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Introduction

We study a scalar field � subject to the action

S “ ´

1
2

ª

M

´
gµ⌫

Bµ�B⌫�` µ2�2

¯
dd`1x ´

c

2

ª

BM

´
hµ⌫

Bµ�B⌫�` µ2�2

¯
ddx

Specifically, M “ R ˆ ⌃ with ⌃ “ Rd´1

ˆ r´S , Ss (but also general ⌃ Ä Rd).

This is similar to

§ The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

S “ ´�

ª

⌅

a
|g |d2x ´ m

ª

B⌅

a
|h|dx .

§ Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

S “ ´

1
16⇡G

ª

M

?

g
`
R
g

´

12

`2

˘
d5x ´

1
8⇡G

ª

BM

?

h
`
⇥ ´

`
4

R
h

`

3

`

˘
d4x .

§ Holographic renormalization [Skenderis et al]

S “ ´

1
2

ª

⇢•"

?

g
´
gµ⌫

Bµ�B⌫�`

´
d

2

4

´ 1
¯
�2

¯
dd`1x

´

`
2

ª

BM"

?

h
´

1

2

log "hµ⌫
Bµ�B⌫�`

`
d

2

´ 1
˘
�2

¯
ddx .
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Questions

§ Is the classical system well-behaved, i.e., is the Cauchy problem
well-posed?

§ Can one quantize the system? If yes, what is the interplay between bulk
and boundary fields?



Outline

The wave equation

Quantization

Conclusion



Variation of

S “ ´

1
2

ª

M

´
gµ⌫

Bµ�B⌫�` µ2�2

¯
dd`1x ´

c

2

ª

BM

´
hµ⌫

Bµ�B⌫�` µ2�2

¯
ddx

yields the equations of motion

´ l
g

�` µ2� “ 0 in M, (1)

´ l
h

�` µ2� “ ´c´1

BK� in BM. (2)

Using (1), one may write (2) alternatively as

B

2

K� “ ´c´1

BK� in BM. (3)

Such boundary conditions are known in the mathematical literature as
generalized Wentzell, Wentzell-Feller type, kinematic, or dynamical boundary
conditions.

Di↵erent interpretations possible:

§ (3) as boundary condition for wave equation (1).
§ (1), (2) as wave equations for the bulk and the boundary field, coupled by

§
The bulk field providing a source for the boundary field;

§
The boundary field providing the boundary value of the bulk field.
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Strategy

§ Write full system as
´B

2

t

� “ ��

with � a self-adjoint operator on some Hilbert space H.

§ Using �, rewrite the full system as a first order equation on suitable
energy Hilbert spaces for the Cauchy data. This yields well-posedness for
smooth initial data with suitable fall-o↵ and global energy estimates.

§ Derive causal propagation by local energy estimates.

§ By glueing, this yields global well-posedness for smooth initial data.

Some comments:

§ That L2

p⌃q ‘ L2

pB⌃q is the appropriate space of Cauchy data has been
observed by several authors [Feller 57; Ueno 73; Gal, Goldstein & Goldstein 03; . . . ].

§ The global energy estimates for m “ k “ 0 were already known [Vitillaro 15].

§ Local energy estimates and thus causal propagation seem to be new.
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§ The following symplectic form is conserved:

�pp�, 9�q, p , 9 qq “

ª

⌃

� 9 ´

9� ` c

ª

B⌃
� 9 ´

9� .

§ It is thus natural to consider the Hilbert space

H “ L2

p⌃q ‘ cL2

pB⌃q

with scalar product

xp�bk,�bdq, p bk, bdqy “ x�bk, bky

L

2p⌃q ` cx�bd, bdy

L

2pB⌃q

so that

�pp�, 9�q, p , 9 qq “ xp�̄, �̄|B⌃q, p

9 , 9 |B⌃qy ´ xp ̄,  ̄|B⌃q, p

9�, 9�|B⌃qy.

§ We may write the wave equation as

´B

2

t

� “ �� “

ˆ
´�

⌃

` µ2 0
c´1

BK ¨ |B⌃ ´�B⌃ ` µ2

˙ ˆ
�bk

�bd

˙
,

where the boundary condition �bk|B⌃ “ �bd is encoded in the domain

domp�q “

!
p�bk,�bdq P H | �bk P H2

p⌃q,�bd P H2

pB⌃q,�bk|B⌃ “ �bd

)
.
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Proposition

� is self-adjoint with spectrum contained in rµ2,8q.

Proof.
For � P domp�q, we compute (with µ “ 0):

x�,��y “ ´

ª

⌃

�̄bk�⌃

�bk `

ª

B⌃
�̄bdBK�bk| ´ c�̄bd�B⌃�bd

“

ª

⌃

B

i

�̄bkB

i

�bk ` c

ª

B⌃
B

j

�̄bdB

j

�bd • 0.

