The Kay-Wald theorem and HHI-like states on black hole space-times Elizabeth Winstanley

> Consortium for Fundamental Physics School of Mathematics and Statistics The University of Sheffield

(FP)

Kay-Wald theorem and HHI-like states

Outline

1 Introduction

2 HHI state on Schwarzschild space-time

3 HHI-like states on Kerr space-time

- Scalar field
- Fermion field

4 Conclusions

Unruh and Hawking effects

Two fundamental results in QFT in curved space-time

Unruh effect

A uniformly accelerating observer in Minkowski space-time observes thermal radiation in the Minkowski vacuum

[Fulling PRD 7 2850 (1973); Davies JPA 8 609 (1975); Unruh PRD 14 870 (1976)]

Hawking effect

A black hole formed by gravitational collapse emits thermal radiation [Hawking *CMP* **43** 199 (1975)]

Minkowski space-time

Kruskal space-time

Rindler wedge

Exterior Schwarzschild

Rindler vacuum

Boulware state

Minkowski vacuum

Hartle-Hawking-Israel state

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 4 / 47

HHI state on Schwarzschild space-time

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 5 / 47

Schwarzschild space-time

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta\,d\varphi^{2}$$

3

Schwarzschild space-time

$$ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\theta^{2} + r^{2}\sin^{2}\theta \,d\varphi^{2}$$

3

Canonical quantization of a massless scalar field

Klein-Gordon equation

$$\Box \Phi = 0$$

Klein-Gordon inner product

$$\left(\Phi_1, \Phi_2\right)_{KG} = i \int_{\Sigma} \left[\Phi_2^* \nabla_\mu \Phi_1 - \Phi_1 \nabla_\mu \Phi_2^*\right] d\Sigma^\mu$$

Involves time derivative of Φ

Expand classical field in terms of orthonormal basis of field modes

$$\Phi = \sum_j a_j \phi_j^+ + a_j^\dagger \phi_j^-$$

Mode expansion of the massless scalar field Φ Expand classical field in terms of orthonormal basis of field modes

$$\Phi = \sum_{j} a_{j} \phi_{j}^{+} + a_{j}^{\dagger} \phi_{j}^{-}$$

$$\phi_j^+ \propto e^{-i\omega t} \qquad \omega > 0$$

Positive KG "norm"

$$\left(\phi_{j}^{+},\phi_{k}^{+}
ight)_{KG}\propto\delta_{jk},$$

Elizabeth Winstanley (Sheffield)

B > 4 B >

Mode expansion of the massless scalar field Φ Expand classical field in terms of orthonormal basis of field modes

$$\Phi = \sum_j a_j \phi_j^+ + a_j^\dagger \phi_j^-$$

Negative frequency modes

$$\phi_j^- \propto e^{-i\omega t} \qquad \omega < 0$$

Negative KG "norm"

$$\left(\phi_{j}^{-},\phi_{k}^{-}
ight)_{KG}\propto-\delta_{jk},$$

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 8 / 47

Expand classical field in terms of orthonormal basis of field modes

$$\hat{\Phi} = \sum_j \hat{a}_j \phi_j^+ + \hat{a}_j^\dagger \phi_j^-$$

Promote expansion coefficients to operators \hat{a}_j , \hat{a}_j^{\dagger} with

$$\begin{bmatrix} \hat{a}_{j}, \hat{a}_{k}^{\dagger} \end{bmatrix} = \delta_{jk} \qquad \begin{bmatrix} \hat{a}_{j}, \hat{a}_{k} \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{a}_{j}^{\dagger}, \hat{a}_{k}^{\dagger} \end{bmatrix} = 0$$

Expand classical field in terms of orthonormal basis of field modes

$$\hat{\Phi} = \sum_j \hat{a}_j \phi_j^+ + \hat{a}_j^\dagger \phi_j^-$$

Promote expansion coefficients to operators \hat{a}_j , \hat{a}_j^{\dagger} with

$$\begin{bmatrix} \hat{a}_j, \hat{a}_k^{\dagger} \end{bmatrix} = \delta_{jk} \qquad \begin{bmatrix} \hat{a}_j, \hat{a}_k \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{a}_j^{\dagger}, \hat{a}_k^{\dagger} \end{bmatrix} = 0$$

 \hat{a}_i - particle annihilation operators

Expand classical field in terms of orthonormal basis of field modes

$$\hat{\Phi} = \sum_j \hat{a}_j \phi_j^+ + \hat{a}_j^\dagger \phi_j^-$$

Promote expansion coefficients to operators \hat{a}_j , \hat{a}_j^{\dagger} with

$$\begin{bmatrix} \hat{a}_j, \hat{a}_k^{\dagger} \end{bmatrix} = \delta_{jk} \qquad \begin{bmatrix} \hat{a}_j, \hat{a}_k \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{a}_j^{\dagger}, \hat{a}_k^{\dagger} \end{bmatrix} = 0$$

