Generalized Wentzell boundary conditions and holography

Jochen Zahn

Universität Leipzig

based on arXiv:1512.05512

LQP38, May 2016

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$).

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{\epsilon^{\nu}}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$).

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

§ The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$
S = -\gamma \int_{\Xi} \sqrt{|g|} \mathrm{d}^2 x - m \int_{\partial \Xi} \sqrt{|h|} \mathrm{d} x.
$$

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_{M} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) d^{d}x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^{d}$).
This is similar to
* The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$
S = -\gamma \int_{\Xi} \sqrt{|g|} d^{2}x - m \int_{\partial \Xi} \sqrt{|h|} dx.
$$

Fluctuedious
L to plous of *obt* in
heat action
[c, 13]

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

§ The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$
S = -\gamma \int_{\Xi} \sqrt{|g|} \mathrm{d}^2 x - m \int_{\partial \Xi} \sqrt{|h|} \mathrm{d} x.
$$

§ Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$
\mathcal{S}=-\frac{1}{16\pi G}\int_M \sqrt{g}\left(R_g-\tfrac{12}{\ell^2}\right)\mathrm{d}^5x-\frac{1}{8\pi G}\int_{\partial M}\sqrt{h}\left(\Theta-\tfrac{\ell}{4}R_h+\tfrac{3}{\ell}\right)\mathrm{d}^4x.
$$

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

§ The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$
S = -\gamma \int_{\Xi} \sqrt{|g|} \mathrm{d}^2 x - m \int_{\partial \Xi} \sqrt{|h|} \mathrm{d} x.
$$

▶ Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$
S = -\frac{1}{16\pi G} \int_M \sqrt{g} \left(R_g - \frac{12}{\ell^2} \right) d^5 x - \frac{1}{8\pi G} \int_{\partial M} \sqrt{h} \left(\Theta \frac{Q_g}{4} R_h + \frac{3}{\ell} \right) d^4 x.
$$
\nHint: $\int_{G/H} \sqrt{h} \left(\Theta \frac{Q_g}{4} R_h + \frac{3}{\ell} \right) d^4 x.$

\nwith c.c.

\nHint: $\int_{G/H} \sqrt{h} \left(\Theta \frac{Q_g}{4} R_h + \frac{3}{\ell} \right) d^4 x.$

\nHint: $\int_{G/H} \sqrt{h} \left(\Theta \frac{Q_g}{4} R_h + \frac{3}{\ell} \right) d^4 x.$

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

§ The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$
S = -\gamma \int_{\Xi} \sqrt{|g|} \mathrm{d}^2 x - m \int_{\partial \Xi} \sqrt{|h|} \mathrm{d} x.
$$

§ Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$
S=-\frac{1}{16\pi G}\int_M \sqrt{g}\left(R_g-\tfrac{12}{\ell^2}\right)\mathrm{d}^5x-\frac{1}{8\pi G}\int_{\partial M}\sqrt{h}\left(\Theta-\tfrac{\ell}{4}R_h+\tfrac{3}{\ell}\right)\mathrm{d}^4x.
$$

▶ Holographic renormalization [Skenderis et al]

$$
S = -\frac{1}{2} \int_{\rho \geq \varepsilon} \sqrt{g} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \left(\frac{d^2}{4} - 1 \right) \phi^2 \right) d^{d+1} x - \frac{\ell}{2} \int_{\partial M_{\varepsilon}} \sqrt{h} \left(\frac{1}{2} \log \varepsilon h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \left(\frac{d}{2} - 1 \right) \phi^2 \right) d^d x.
$$

We study a scalar field ϕ subject to the action

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

§ The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$
S = -\gamma \int_{\Xi} \sqrt{|g|} \mathrm{d}^2 x - m \int_{\partial \Xi} \sqrt{|h|} \mathrm{d} x.
$$

§ Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$
\mathcal{S}=-\frac{1}{16\pi G}\int_M \sqrt{g}\left(R_g-\tfrac{12}{\ell^2}\right)\mathrm{d}^5x-\frac{1}{8\pi G}\int_{\partial M}\sqrt{h}\left(\Theta-\tfrac{\ell}{4}R_h+\tfrac{3}{\ell}\right)\mathrm{d}^4x.
$$