This entails the bound on the spectrum. The claim on self-adjointness follows
similarly by integration by parts: One shows that also on domp�˚

q the
boundary condition �bk|B⌃ “ �bd has to be satisfied.
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Proposition

For smooth Cauchy data

p�
0

,�
1

q P H8
p⌃q ˆ H8

p⌃q

such that
B

2k`2

K �
i

|B⌃ “ ´c´1

B

2k`1

K �
i

|B⌃, @k P N,

for i “ 0, 1, there is a unique smooth solution �ptq to the wave equation with
µ ° 0. The properties of the Cauchy data are conserved under time evolution.
Furthermore, denoting �ptq “ p�ptq,�ptq|B⌃q, we have

kB

m

t

�ptqk2
k`1

` kB

m`1

t

�ptqk2
k

“ k�
0

k2
k`m`1

` k�
1

k2
k`m

.
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§ We consider the bulk and boundary stress-energy tensors

Tµ⌫ “ Bµ�B⌫�´

1

2

gµ⌫
´

B��B

��` µ2�2

¯
,

T |

ab

“ c
”
B

a

�B

b

�´

1

2

h
ab

´
B

c

�B

c�` µ2�2

¯ı
.

§ Tµ⌫ is conserved on-shell. For the boundary stress-energy tensor one finds

B

aT |

ab

“ TKb
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Strategy

§ Write full system as
´B

2

t

� “ ��

with � a self-adjoint operator on some Hilbert space H.

§ Using �, rewrite the full system as a first order equation on suitable
energy Hilbert spaces for the Cauchy data. This yields well-posedness for
smooth initial data with suitable fall-o↵ and global energy estimates.

§ Derive causal propagation by local energy estimates.

§ By glueing, this yields global well-posedness for smooth initial data.

Some comments:

§ That L2

p⌃q ‘ L2

pB⌃q is the appropriate space of Cauchy data has been
observed by several authors [Feller 57; Ueno 73; Gal, Goldstein & Goldstein 03; . . . ].

§ The global energy estimates for m “ k “ 0 were already known [Vitillaro 15].

§ Local energy estimates and thus causal propagation seem to be new.
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An example

Consider ⌃ “ Rd

` and a singularity �pt ` zq infalling to the boundary from the
right. The full solution is given by

� “ �pt ` zq ´ �pt ´ zq ` 2c´1e´ t´z

c ✓pt ´ zq.

§ The singularity is reflected

§ Boundary picks up energy and radiates it o↵ on time-scale c.

Open issue: Propagation of singularities.
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Outline

The wave equation

Quantization

Conclusion



The eigenfunctions

§ We consider ⌃ “ Rd

ˆ r´S , Ss. A basis of eigenfunctions of � is

�
k,m “ c

m

p2⇡q

´ d´1

2 S´ 1

2 e ikx
#
cos q

m

z m even

sin q
m

z m odd

with k P Rd´1, m P N and the eigenvalue

!2

k,m “ k2

` q2

m

` µ2.

§
tq

m

u is an increasing sequence of non-negative reals with q
0

“ 0 and

q
m

“

⇡
2S

pm ´ 1q `

2c´1

⇡pm ´ 1q

` Oppm ´ 1q

´3

q.

§ The restriction to the boundary is given by

�
k,m|B˘⌃

pxq “ p˘q

m

p2⇡q

´ d´1

2 d
m

e ikx

where the d
m

are real, non-zero and fulfill

d
m

“

2c´1

⇡
?

Spm ´ 1q

` Oppm ´ 1q

´3

q.
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Time-zero fields

§ Corresponding to t�
k,mu

kPRd´1,mPN, define the one-particle Hilbert space

H
1

“ L2

pRd´1

q b l2pNq,

the corresponding Fock space F , and a
m

pkq, a
m

pkq

˚ fulfilling

ra
m

pkq, a
m

1
pk 1

q

˚
s “ �

mm

1�pk ´ k 1
q.

§ For F “ pfbk, fbdq P domp�´ 1

4

q, G P domp�
1

4

q, define time zero fields

�
0

pF q “

ÿ

m

ª
dd´1k

?

2!
k,m

`
xF̄ ,�

k,mya
m

pkq ` x�
k,m,F ya

m

pkq

˚˘
,

⇡
0

pGq “ ´i
ÿ

m

ª
dd´1k

?

!
k,m

?

2

`
xḠ ,�

k,mya
m

pkq ´ x�
k,m,Gya

m

pkq

˚˘
.

These fulfill the canonical equal time commutation relations, i.e.,

r�
0

pF q,�
0

pF 1
qs “ 0, r⇡

0

pGq,⇡
0

pG 1
qs “ 0, r�

0

pF q,⇡
0

pGqs “ ixF̄ ,Gy.

§ Inserting F “ p0, fbdq, one obtains

�
0

p0, fbdq “

ÿ

m

ª
dd´1k

?