 \hat{a}_j - particle annihilation operators \hat{a}_j^{\dagger} - particle creation operators

Expand classical field in terms of orthonormal basis of field modes

$$\hat{\Phi} = \sum_j \hat{a}_j \phi_j^+ + \hat{a}_j^\dagger \phi_j^-$$

Promote expansion coefficients to operators \hat{a}_j , \hat{a}_j^{\dagger} with

$$\begin{bmatrix} \hat{a}_j, \hat{a}_k^{\dagger} \end{bmatrix} = \delta_{jk} \qquad \begin{bmatrix} \hat{a}_j, \hat{a}_k \end{bmatrix} = 0 \qquad \begin{bmatrix} \hat{a}_j^{\dagger}, \hat{a}_k^{\dagger} \end{bmatrix} = 0$$

 \hat{a}_j - particle annihilation operators \hat{a}_j^{\dagger} - particle creation operators Define the vacuum state $|0\rangle$

$$\hat{a}_j \left| 0 \right\rangle = 0$$

Massless scalar field modes

$$\phi_{\omega\ell m}(t,r,\theta,\varphi) = \frac{1}{r\mathcal{N}\sqrt{|\omega|}} e^{-i\omega t} e^{im\varphi} Y_{\ell m}(\theta) R_{\omega\ell}(r)$$

 $Y_{\ell m}(\theta)$: spherical harmonics

 \mathcal{N} : normalization constant independent of ω

Positive frequency with respect to Schwarzschild time *t*: $\omega > 0$

Massless scalar field modes

$$\phi_{\omega\ell m}(t,r,\theta,\varphi) = \frac{1}{r\mathcal{N}\sqrt{|\omega|}}e^{-i\omega t}e^{im\varphi}Y_{\ell m}(\theta)R_{\omega\ell}(r)$$

 $Y_{\ell m}(\theta)$: spherical harmonics

 $\mathcal{N}:$ normalization constant independent of ω

Positive frequency with respect to Schwarzschild time *t*: $\omega > 0$

Radial mode equation

$$0 = \left[\frac{d^2}{dr_*^2} + V_{\omega\ell m}(r)\right] R_{\omega\ell}(r) \qquad \frac{dr_*}{dr} = \left(1 - \frac{2M}{r}\right)^{-1}$$
$$V_{\omega\ell m}(r) = \begin{cases} \omega^2 & \text{as } r \to 2M, r_* \to -\infty\\ \omega^2 & \text{as } r \to \infty, r_* \to \infty \end{cases}$$

"In" and "Up" modes

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 10 / 47

"Out" and "Down" modes

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 11 / 47

• Define positive frequency with respect to Kruskal time *T*

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes?

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes?
- "Up" and "down" modes are not orthogonal

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes?
- "Up" and "down" modes are not orthogonal
- Instead use "in" and "up" modes

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes?
- "Up" and "down" modes are not orthogonal
- Instead use "in" and "up" modes
- Resulting vacuum state is HHI state $|H\rangle$

3

ト < 三 ト < 三 ト</p>

Stress-energy tensor operator

$$\hat{T}_{\mu\nu} = \frac{2}{3} \nabla_{\mu} \hat{\Phi} \nabla_{\nu} \hat{\Phi} - \frac{1}{3} \hat{\Phi} \nabla_{\mu} \nabla_{\nu} \hat{\Phi} - \frac{1}{6} g_{\mu\nu} \nabla_{\lambda} \hat{\Phi} \nabla^{\lambda} \hat{\Phi}$$

э

< ∃ > < ∃ >

Stress-energy tensor operator

$$\hat{T}_{\mu\nu} = \frac{2}{3} \nabla_{\mu} \hat{\Phi} \nabla_{\nu} \hat{\Phi} - \frac{1}{3} \hat{\Phi} \nabla_{\mu} \nabla_{\nu} \hat{\Phi} - \frac{1}{6} g_{\mu\nu} \nabla_{\lambda} \hat{\Phi} \nabla^{\lambda} \hat{\Phi}$$

Unrenormalized stress-energy tensor expectation value

$$\langle H|\hat{T}_{\mu\nu}|H\rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\omega}{2T_{H}}\right) \left\{ T_{\mu\nu} \left[\phi_{\omega\ell m}^{\rm in}\right] + T_{\mu\nu} \left[\phi_{\omega\ell m}^{\rm up}\right] \right\}$$

[Candelas PRD 21 2185 (1980)]

Elizabeth Winstanley (Sheffield)