▶ Holographic renormalization [Skenderis et al]

$$
\begin{split} \mathcal{S} & = -\frac{1}{2} \int_{\rho \geqslant \varepsilon} \sqrt{\mathcal{g}} \left(\mathcal{g}^{\mu\nu} \partial_{\mu}\phi \partial_{\nu}\phi + \left(\frac{d^2}{4} - 1 \right) \phi^2 \right) d^{d+1} x \\ & \quad - \frac{\ell}{2} \int_{\partial M_{\varepsilon}} \sqrt{h} \left(\frac{1}{2} \log \varepsilon h^{\mu\nu} \partial_{\mu}\phi \partial_{\nu}\phi + \left(\frac{d}{2} - 1 \right) \phi^2 \right) d^d x. \\ & \quad \bigcup_{\lambda} \quad \langle \partial \quad \rangle, \end{split}
$$

Questions

- § Is the classical system well-behaved, i.e., is the Cauchy problem well-posed?
- § Can one quantize the system? If yes, what is the interplay between bulk and boundary fields?

Outline

[The wave equation](#page-10-0)

[Quantization](#page-35-0)

[Conclusion](#page-54-0)

Variation of

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

yields the equations of motion

$$
-\Box_g \phi + \mu^2 \phi = 0 \qquad \text{in } M,
$$
 (1)

$$
-\Box_h \phi + \mu^2 \phi = -c^{-1} \partial_\perp \phi \qquad \text{in } \partial M.
$$
 (2)

Using [\(1\)](#page-11-0), one may write [\(2\)](#page-11-1) alternatively as

$$
\partial_{\perp}^2 \phi = -c^{-1} \partial_{\perp} \phi \qquad \text{in } \partial M. \qquad (3)
$$

Such boundary conditions are known in the mathematical literature as generalized Wentzell, Wentzell-Feller type, kinematic, or dynamical boundary conditions.

Variation of

$$
S = -\frac{1}{2} \int_M \left(g^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_\mu \phi \partial_\nu \phi + \mu^2 \phi^2 \right) d^d x
$$

yields the equations of motion

$$
-\Box_g \phi + \mu^2 \phi = 0 \qquad \text{in } M,
$$
 (1)

$$
-\Box_h \phi + \mu^2 \phi = -c^{-1} \partial_\perp \phi \qquad \text{in } \partial M.
$$
 (2)

Using [\(1\)](#page-11-0), one may write [\(2\)](#page-11-1) alternatively as

$$
\partial_{\perp}^2 \phi = -c^{-1} \partial_{\perp} \phi \qquad \text{in } \partial M. \qquad (3)
$$

Such boundary conditions are known in the mathematical literature as generalized Wentzell, Wentzell-Feller type, kinematic, or dynamical boundary conditions.

Different interpretations possible:

- \cdot [\(3\)](#page-11-2) as boundary condition for wave equation [\(1\)](#page-11-0).
- \rightarrow [\(1\)](#page-11-0), [\(2\)](#page-11-1) as wave equations for the bulk and the boundary field, coupled by
	- \triangleright The bulk field providing a source for the boundary field;
	- \blacktriangleright The boundary field providing the boundary value of the bulk field.

Strategy

§ Write full system as

$$
-\partial_t^2\Phi=\Delta\Phi
$$

with Δ a self-adjoint operator on some Hilbert space H .

- $▶$ Using Δ , rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.
- ▶ Derive causal propagation by local energy estimates.
- § By glueing, this yields global well-posedness for smooth initial data.

Strategy

§ Write full system as

$$
-\partial_t^2 \Phi = \Delta \Phi
$$

with Δ a self-adjoint operator on some Hilbert space H .

