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Sectors

1 A - C ∗-algebra.

2 PA - pure states.

3 InA ⊂ AutA - inner automorphisms.

4 X := PA/InA - sectors.

Infrared problem: Uncountable families of physically
indistinguishable sectors.

Strategy: Form equivalence classes of sectors (‘charge classes’)
[Buchholz 82, Buchholz-Roberts 14]

Question: Can this be done without locality?
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(Second) conjugate classes

1 G ⊂ AutA.

2 X × G 3 (x , g) 7→ x · g ∈ X - group action on X .

Definition
1 Fix a ‘vacuum’ x0 ∈ X and ‘background’ a ∈ G .

2 For x ∈ X set G a
x ,x0 := { g ∈ G | x = x0 · a · g }.

3 [x ]
a

:= { x0 · a · g−1 | g ∈ G a
x ,x0 } is called the conjugate class.

4 [x ]
a

:= { x0 · a · (g ′)−1 | g ′ ∈ G a
y ,x0 , y ∈ [x ]

a }
is called the second conjugate class.

Claim: second conjugate classes are meaningful candidates for
‘charge classes’ in the absence of locality.
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(Second) conjugate classes as orbits

Def. [x ]H := { x · h | h ∈ H } denotes the orbit.

Def. Gx := { g ∈ G | x · g = x } denotes the stabilizer group.

Proposition
For x = x0 · gx we have

[x ]
a

= [x0 · a · g−1
x · a]Gx0·a

and [x ]
a

= [x ]Gx0·a
.

Background is important: For trivial background e.g. a := e second
conjugate classes are sensitive to any ‘perturbation’ of the vacuum:

x0 6= x0 · g ⇔ [x0]
e
6= [x0 · g ]

e
.
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Main general result

Theorem (Cadamuro-W.D. 18)

Let R ⊂ S ⊂ G be subgroups. Suppose that
1 x0 · r = x0 for all r ∈ R .

2 x0 · s 6= x0 may hold for some s ∈ S .

3 a · S · a−1 ⊂ R .

Then, [x0 · s]
a

= [x0]
a
and [x0 · s]

a
= [x0]

a
for all s ∈ S .

Definition
The relative normalizer of R ⊂ S ⊂ G is defined as

NG (R, S) := { g ∈ G | g · S · g−1 ⊂ R }.
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Geometric meaning of relative normalizer

1 Let R ⊂ S ⊂ G and NG (R, S) := { g ∈ G | g · S · g−1 ⊂ R }.

2 Let X ×G 3 (x , g) 7→ x · g ∈ X be a group action on a set X .

Lemma
Suppose that x0 ∈ X and a ∈ NG (R,S). Then

x0 · R = x0 ⇒ (x0 · a) · S = (x0 · a).

Proof. (x0 · a) · s = x0 · (a · s · a−1)︸ ︷︷ ︸
r

·a = x0 · a. �

ax x
0 0

.
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Existence of relative normalizers for R  S

1 ‘Tension’: R S vs NG (R, S) := { g ∈ G | g · S · g−1⊂R }.

2 Hence relative normalizers are empty for
abelian groups,
finite groups,
finite-dimensional Lie groups (under some assumptions).

3 However, we show that ISp(L) over an infinite dim. space L
admits non-empty relative normalizers.

4 Their elements are Kraus-Polley-Reents symplectic maps T̂ ,
known as infravacua.

5 Also the resulting Bogolubov transformations αT̂ are elements
of relative normalizers in Aut(A), where A = CCR(L).
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Inhomogeneous symplectic group

Symplectic group:

1 h := L2
tr(R3;C3) - single-photon space.

2 hε := {f ∈ h | f(k) = 0 for |k| ≤ ε }.

3 L :=
⋃
ε>0 hε symplectic space with σσσ( · , · ) = Im〈 · , · 〉.

4 Sp(L) := {T ∈ GL(L) |σσσ(T f1,T f2) = σσσ(f1, f2), f1, f2 ∈ L}.

Inhomogeneous symplectic group:

1 L∗ - algebraic dual. We write vvv(f) = (vvv , f) for vvv ∈ L∗, f ∈ L.

2 For T : L → L we have the transposition T t : L∗ → L∗.

3 ISp(L) := L∗ oϕ Sp(L), where ϕ(T ) := (T−1)t .
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Relative normalizers in ISp(L)

1 ISp(L) := L∗ oϕ Sp(L), where ϕ(T ) := (T−1)t .

2 We define L∗R ⊂ L∗S ⊂ ISp(L) as follows:

L∗R := L2
tr(R

3;C3)R,

L∗S := L∗R + SpanR{vvvPPP | |PPP| ≤ PPPmax },

vvvPPP(k) := (
α̃

2(2π)3 )1/2Ptr
χ[0,κ](|kkk |)
|kkk|3/2

∇EPPP
1− k̂kk · ∇EPPP

,

where PPP 7→ EPPP is the ‘dispersion relation of the electron’.