York, April 2017 13 / 47

(B) < (B)</p>

Stress-energy tensor operator

$$\hat{T}_{\mu\nu} = \frac{2}{3} \nabla_{\mu} \hat{\Phi} \nabla_{\nu} \hat{\Phi} - \frac{1}{3} \hat{\Phi} \nabla_{\mu} \nabla_{\nu} \hat{\Phi} - \frac{1}{6} g_{\mu\nu} \nabla_{\lambda} \hat{\Phi} \nabla^{\lambda} \hat{\Phi}$$

Unrenormalized stress-energy tensor expectation value

$$\langle H|\hat{T}_{\mu\nu}|H\rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\omega}{2T_{H}}\right) \left\{ T_{\mu\nu} \left[\phi_{\omega\ell m}^{\rm in}\right] + T_{\mu\nu} \left[\phi_{\omega\ell m}^{\rm up}\right] \right\}$$

[Candelas PRD 21 2185 (1980)]

Compute renormalized expectation values using point-splitting [Howard PRD **30** 2532 (1984)]

Elizabeth Winstanley (Sheffield)

York, April 2017 13 / 47

• • = • • = •

$\langle H|\hat{T}_{\mu\nu}|H\rangle$ for a massless scalar field

[Howard PRD 30 2532 (1984)]

HHI state $|H\rangle$

For a quantum scalar field on Schwarzschild space-time

3

ト < 三 ト < 三 ト</p>

HHI state $|H\rangle$

For a quantum scalar field on Schwarzschild space-time

Properties

- Thermal state in region *I*
- Regular on the horizons
- $\langle H | \hat{T}_{\mu\nu} | H \rangle$ finite everywhere in region *I*
- Time-reversal symmetric

- 4 ∃ >

HHI state $|H\rangle$

For a quantum scalar field on Schwarzschild space-time

Properties

- Thermal state in region *I*
- Regular on the horizons
- $\langle H | \hat{T}_{\mu\nu} | H \rangle$ finite everywhere in region *I*
- Time-reversal symmetric

Rigorous results on the existence of $|H\rangle$ Kay CMP 100 57 (1985) HHI state in regions I & IVJacobson PRD 50 R6031 (1994) HHI state on Euclidean sectionSanders IJMPA 28 1330010 (2013) HHI state on Kruskal space-timeSanders Lett. Math. Phys. 105 575 (2015) HHI state across horizons

イロト イポト イヨト イヨト

The Kay-Wald theorem [Kay & Wald Phys. Rept. 207 49 (1991)]

Globally hyperbolic space-time with a bifurcate Killing horizon

Wedge isometry maps $I \leftrightarrow IV$ [Kay JMP **34** 4519 (1993), Kay & Lupo CQG **33** 215001 (2016)]

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 16 / 47
The Kay-Wald theorem [Kay & Wald Phys. Rept. 207 49 (1991)] Clobally hyperbolic space-t

Globally hyperbolic space-time with a bifurcate Killing horizon

Wedge isometry maps $I \leftrightarrow IV$

[Kay JMP 34 4519 (1993), Kay & Lupo CQG 33 215001 (2016)]

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 16 / 47

Theorem

 On a large subalgebra of observables, there can be at most one quasifree, isometry invariant, Hadamard state Globally hyperbolic space-time with a bifurcate Killing horizon

Wedge isometry maps $I \leftrightarrow IV$

[Kay JMP 34 4519 (1993), Kay & Lupo CQG 33 215001 (2016)]

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 16 / 47

Theorem

- On a large subalgebra of observables, there can be at most one quasifree, isometry invariant, Hadamard state
- This state, if it exists, is a KMS state at the Hawking temperature *T_H* on observables in the subalgebra localized in region *I*

Globally hyperbolic space-time with a bifurcate Killing horizon

Wedge isometry maps $I \leftrightarrow IV$

[Kay JMP 34 4519 (1993), Kay & Lupo CQG 33 215001 (2016)]

HHI state $|H\rangle$ on Schwarzschild

The Kay-Wald theorem [Kay & Wald Phys. Rept. 207 49 (1991)]

 $|H\rangle$ exists and is unique on Schwarzschild

Massless fermion field Ψ

Dirac equation

$$\gamma^\mu
abla_\mu \Psi = 0$$

Canonical quantization

- Expansion of classical field in orthonormal basis of field modes
- "in" and "up" modes
- Positive frequency with respect to Kruskal time T

Stress-energy tensor $\hat{T}_{\mu\nu} = \frac{i}{8} \left\{ \left[\hat{\overline{\Psi}}, \gamma_{\mu} \nabla_{\nu} \hat{\Psi} \right] + \left[\hat{\overline{\Psi}}, \gamma_{\nu} \nabla_{\mu} \hat{\Psi} \right] - \left[\nabla_{\mu} \hat{\overline{\Psi}}, \gamma_{\nu} \hat{\Psi} \right] - \left[\nabla_{\nu} \hat{\overline{\Psi}}, \gamma_{\mu} \hat{\Psi} \right] \right\}$

