so far

General questions have been answered:

I induced local observables localised near coupling region
I derivation of post-selected states
I no need to posit state change across surfaces
I successive measurements are coherent

Now turn to a specific model in which induced observables can be computed.
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Probe model
Two free scalar fields: Φ (system) and Ψ (probe) coupled via an interaction term

Lint = −ρΦΨ, ρ ∈ C∞0 (M), K = supp ρ.

Linear equations: standard quantisation applies at least for sufficiently weak coupling.
As formal power series in h ∈ C∞0 (M+),

Θ(1⊗ eiΨ(h)) = eiΦ(f −) ⊗ eiΨ(h−)

where f − and h− − h are supported in
supp ρ ∩ J−(supp h).

h

ρ

εσ(eiΨ(h)) = σ
(
eiΨ(h−)

)
eiΦ(f −) = e−S(h−,h−)/2eiΦ(f −)

if σ is quasifree with two-point function S.
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Examples of induced observables

εσ(eiΨ(h)) = e−S(h−,h−)/2eiΦ(f −)

εσ(Ψ(h)) = Φ(f −)
εσ(Ψ(h)2) = Φ(f −)2 + S(h−, h−)1

Consequently,

E(Ψ̃(h);ω˜σ) = ω(Φ(f −))

Var(Ψ̃(h);ω˜σ) = Var(Φ(f −);ω) + S(h−, h−)

Increased variance in true measurement from detector fluctuations.
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Localisation of induced observables
εσ(Ψ(h)n) may be localised in any open causally convex nhd of

supp f − ⊂ supp ρ ∩ J−(supp h)

D W

Localisation region for finite-time coupling is a diamond D.
Localisation region for eternal coupling is a wedge W (can’t do better).
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Summary
I Operational framework of QMT adapted to AQFT
I Probe observables induce local system observables
I Localisation in the causal hull of coupling region
I Post-selected states, coherence under successive measurements
I No need to invoke state change across a surface
I Computation of induced observables for specific model

Lastly...
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Thanks to Kasia and the admin team for the excellent
organization of this meeting.
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