Probability: Boundary Condition

\n
$$
3\vec{)} = -c^{-1}3\vec{+}
$$
\ndoes not guarantee
\nvanishing of curvature
\nis hiny of curvature

\n
$$
j = \text{Im}(\vec{a} \cdot 3\vec{+})
$$
\nthrough boundary

§ The following symplectic form is conserved:

$$
\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \int_{\Sigma} \phi \dot{\psi} - \dot{\phi}\psi + c \int_{\partial \Sigma} \phi \dot{\psi} - \dot{\phi}\psi.
$$

§ The following symplectic form is conserved:

$$
\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \int_{\Sigma} \phi \dot{\psi} - \dot{\phi}\psi + c \int_{\partial \Sigma} \phi \dot{\psi} - \dot{\phi}\psi.
$$

§ It is thus natural to consider the Hilbert space

$$
H=L^2(\Sigma)\oplus cL^2(\partial\Sigma)
$$

with scalar product

$$
\big\langle (\phi_\mathrm{bk},\phi_\mathrm{bd}), (\psi_\mathrm{bk},\psi_\mathrm{bd}) \big\rangle = \big\langle \phi_\mathrm{bk},\psi_\mathrm{bk} \big\rangle_{L^2(\Sigma)} + c \big\langle \phi_\mathrm{bd},\psi_\mathrm{bd} \big\rangle_{L^2(\partial \Sigma)}
$$

so that

$$
\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi}))=\langle(\bar{\phi},\bar{\phi}|_{\partial\Sigma}),(\dot{\psi},\dot{\psi}|_{\partial\Sigma})\rangle-\langle(\bar{\psi},\bar{\psi}|_{\partial\Sigma}),(\dot{\phi},\dot{\phi}|_{\partial\Sigma})\rangle.
$$

§ The following symplectic form is conserved:

$$
\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \int_{\Sigma} \phi \dot{\psi} - \dot{\phi}\psi + c \int_{\partial \Sigma} \phi \dot{\psi} - \dot{\phi}\psi.
$$

§ It is thus natural to consider the Hilbert space

$$
H=L^2(\Sigma)\oplus cL^2(\partial\Sigma)
$$

with scalar product

$$
\big\langle (\phi_{\mathrm{bk}}, \phi_{\mathrm{bd}}), (\psi_{\mathrm{bk}}, \psi_{\mathrm{bd}}) \big\rangle = \big\langle \phi_{\mathrm{bk}}, \psi_{\mathrm{bk}} \big\rangle_{L^2(\Sigma)} + c \big\langle \phi_{\mathrm{bd}}, \psi_{\mathrm{bd}} \big\rangle_{L^2(\partial \Sigma)}
$$

so that

$$
\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi}))=\langle(\bar{\phi},\bar{\phi}|_{\partial\Sigma}),(\dot{\psi},\dot{\psi}|_{\partial\Sigma})\rangle-\langle(\bar{\psi},\bar{\psi}|_{\partial\Sigma}),(\dot{\phi},\dot{\phi}|_{\partial\Sigma})\rangle.
$$

§ We may write the wave equation as

$$
-\partial_t^2 \Phi = \Delta \Phi = \begin{pmatrix} -\Delta_\Sigma + \mu^2 & 0 \\ c^{-1} \partial_\perp \cdot |_{\partial \Sigma} & -\Delta_{\partial \Sigma} + \mu^2 \end{pmatrix} \begin{pmatrix} \phi_{\rm bk} \\ \phi_{\rm bd} \end{pmatrix},
$$

where the boundary condition $\phi_{\text{bk}}|_{\partial \Sigma} = \phi_{\text{bd}}$ is encoded in the domain

$$
\mathsf{dom}(\Delta) = \left\{(\phi_{\mathrm{bk}},\phi_{\mathrm{bd}}) \in H \mid \phi_{\mathrm{bk}} \in H^2(\Sigma), \phi_{\mathrm{bd}} \in H^2(\partial \Sigma), \phi_{\mathrm{bk}}|_{\partial \Sigma} = \phi_{\mathrm{bd}}\right\}.
$$

Proposition

 Δ *is self-adjoint with spectrum contained in* $[\mu^2, \infty)$ *.*

Proof.