イロト イポト イヨト イヨト 一日

$\langle H | \hat{T}_{\mu u} | H angle$ for a massless fermion field Ψ

[Carlson et al PRL 91 051301 (2003)]

Elizabeth Winstanley (Sheffield)

Kerr space-time

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 20 / 47

▲ 글 ▶ (▲ 글 ▶

3

Kerr space-time

$$ds^{2} = -\frac{\Delta}{\Sigma} \left[dt - a\sin^{2}\theta \, d\varphi \right]^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2} + \frac{\sin^{2}\theta}{\Sigma} \left[\left(r^{2} + a^{2} \right) d\varphi - a dt \right]^{2}$$
$$\Delta = r^{2} - 2Mr + a^{2} \qquad \Sigma = r^{2} + a^{2}\cos^{2}\theta$$

н

Elizabeth Winstanley (Sheffield)

Kerr space-time

$$ds^{2} = -\frac{\Delta}{\Sigma} \left[dt - a\sin^{2}\theta \, d\varphi \right]^{2} + \frac{\Sigma}{\Delta} dr^{2} + \Sigma d\theta^{2} + \frac{\sin^{2}\theta}{\Sigma} \left[\left(r^{2} + a^{2} \right) d\varphi - a dt \right]^{2}$$
$$\Delta = r^{2} - 2Mr + a^{2} \qquad \Sigma = r^{2} + a^{2}\cos^{2}\theta$$

н

Elizabeth Winstanley (Sheffield)

Features of Kerr space-time

Event horizon

$$r_H = M + \sqrt{M^2 - a^2} \qquad \Omega_H = \frac{a}{r_H^2 + a^2}$$

э

- ∢ ≣ →

< 3 >

Features of Kerr space-time

Event horizon

$$r_H = M + \sqrt{M^2 - a^2} \qquad \Omega_H = \frac{a}{r_H^2 + a^2}$$

Stationary limit surface

$$r_S = M + \sqrt{M^2 - a^2 \cos^2 \theta}$$

For $r_H < r < r_S$ an observer cannot remain at rest relative to infinity and must have a non-zero angular velocity

★ E → ★ E →

Features of Kerr space-time

Event horizon

$$r_H = M + \sqrt{M^2 - a^2} \qquad \Omega_H = \frac{a}{r_H^2 + a^2}$$

Stationary limit surface

$$r_S = M + \sqrt{M^2 - a^2 \cos^2 \theta}$$

For $r_H < r < r_S$ an observer cannot remain at rest relative to infinity and must have a non-zero angular velocity

Speed-of-light surface

An observer can have the same angular velocity as the event horizon between $r = r_H$ and the speed-of-light surface \mathscr{S}_L

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 22

- 32

イロト イポト イヨト イヨト

22 / 47

Location of stationary limit surface and speed-of-light surface

[Casals et al PRD 87 064027 (2013)]

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like state:

York, April 2017 23 / 47

HHI state on Kerr space-time

Quantum scalar field

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 24 / 47

• = • • = •

Properties of $|H\rangle$ on Schwarzschild

- Regular on and outside horizon
- Time-reversal symmetric
- Thermal state in region *I*

Theorem

There does not exist any Hadamard state on Kerr which is invariant under the isometries generating the event horizon

Theorem

No HHI state exists for a quantum scalar field on Kerr

Massless scalar field on Kerr space-time

Scalar field modes

$$\phi_{\omega\ell m}(t,r,\theta,\varphi) = \frac{1}{\mathcal{N}} \frac{1}{\left(r^2 + a^2\right)^{\frac{1}{2}}} e^{-i\omega t} e^{im\varphi} S_{\omega\ell m}(\cos\theta) R_{\omega\ell m}(r)$$

 $S_{\omega\ell m}(\cos\theta)$: spheroidal harmonics

э

프 🖌 🛪 프 🕨

Scalar field

Massless scalar field on Kerr space-time

Scalar field modes

$$\phi_{\omega\ell m}(t,r,\theta,\varphi) = \frac{1}{\mathcal{N}} \frac{1}{\left(r^2 + a^2\right)^{\frac{1}{2}}} e^{-i\omega t} e^{im\varphi} S_{\omega\ell m}(\cos\theta) R_{\omega\ell m}(r)$$

 $S_{\omega \ell m}(\cos \theta)$: spheroidal harmonics

Radial mode equation

$$0 = \left[\frac{d^2}{dr_*^2} + V_{\omega\ell m}(r)\right] R_{\omega\ell m}(r) \qquad \frac{dr_*}{dr} = \frac{r^2 + a^2}{\Delta}$$
$$V_{\omega\ell m}(r) = \begin{cases} \tilde{\omega}^2 = (\omega - m\Omega_H)^2 & \text{as } r \to r_H, r_* \to -\infty\\ \omega^2 & \text{as } r \to \infty, r_* \to \infty \end{cases}$$