2!
k,m

d
m

´
f̂bdp´kqa

m

pkq ` f̂bdpkqa
m

pkq

˚
¯
,

which is well defined on a dense domain for fbd P L2

pB⌃q.
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xḠ ,�

k,mya
m

pkq ´ x�
k,m,Gya

m

pkq

˚˘
.

These fulfill the canonical equal time commutation relations, i.e.,

r�
0

pF q,�
0

pF 1
qs “ 0, r⇡

0

pGq,⇡
0

pG 1
qs “ 0, r�

0

pF q,⇡
0

pGqs “ ixF̄ ,Gy.

§ Inserting F “ p0, fbdq, one obtains

�
0

p0, fbdq “

ÿ

m

ª
dd´1k

?

2!
k,m

d
m

´
f̂bdp´kqa

m

pkq ` f̂bdpkqa
m

pkq

˚
¯
,

which is well defined on a dense domain for fbd P L2

pB⌃q.









Space-time fields

For space-time fields, we admit F “ pfbk, fbdq P SpMq ‘ SpBMq and define

�pF q “

ÿ

m

ª
dt

dd´1k
?

2!
k,m

´
xF̄ ptq,�

k,mye´i!
k,mta

m

pkq ` x�
k,m,F ptqye i!k,mta

m

pkq

˚
¯
.

Proposition

Let µ ° 0. The map F fiÑ �pF q defines an operator valued distribution on a
dense invariant linear domain D Ä F and with F real �pF q is essentially
self-adjoint. The field � is causal, i.e.,

supppF q

°
supppGq ùñ r�pF q,�pGqs “ 0.

There is a unitary representation U of the proper orthochronous Poincaré group
PÒ

`pdq, under which the domain D is invariant and such that

Upa,⇤q�pF qUpa,⇤q

˚
“ �pFpa,⇤qq

The vacuum vector ⌦ P D is invariant under U, cyclic w.r.t. polynomials of the
fields �pfbk, fbk|B⌃q or �p0, fbdq, and the spectrum of P|

⌦

K is contained in Hµ.



Proof.

§ Causality from causal propagation and equal time commutation relations.

§ Map to generalized free field  on Rd with ladder operators a
m

pkq

p˚q and
masses µ2

m

“ µ2

` q2

m

:
�pF q “  pf

F

q.

Have to define f
F

P S such that f
F

takes prescribed values on the mass
shells. Then use standard results on generalized free fields [Jost 65] to obtain
self-adjointness, continuity, cyclicity.

§ Construction of U trivial.



The boundary field
For f P SpBMq, we define the boundary field as

�bdpf q “ �p0, c´1f q.

Restriction to the two boundaries separately yields

�˘
bdpxq “ p2⇡q

´ d´1

2

ÿ

m

p˘q

md
m

ª
dd´1k

?

2!
k,m

´
e´ip!

k,mt´kxqa
m

pkq ` h.c.
¯
,

i.e., a generalized free field with two-point function

�`pxq “

ÿ

m

|d
m

|2�µ
m

` pxq.

Proposition

Let µ ° 0 or d ° 2. Then �` is a tempered distribution. Its singular support
is contained in tx P Rd

|x2

§ 0u and the projection of its analytic wave front set
to the cotangent space is given by tk P Rd

|k2

§ 0, k0

° 0u. For d • 2, the
scaling degree of �` at coinciding points is d ´ 2.

§ Time-slice property does not hold for �bd. For time-slices larger than 2S?

§ The bound on the analytic wave front set implies that �˘
bd satisfies the

Reeh-Schlieder property [Strohmaier, Verch, Wollenberg 02].
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Reeh-Schlieder property [Strohmaier, Verch, Wollenberg 02].



The bulk-to-boundary map

Bulk fields �bk may be defined as

�bkpf q “ �pf , 0q

We then have

�˘
bdpf q “ �bkpf �pz ¯ Sqq,

�˘
bdpp´l

h

` µ2

qf q “ ¯c´1�bkpf �1
pz ¯ Sqq.

Proposition

Let µ2

° 0. To each f P SpMq there exists f 1
P SpB`Mq s.t. �bkpf q “ �`

bdpf 1
q.

§ f 1
P DpB`Mq is in general not possible. Maybe for d “ 1?

§ Also works for Wick powers (but locality is lost).
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Comparison with other boundary conditions

§ Restriction to boundary also possible for Neumann boundary condition.

§ Boundary two-point function inherits degree of singularity from the bulk.

§ For Dirichlet boundary conditions, one may restrict BK� to the boundary.
Singularity of boundary two-point function is then even stronger than that
of the bulk.

§ In the AdS/CFT correspondence for scalar fields, the boundary fields also
have anomalous dimensions.

§ Holographic image of a bulk observable contained in a local algebra ApOq

[Rehren 00].
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Summary & Outlook

Summary:

§ Well-posedness of the wave equation with Wentzell boundary conditions.

§ Canonical quantization of the free field.

§ Holographic relation between bulk and boundary field.

Outlook:

§ Propagation of singularities.

§ Interacting fields.

§ Fermions.
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