Proposition

T ∈ Sp(L) belongs to NISp(L)(L∗R,L∗S) iff (T−1)t L∗S ⊂ L∗R.
Kraus-Polley-Reents infravacuum maps T̂ satisfy this condition.
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Kraus-Polley-Reents infravacuum map

1 Let εi := 2−(i−1)κ and bi := 1
i for i ∈ N.

2 Let ξi (|k|) =
χ[εi+1,εi ](|k|)
|k|3/2 ∈ L2(R+, |k|2d |k|).

3 Define orthogonal projections on h = L2
tr(R3;C3):

QQQ i :=
|ξi 〉〈ξi |
〈ξi |ξi 〉

⊗
∑

0≤`≤i

∑̀
m=−`

∑
λ=±
|YYY `mλ〉〈YYY `mλ|

4 Set T̂ f = T̂1(Re f) + i T̂2(Im f), where f ∈ L and

T̂1 := 111 + s-lim
n→∞

n∑
i=1

(bi − 1)QQQ i , T̂2 := 111 + s-lim
n→∞

n∑
i=1

( 1
bi
− 1
)
QQQ i .
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Relative normalizers in Aut(A)

1 Let A be the C ∗-algebra generated by symbols {W (f)}f∈L s.t.

W (f1)W (f2) = e−iσσσ(f1,f2)W (f1 + f2), W (f)∗ = W (−f).

2 Let α : ISp(L)→ Aut(A) be the group homomorphism s.t.

α(vvv ,T )(W (f)) = e−2i(vvv ,T f)W (T f)

Proposition
1 Let L∗R ⊂ L∗S ⊂ ISp(L) as before.

2 Let R := αL∗R , S := αL∗S and αISp(L) ⊂ G ⊂ Aut(A).

If T ∈ NISp(L)(L∗R,L∗S) then αT ∈ NG (R,S).
In particular αT̂ ∈ NG (R, S), where T̂ is the KPR map.
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Problem of velocity superselection
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Free electromagnetic field

1 Single-photon space: h := {f ∈ L2(R3;C3) |kkk · fff (kkk) = 0 }.

2 Fock space of multi-photon states: Fph := Γ(h).

3 Energy-momentum operators of photons:

Hph =
∑
λ=±

∫
d3k |k| a∗λ(k)aλ(k), PPPph =

∑
λ=±

∫
d3k k a∗λ(k)aλ(k).

4 Electromagnetic potential in the Coulomb gauge:

AAA(xxx) :=
∑
λ=±

∫
d3k

(2π)3/2

√
1

2|k|
εεελ(k)

(
e ik·xxxaλ(k) + e−ik·xxxa∗λ(k)

)
,

where εεε+(k), εεε−(k), k̂ is an orthonormal basis in R3 for each k.
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Free electromagnetic field

1 Single-photon space: h := {f ∈ L2(R3;C3) |kkk · fff (kkk) = 0 }.

2 Fock space of multi-photon states: Fph := Γ(h).

3 Energy-momentum operators of photons:

Hph =
∑
λ=±

∫
d3k |k| a∗λ(k)aλ(k), PPPph =

∑
λ=±

∫
d3k k a∗λ(k)aλ(k).

4 Electromagnetic potential in the Coulomb gauge:

AAA[σ,κ](xxx) :=
∑
λ=±

∫
d3k

(2π)3/2

√
1

2|k|
χ[σ,κ](|k|)εεελ(k)

(
e ik·xxxaλ(k) + · · ·

where εεε+(k), εεε−(k), k̂ is an orthonormal basis in R3 for each k.
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Model of non-relativistic QED

1 Hilbert space: H = L2(R3)⊗Fph.
2 Energy-momentum operators:

Hσ =
1
2
(
− i∇xxx ⊗ 1 + α̃1/2AAA[σ,κ](xxx)

)2
+ 1⊗ Hph,

P̂PP = −i∇xxx ⊗ 1 + 1⊗PPPph.