Э

< ∃ > < ∃ >

"In" and "Up" modes

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like state:

York, April 2017 27 / 47

"Out" and "Down" modes

Elizabeth Winstanley (Sheffield)

York, April 2017 28 / 47

Modes with positive KG "norm"

Positive frequency scalar modes must have positive KG "norm"

(B) < B)</p>

Modes with positive KG "norm"

Positive frequency scalar modes must have positive KG "norm"

"In" and "out" modes

"In" and "out" modes have positive KG "norm" for

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

Modes with positive KG "norm"

Positive frequency scalar modes must have positive KG "norm"

"Up" and "down" modes

"Up" and "down" modes have positive KG "norm" for

Scalar field

A HHI-like state for a scalar field on Kerr?

• Define positive frequency with respect to Kruskal time T

Scalar field

- Define positive frequency with respect to Kruskal time T
- Use "up" and "down" modes with $\tilde{\omega} > 0$?

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes with w > 0?
- "Up" and "down" modes are not orthogonal

- Define positive frequency with respect to Kruskal time *T*
- "Up" and "down" modes are not orthogonal
- Instead use "in" and "up" modes

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes with \$\overline{\overlin}\overlin{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overline{\overlin}\overlin{\overlin{\over
- "Up" and "down" modes are not orthogonal
- Instead use "in" and "up" modes
- But "in" modes have positive "norm" for *ω* > 0

Attempts at defining a HHI-like state for Kerr

|CCH
angle [Candelas, Chrzanowski & Howard PRD 24 297 (1981)]

$$\langle CCH | \hat{T}_{\mu\nu} | CCH \rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\omega}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{in}}\right]$$
$$+ \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{up}}\right]$$

Attempts at defining a HHI-like state for Kerr

|CCH
angle [Candelas, Chrzanowski & Howard PRD 24 297 (1981)]

$$\begin{aligned} \langle CCH | \hat{T}_{\mu\nu} | CCH \rangle &= \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\omega}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{in}}\right] \\ &+ \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{up}}\right] \end{aligned}$$

• Does not represent an equilibrium state

[Ottewill & Winstanley PRD 62 084018 (2000)]

(3)

Attempts at defining a HHI-like state for Kerr

|CCH
angle [Candelas, Chrzanowski & Howard PRD 24 297 (1981)]

$$\begin{aligned} \langle CCH | \hat{T}_{\mu\nu} | CCH \rangle &= \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\omega}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{in}}\right] \\ &+ \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{up}}\right] \end{aligned}$$

- Does not represent an equilibrium state
- Regular outside the event horizon

[Ottewill & Winstanley PRD 62 084018 (2000)]

• Method for computing renormalized expectation values on Kerr has been elusive until recently

[Levi et al arXiv:1610.04848 [gr-qc]]

- Method for computing renormalized expectation values on Kerr has been elusive until recently
 [Levi et al arXiv:1610.04848 [gr-qc]]
- Differences in expectation values between two quantum states do not require renormalization

- Method for computing renormalized expectation values on Kerr has been elusive until recently
 [Levi et al arXiv:1610.04848 [gr-qc]]
- Differences in expectation values between two quantum states do not require renormalization
- Plots for Kerr are relative to a fixed reference state $|B^-\rangle$

- Method for computing renormalized expectation values on Kerr has been elusive until recently
 [Levi et al arXiv:1610.04848 [gr-qc]]
- Differences in expectation values between two quantum states do not require renormalization
- Plots for Kerr are relative to a fixed reference state $|B^-\rangle$

"Past" Boulware state $|B^angle$ [Unruh PRD 10 3194 (1974)]
Renormalized expectation values on Kerr space-time

- Method for computing renormalized expectation values on Kerr has been elusive until recently
 [Levi et al arXiv:1610.04848 [gr-qc]]
- Differences in expectation values between two quantum states do not require renormalization
- Plots for Kerr are relative to a fixed reference state $|B^-\rangle$

"Past" Boulware state $|B^angle$ [Unruh PRD 10 3194 (1974)]

- "In" modes with positive frequency with respect to *t* near \mathscr{I}^-
- "Up" modes with positive frequency with respect to *t* near \mathcal{H}^-

Renormalized expectation values on Kerr space-time

- Method for computing renormalized expectation values on Kerr has been elusive until recently
 [Levi et al arXiv:1610.04848 [gr-qc]]
- Differences in expectation values between two quantum states do not require renormalization
- Plots for Kerr are relative to a fixed reference state $|B^-\rangle$

"Past" Boulware state $|B^-\rangle$ [Unruh PRD 10 3194 (1974)]

- "In" modes with positive frequency with respect to *t* near \mathscr{I}^-
- "Up" modes with positive frequency with respect to *t* near \mathcal{H}^-
- Diverges on the event horizon