For $\Phi \in \text{dom}(\Delta)$, we compute (with $\mu = 0$):

$$
\begin{aligned} \langle \Phi, \Delta \Phi \rangle &= -\int_{\Sigma} \bar{\phi}_{\rm bk} \Delta_{\Sigma} \phi_{\rm bk} + \int_{\partial \Sigma} \bar{\phi}_{\rm bd} \partial_{\perp} \phi_{\rm bk} | - c \bar{\phi}_{\rm bd} \Delta_{\partial \Sigma} \phi_{\rm bd} \\ &= \int_{\Sigma} \partial_i \bar{\phi}_{\rm bk} \partial_i \phi_{\rm bk} + c \int_{\partial \Sigma} \partial_j \bar{\phi}_{\rm bd} \partial_j \phi_{\rm bd} \geqslant 0. \end{aligned}
$$

This entails the bound on the spectrum. The claim on self-adjointness follows similarly by integration by parts: One shows that also on dom (Δ^*) the boundary condition $\phi_{\text{bk}}|_{\partial \Sigma} = \phi_{\text{bd}}$ has to be satisfied. П

Strategy

§ Write full system as

$$
-\partial_t^2 \Phi = \Delta \Phi
$$

with Δ a self-adjoint operator on some Hilbert space H .

 $▶$ Using Δ , rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.

Proposition *For smooth Cauchy data* $(\phi_0, \phi_1) \in H^{\infty}(\Sigma) \times H^{\infty}(\Sigma)$ $H^{\infty} \cap H^{\infty}$

such that

$$
\partial_{\perp}^{2k+2} \phi_i |_{\partial \Sigma} = -c^{-1} \partial_{\perp}^{2k+1} \phi_i |_{\partial \Sigma}, \qquad \forall k \in \mathbb{N},
$$

for $i = 0, 1$, there is a unique smooth solution $\phi(t)$ to the wave equation with $\mu > 0$. The properties of the Cauchy data are conserved under time evolution. *Furthermore, denoting* $\Phi(t) = (\phi(t), \phi(t)|_{\partial \Sigma})$ *, we have*

$$
\|\partial_t^m \Phi(t)\|_{k+1}^2 + \|\partial_t^{m+1} \Phi(t)\|_{k}^2 = \|\Phi_0\|_{k+m+1}^2 + \|\Phi_1\|_{k+m}^2.
$$

Proposition

For smooth Cauchy data

$$
(\phi_0, \phi_1) \in H^{\infty}(\Sigma) \times H^{\infty}(\Sigma)
$$

such that

$$
\partial_{\perp}^{2k+2}\phi_i|_{\partial\Sigma}=-c^{-1}\partial_{\perp}^{2k+1}\phi_i|_{\partial\Sigma},\qquad\forall k\in\mathbb{N},
$$

for $i = 0, 1$, there is a unique smooth solution $\phi(t)$ to the wave equation with $\mu > 0$. The properties of the Cauchy data are conserved under time evolution. *Furthermore, denoting* $\Phi(t) = (\phi(t), \phi(t)|_{\partial \Sigma})$ *, we have*

$$
\|\partial_t^m \Phi(t)\|_{k+1}^2 + \|\partial_t^{m+1} \Phi(t)\|_{k}^2 = \|\Phi_0\|_{k+m+1}^2 + \|\Phi_1\|_{k+m}^2.
$$

$$
\|\phi\|_{K}^2 = \|\Delta^{W_L} \phi\|_{k}^2
$$

Strategy

§ Write full system as

$$
-\partial_t^2 \Phi = \Delta \Phi
$$

with Δ a self-adjoint operator on some Hilbert space H.

- $▶$ Using Δ , rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.
- ▶ Derive causal propagation by local energy estimates.