3 Fiber decomposition: Hσ = I ∗
( ∫ ⊕

d3P HPPP,σ

)
I , where

HPPP,σ =
1
2
(
PPP −PPPph + α̃1/2AAA[σ,κ](0)

)2
+ Hph

are operators on F .
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Spectrum of the fiber Hamiltonians HP,σ

Let S = {PPP ∈ R3 | |PPP| < 1
3} and α̃ small.

Lemma (Hasler-Herbst 08, Chen-Fröhlich-Pizzo 09)

Let EPPP,σ := inf sp(HPPP,σ>0) and EPPP := inf sp(HPPP,σ=0).

1 EPPP,σ is a (simple) eigenvalue with eigenvector ΨPPP,σ.

2 w − limσ→0 ΨPPP,σ = 0 and EPPP is not an eigenvalue if PPP 6= 0.

3 limσ→0 W0(vvvPPP,σ)ΨPPP,σ exists and is non-zero, where

W0(vvvPPP,σ) := ea
∗(vvvPPP,σ)−a(vvvPPP,σ),

vvvPPP,σ(kkk) :=

(
α̃

2(2π)3

) 1
2 χ[σ,κ](|kkk|)
|kkk |3/2

Ptr
∇EPPP,σ

1− k̂kk · ∇EPPP,σ
.
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Velocity superselection

Thm (Fröhlich 74, Chen-Fröhlich-Pizzo 09, Könenberg-Matte 14)

For any PPP ∈ S the following limits exist and define states on A

ωPPP(A) := lim
σ→0
〈ΨPPP,σ, π0(A)ΨPPP,σ〉, A ∈ A.

The corresponding sectors are mutually disjoint i.e.

[ωPPP1 ]InA 6= [ωPPP2 ]InA for PPP1 6= PPP2.

Theorem (Cadamuro-W.D. 18)

Let T̂ be the KPR infravacuum. Then, for all PPP1,PPP2 ∈ S

[[ωPPP1 ]InA]
αT̂ = [[ωPPP2 ]InA]

αT̂ , and [[ωPPP1 ]InA]
αT̂

= [[ωPPP2 ]InA]
αT̂
.
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Velocity superselection and conjugate sectors

Theorem (Cadamuro-W.D. 18)

Let T̂ be the KPR infravacuum. Then, for all PPP1,PPP2 ∈ S

[[ωPPP1 ]InA]
αT̂ = [[ωPPP2 ]InA]

αT̂ , and [[ωPPP1 ]InA]
αT̂

= [[ωPPP2 ]InA]
αT̂
.

1 Any [ρPPP ]InA ∈ [[ωPPP ]InA]
αT̂ is a conjugate sector of [ωPPP ]InA.

2 By the theorem, we can choose PPP 7→ [ρPPP ]InA s.t.

[ρPPP1 ]InA = [ρPPP2 ]InA for all PPP1,PPP2 ∈ S.

3 But distinct conjugate sectors PPP 7→ [ρ̃PPP ]InA, that is s.t.

[ρ̃PPP1 ]InA 6= [ρ̃PPP2 ]InA for all PPP1 6= PPP2 ∈ S

are also possible.

W. Dybalski and D. Cadamuro Mathematics of infravacuum



Velocity superselection and conjugate sectors

Recall that the electron has an ‘additional charge’ whose value
depends on velocity.
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Velocity superselection and conjugate sectors

Recall that the electron has an ‘additional charge’ whose value
depends on velocity.

+3

+1

+2

W. Dybalski and D. Cadamuro Mathematics of infravacuum



Velocity superselection and conjugate sectors

The conjugate sectors (‘compensating charges’) can be chosen to
be distinct, as in the usual (DHR) setting.

−3
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+2

+3

−1

−2
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Velocity superselection and conjugate sectors

But we can also find one conjugate sector which ‘compensates’
many distinct sectors.

−

+1

+2

+3

−

−

W. Dybalski and D. Cadamuro Mathematics of infravacuum



Outlook

1 We exhibited a mathematical structure underlying the
infravacuum: the relative normalizer of R ⊂ S ⊂ G :

NG (R, S) := { g ∈ G | g · S · g−1 ⊂ R }.

2 We propose the second-conjugate class w.r.t. the infravacuum
background as a ‘charge class’ collecting sectors differing by
unobservable ‘soft-photon clouds’.

3 Question: How large are the second-conjugate classes?

4 Question: How to incorporate mixed states?

5 Question: How to incorporate positivity of energy?
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