Renormalized expectation values on Kerr space-time

- Method for computing renormalized expectation values on Kerr has been elusive until recently
 [Levi et al arXiv:1610.04848 [gr-qc]]
- Differences in expectation values between two quantum states do not require renormalization
- Plots for Kerr are relative to a fixed reference state $|B^-\rangle$

"Past" Boulware state $|B^-\rangle$ [Unruh PRD 10 3194 (1974)]

- "In" modes with positive frequency with respect to *t* near \mathscr{I}^-
- "Up" modes with positive frequency with respect to *t* near \mathcal{H}^-
- Diverges on the event horizon
- Regular everywhere outside the event horizon in region I

イロト イポト イヨト イヨト

Scalar field

$\langle CCH | \hat{T}_{\mu\nu} | CCH \rangle$ for an electromagnetic field

[Casals & Ottewill PRD 71 124016 (2005)]

Elizabeth Winstanley (Sheffield)

Attempts at defining a Hartle-Hawking state for Kerr

 $|FT\rangle$ [Frolov & Thorne PRD **39** 2125 (1989)]

$$\langle FT | \hat{T}_{\mu\nu} | FT \rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{in}}\right]$$
$$+ \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{up}}\right]$$

Attempts at defining a Hartle-Hawking state for Kerr

 $|FT\rangle$ [Frolov & Thorne PRD **39** 2125 (1989)]

$$\langle FT | \hat{T}_{\mu\nu} | FT \rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{in}}\right]$$
$$+ \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{up}}\right]$$

• Potentially an equilibrium state

[Ottewill & Winstanley PRD 62 084018 (2000)]

Attempts at defining a Hartle-Hawking state for Kerr

 $|FT\rangle$ [Frolov & Thorne PRD **39** 2125 (1989)]

$$\langle FT | \hat{T}_{\mu\nu} | FT \rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{in}}\right]$$
$$+ \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\text{up}}\right]$$

Potentially an equilibrium state

• Divergent everywhere except on the axis of rotation

[Ottewill & Winstanley PRD 62 084018 (2000)]

Kerr space-time with a mirror

Mirror \mathscr{M} at fixed $r = r_0$ inside \mathscr{S}_L

[Duffy & Ottewill PRD 77 024007 (2008)]

Kerr space-time with a mirror

Mirror \mathscr{M} at fixed $r = r_0$ inside \mathscr{S}_L

[Duffy & Ottewill PRD 77 024007 (2008)]

М

 \mathcal{H}^+

Kerr space-time with a mirror

Mirror \mathscr{M} at fixed $r = r_0$ inside \mathscr{S}_L

Modes

$$\phi_{\omega\ell m}^{\mathscr{M}} = \begin{cases} \phi_{\omega\ell m}^{\mathrm{up}} - \frac{R_{\omega\ell m}^{\mathrm{up}}(r_{0})}{R_{\omega\ell m}^{\mathrm{in}}(r_{0})}\phi_{\omega\ell m}^{\mathrm{in}} & \omega > 0 \\ \phi_{\omega\ell m}^{\mathrm{up}} - \frac{R_{\omega\ell m}^{\mathrm{up}}(r_{0})}{R_{-\omega\ell-m}^{\mathrm{in}*}(r_{0})}\phi_{-\omega\ell-m}^{\mathrm{in}*} & \omega < 0 \end{cases}$$
Positive KG "norm" for $\widetilde{\omega} > 0$

[Duffy & Ottewill PRD 77 024007 (2008)]

Modes with positive frequency with respect to Kruskal time T

3

イロト イポト イヨト イヨト

Modes with positive frequency with respect to Kruskal time T

 $|H_{\mathscr{M}}
angle$ [Duffy & Ottewill PRD 77 024007 (2008)]

$$\langle H_{\mathscr{M}}|\hat{T}_{\mu\nu}|H_{\mathscr{M}}\rangle = \sum_{\ell=0}^{\infty}\sum_{m=-\ell}^{\ell}\int_{0}^{\infty}d\widetilde{\omega}\coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right)T_{\mu\nu}\left[\phi_{\omega\ell m}^{\mathscr{M}}\right]$$

3

< ∃ > < ∃ >

Modes with positive frequency with respect to Kruskal time T

 $|H_{\mathscr{M}}
angle$ [Duffy & Ottewill PRD 77 024007 (2008)]

$$\langle H_{\mathscr{M}} | \hat{T}_{\mu\nu} | H_{\mathscr{M}} \rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\mathscr{M}}\right]$$

• Compute expectation values relative to $|B_{\mathcal{M}}\rangle$

(B) < (B)</p>

Modes with positive frequency with respect to Kruskal time T

 $|H_{\mathscr{M}}
angle$ [Duffy & Ottewill PRD 77 024007 (2008)]

$$\langle H_{\mathscr{M}} | \hat{T}_{\mu\nu} | H_{\mathscr{M}} \rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\mathscr{M}}\right]$$