§ We consider the bulk and boundary stress-energy tensors

$$
\mathcal{T}_{\mu\nu} = \partial_{\mu}\phi \partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}\left(\partial_{\lambda}\phi \partial^{\lambda}\phi + \mu^{2}\phi^{2}\right),
$$

$$
\mathcal{T}|_{ab} = c\left[\partial_{a}\phi \partial_{b}\phi - \frac{1}{2}h_{ab}\left(\partial_{c}\phi \partial^{c}\phi + \mu^{2}\phi^{2}\right)\right].
$$

§ We consider the bulk and boundary stress-energy tensors

$$
\begin{aligned} \mathcal{T}_{\mu\nu} &= \partial_{\mu}\phi\partial_{\nu}\phi - \tfrac{1}{2}g_{\mu\nu}\left(\partial_{\lambda}\phi\partial^{\lambda}\phi + \mu^{2}\phi^{2}\right), \\ \mathcal{T}|_{ab} &= c\left[\partial_{a}\phi\partial_{b}\phi - \tfrac{1}{2}h_{ab}\left(\partial_{c}\phi\partial^{c}\phi + \mu^{2}\phi^{2}\right)\right]. \end{aligned}
$$

 \rightarrow $T_{\mu\nu}$ is conserved on-shell. For the boundary stress-energy tensor one finds

$$
\partial^a T|_{ab} = T_{\perp b}.
$$

§ We consider the bulk and boundary stress-energy tensors

$$
\begin{aligned} \mathcal{T}_{\mu\nu} &= \partial_{\mu}\phi\partial_{\nu}\phi - \tfrac{1}{2}g_{\mu\nu}\left(\partial_{\lambda}\phi\partial^{\lambda}\phi + \mu^{2}\phi^{2}\right), \\ \mathcal{T}|_{ab} &= c\left[\partial_{a}\phi\partial_{b}\phi - \tfrac{1}{2}h_{ab}\left(\partial_{c}\phi\partial^{c}\phi + \mu^{2}\phi^{2}\right)\right]. \end{aligned}
$$

 \rightarrow $T_{\mu\nu}$ is conserved on-shell. For the boundary stress-energy tensor one finds

$$
\partial^a T|_{ab} = T_{\perp b}.
$$

▶ Both $T_{\mu\nu}$ and $T|_{ab}$ fulfill the dominant energy condition.

We integrate $\nabla^{\mu}T_{\mu 0}$ and $\nabla^aT|_{a0}$ over $D = D^+(S_0) \cap J^-(\Sigma_1)$ and ∂D :

$$
\int_{\partial D} \nabla^a T_{|a0} = \int_{S_1 \cap \partial M} T_{|00} + \int_{S_2 \cap \partial M} \rho^a T_{|a0} - \int_{S_0 \cap \partial M} T_{|00} + \int_{S_1} \frac{T_{|00}}{T_{00} + \int_{S_2} \ell^{\mu} T_{\mu 0} + \int_{\partial D} T_{\perp 0} - \int_{S_0} T_{00}.
$$

We integrate $\nabla^{\mu}T_{\mu 0}$ and $\nabla^aT|_{a0}$ over $D = D^+(S_0) \cap J^-(\Sigma_1)$ and ∂D :

$$
\int_{\partial D} \nabla^a T|_{a0} = \int_{S_1 \cap \partial M} T|_{00} + \int_{S_2 \cap \partial M} \rho^a T|_{a0} - \int_{S_0 \cap \partial M} T|_{00} \n+ \int_{S_1} T_{00} + \int_{S_2} \ell^{\mu} T_{\mu 0} + \int_{\partial D} T_{\perp 0} - \int_{S_0} T_{00}.
$$

Proposition

Causal propagation is implied by the local energy estimate

$$
\int_{S_1} (\partial_0 \phi)^2 + g^{ij} \partial_i \phi \partial_j \phi + \mu^2 \phi^2 + c \int_{S_1 \cap \partial M} (\partial_0 \phi)^2 + h^{ij} \partial_i \phi \partial_j \phi + \mu^2 \phi^2
$$

\n
$$
\leq \int_{S_0} (\partial_0 \phi)^2 + g^{ij} \partial_i \phi \partial_j \phi + \mu^2 \phi^2 + c \int_{S_0 \cap \partial M} (\partial_0 \phi)^2 + h^{ij} \partial_i \phi \partial_j \phi + \mu^2 \phi^2.
$$

Strategy

§ Write full system as

$$
-\partial_t^2 \Phi = \Delta \Phi
$$

with Δ a self-adjoint operator on some Hilbert space H.