- Compute expectation values relative to |B_ℳ⟩
- $|B_{\mathcal{M}}\rangle$ defined by taking modes to have positive frequency with respect to *t*

御 と く ヨ と く ヨ と

Modes with positive frequency with respect to Kruskal time T

 $|H_{\mathscr{M}}
angle$ [Duffy & Ottewill PRD 77 024007 (2008)]

$$\langle H_{\mathscr{M}} | \hat{T}_{\mu\nu} | H_{\mathscr{M}} \rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \coth\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\phi_{\omega\ell m}^{\mathscr{M}}\right]$$

- Compute expectation values relative to |B_ℳ⟩
- $|B_{\mathcal{M}}\rangle$ defined by taking modes to have positive frequency with respect to *t*
- $|B_{\mathcal{M}}\rangle$ diverges on \mathcal{H}^{\pm}

周 医水管医水管医小管

 $\left\langle H_{\mathcal{M}} | \hat{T}_{\mu\nu} | H_{\mathcal{M}} \right\rangle$

[Duffy & Ottewill PRD 77 024007 (2008)]

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

- 32

イロト イポト イヨト イヨト

HHI-states on space-times with enclosed horizons Non-existence of HHI-state on Kruskal space-time with a single mirror

[Kay & Lupo CQG 33 215001 (2016)]

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

HHI-states on space-times with enclosed horizons Existence of HHI-state on Kruskal space-time with two mirrors

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

HHI state on Kerr space-time

Quantum fermion field

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 40 / 47

4 B b 4 B b

Dirac equation

$$\gamma^{\mu} \nabla_{\mu} \Psi = 0$$

-

Dirac equation

$$\gamma^{\mu}
abla_{\mu} \Psi = 0$$

Dirac inner product

$$(\Psi_1,\Psi_2)_D = \int_{\Sigma} \overline{\Psi}_1 \gamma^{\mu} \Psi_2 \, d\Sigma_{\mu}$$

Elizabeth Winstanley (Sheffield)

Kay-Wald theorem and HHI-like states

York, April 2017 41 / 47

• 3 • 4 3

Dirac equation

$$\gamma^{\mu}
abla_{\mu} \Psi = 0$$

Dirac inner product

$$(\Psi_1,\Psi_2)_D = \int_{\Sigma} \overline{\Psi}_1 \gamma^{\mu} \Psi_2 \, d\Sigma_{\mu}$$

Positivity of the Dirac norm

• All modes have positive Dirac norm

Э

() < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < () < ()

A B + A B +
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

Dirac equation

$$\gamma^{\mu}
abla_{\mu} \Psi = 0$$

Dirac inner product

$$(\Psi_1,\Psi_2)_D = \int_{\Sigma} \overline{\Psi}_1 \gamma^{\mu} \Psi_2 \, d\Sigma_{\mu}$$

Positivity of the Dirac norm

- All modes have positive Dirac norm
- Both positive frequency and negative frequency modes have positive Dirac norm

Э

イロト イポト イヨト イヨト

Dirac equation

$$\gamma^{\mu}
abla_{\mu} \Psi = 0$$

Dirac inner product

$$(\Psi_1,\Psi_2)_D = \int_{\Sigma} \overline{\Psi}_1 \gamma^{\mu} \Psi_2 \, d\Sigma_{\mu}$$

Positivity of the Dirac norm

- All modes have positive Dirac norm
- Both positive frequency and negative frequency modes have positive Dirac norm
- More freedom in the choice of positive frequency?

Э

イロト イボト イヨト イヨト

Mode expansion of the massless fermion field Ψ

Expand classical field in terms of orthonormal basis of field modes

$$\Psi = \sum_j b_j \psi_j^+ + c_j^\dagger \psi_j^-$$

3

(B) < (B)</p>

Mode expansion of the massless fermion field Ψ

Expand classical field in terms of orthonormal basis of field modes

$$\hat{\Psi} = \sum_j \hat{b}_j \psi_j^+ + \hat{c}_j^\dagger \psi_j^-$$

Promote expansion coefficients to operators \hat{b}_j , \hat{c}_j with

$$\left\{ \hat{b}_j, \hat{b}_k^{\dagger} \right\} = \delta_{jk} = \left\{ \hat{c}_j, \hat{c}_k^{\dagger} \right\}$$
$$\left\{ \hat{b}_j, \hat{b}_k \right\} = \left\{ \hat{b}_j^{\dagger}, \hat{b}_k^{\dagger} \right\} = 0 = \left\{ \hat{c}_j, \hat{c}_k \right\} = \left\{ \hat{c}_j^{\dagger}, \hat{c}_k^{\dagger} \right\}$$

Mode expansion of the massless fermion field Ψ

Expand classical field in terms of orthonormal basis of field modes

$$\hat{\Psi} = \sum_j \hat{b}_j \psi_j^+ + \hat{c}_j^\dagger \psi_j^-$$

Promote expansion coefficients to operators \hat{b}_j , \hat{c}_j with

Define the vacuum state $|0\rangle$

$$\hat{b}_{j}\ket{0}=0=\hat{c}_{j}\ket{0}$$

Fermion field

A HHI-like state for a fermion field on Kerr?

• Define positive frequency with respect to Kruskal time *T*

Fermion field

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes with \$\tilde{\omega}\$ > 0?

- Define positive frequency with respect to Kruskal time *T*
- "Up" and "down" modes are not orthogonal

- Define positive frequency with respect to Kruskal time *T*
- "Up" and "down" modes are not orthogonal
- Instead use "in" and "up" modes with \$\wideirallow > 0\$

Fermion field

- Define positive frequency with respect to Kruskal time *T*
- Use "up" and "down" modes with \$\tilde{\omega}\$ > 0?
- "Up" and "down" modes are not orthogonal
- Instead use "in" and "up" modes with \$\tilde{\omega}\$ > 0
- Call the resulting vacuum state $|H\rangle$

Unrenormalized expectation values

3

ト < 三 ト < 三 ト</p>

< 🗆 > < 🗗

Fermion field

Unrenormalized expectation values

 $|H\rangle$ [Casals et al *PRD* **87** 064027 (2013)]

$$\langle H|\hat{T}_{\mu\nu}|H\rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\tilde{\omega} \tanh\left(\frac{\tilde{\omega}}{2T_{H}}\right) \left\{ T_{\mu\nu} \left[\psi_{\omega\ell m}^{\text{in}}\right] + T_{\mu\nu} \left[\psi_{\omega\ell m}^{\text{up}}\right] \right\}$$

ヨト・モート

Unrenormalized expectation values

|H
angle [Casals et al PRD **87** 064027 (2013)]

$$\langle H|\hat{T}_{\mu\nu}|H\rangle = \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \tanh\left(\frac{\widetilde{\omega}}{2T_{H}}\right) \left\{ T_{\mu\nu} \left[\psi_{\omega\ell m}^{\text{in}}\right] + T_{\mu\nu} \left[\psi_{\omega\ell m}^{\text{up}}\right] \right\}$$

|CCH
angle [Candelas, Chrzanowski & Howard PRD 24 297 (1981)]

$$\begin{split} \langle CCH | \hat{T}_{\mu\nu} | CCH \rangle &= \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\omega \tanh\left(\frac{\omega}{2T_{H}}\right) T_{\mu\nu} \left[\psi_{\omega\ell m}^{\text{in}}\right] \\ &+ \sum_{\ell=0}^{\infty} \sum_{m=-\ell}^{\ell} \int_{0}^{\infty} d\widetilde{\omega} \tanh\left(\frac{\widetilde{\omega}}{2T_{H}}\right) T_{\mu\nu} \left[\psi_{\omega\ell m}^{\text{up}}\right] \end{split}$$

3

★ E > < E >

$\langle CCH | \hat{T}_{\mu u} | CCH angle$ for a fermion field

[Casals et al PRD 87 064027 (2013)]

□ > < □ >
$\langle H|\hat{T}_{\mu
u}|H
angle$ for a fermion field [Casals et al PRD 87 064027 (2013)]

3

ト < 三 ト < 三 ト</p>

Schwarzschild Kay *CMP* **100** 57 (1985) Existence of HHI state Kay & Wald *Phys. Rept.* **207** 49 (1991) Uniqueness of HHI state

(B) < (B)</p>

Schwarzschild Kay *CMP* **100** 57 (1985) Existence of HHI state Kay & Wald *Phys. Rept.* **207** 49 (1991) Uniqueness of HHI state

Kerr

Kay & Wald Phys. Rept. 207 49 (1991) No HHI state

Schwarzschild Kay *CMP* **100** 57 (1985) Existence of HHI state Kay & Wald *Phys. Rept.* **207** 49 (1991) Uniqueness of HHI state

Kerr

Kay & Wald Phys. Rept. 207 49 (1991) No HHI state

HHI-like states for scalars on Kerr

- Nonequilibrium state
- Enclose horizon inside a mirror

個人 くほん くほん しほ

Schwarzschild Kay *CMP* **100** 57 (1985) Existence of HHI state Kay & Wald *Phys. Rept.* **207** 49 (1991) Uniqueness of HHI state

Kerr

Kay & Wald Phys. Rept. 207 49 (1991) No HHI state

HHI-like states for scalars on Kerr

- Nonequilibrium state
- Enclose horizon inside a mirror

HHI-like states for fermions on Kerr

- Equilibrium state diverges on and outside \mathscr{S}_L
- Kay-Wald theorem extends to fermions?