- $▶$ Using Δ , rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for $\sqrt{}$ smooth initial data with suitable fall-off and global energy estimates.
- ▶ Derive causal propagation by local energy estimates.
- ▶ By glueing, this yields global well-posedness for smooth initial data.

Strategy

§ Write full system as

$$
-\partial_t^2\Phi=\Delta\Phi
$$

with Δ a self-adjoint operator on some Hilbert space H .

- \triangleright Using Δ , rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This vields well-posedness for \vee smooth initial data with suitable fall-off and global energy estimates.
- ▶ Derive causal propagation by local energy estimates.
- \rightarrow By glueing, this yields global well-posedness for smooth initial data.

Some comments:

- ► That $L^2(\Sigma)\oplus L^2(\partial \Sigma)$ is the appropriate space of Cauchy data has been observed by several authors [Feller 57; Ueno 73; Gal, Goldstein & Goldstein 03; ...].
- ▶ The global energy estimates for $m = k = 0$ were already known [Vitillaro 15].
- § Local energy estimates and thus causal propagation seem to be new.

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

$$
\phi = \delta(t+z) - \delta(t-z) + 2c^{-1}e^{-\frac{t-z}{c}}\theta(t-z).
$$

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

$$
\phi = \delta(t+z) - \delta(t-z) + 2c^{-1}e^{-\frac{t-z}{c}}\theta(t-z).
$$

- \blacktriangleright The singularity is reflected
- § Boundary picks up energy and radiates it o↵ on time-scale *c*.

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

$$
\phi = \delta(t+z) - \delta(t-z) + 2c^{-1}e^{-\frac{t-z}{c}}\theta(t-z).
$$

- ▶ The singularity is reflected
- ▶ Boundary picks up energy and radiates it off on time-scale *c*.

Open issue: Propagation of singularities.

Outline

[The wave equation](#page-10-0)

[Quantization](#page-35-0)

[Conclusion](#page-54-0)

 \blacktriangleright We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$
\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}
$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$
\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.
$$

 \triangleright We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$
\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}
$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$
\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.
$$

▶ ${q_m}$ is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$
q_m = \frac{\pi}{2S}(m-1) + \frac{2c^{-1}}{\pi(m-1)} + \mathcal{O}((m-1)^{-3}).
$$

 \triangleright We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$
\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}
$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$
\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.
$$

▶ ${q_m}$ is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$
q_m = \underbrace{\sqrt{\frac{\pi}{2S}(m-1)}}_{\text{div}(m-1)} + \underbrace{\mathcal{O}((m-1)^{-3})}_{\text{div}(m-1)}.
$$

 \triangleright We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$
\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}
$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$
\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.
$$

 \rightarrow { q_m } is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$
q_m = \frac{\pi}{2S}(m-1) + \frac{2c^{-1}}{\pi(m-1)} + \mathcal{O}((m-1)^{-3}).
$$

§ The restriction to the boundary is given by

$$
\phi_{k,m}|_{\partial_{\pm}\Sigma}(x)=(\pm)^m(2\pi)^{-\frac{d-1}{2}}d_me^{ikx}
$$

where the *d^m* are real, non-zero and fulfill

$$
d_m = \frac{2c^{-1}}{\pi\sqrt{S}(m-1)} + \mathcal{O}((m-1)^{-3}).
$$

 \triangleright We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$
\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}
$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$
\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.
$$

 \rightarrow { q_m } is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$
q_m = \frac{\pi}{2S}(m-1) + \frac{2c^{-1}}{\pi(m-1)} + \mathcal{O}((m-1)^{-3}).
$$

§ The restriction to the boundary is given by

$$
\phi_{k,m}|_{\partial_{\pm}\Sigma}(x)=(\pm)^m(2\pi)^{-\frac{d-1}{2}}d_me^{ikx}
$$

where the *d^m* are real, non-zero and fulfill

$$
d_m = \frac{2c^{-1}}{\pi\sqrt{5}(m-1)} + \mathcal{O}((m-1)^{-3}).
$$

Time-zero fields

▶ Corresponding to $\{\Phi_{k,m}\}_{k \in \mathbb{R}^{d-1}, m \in \mathbb{N}}$, define the one-particle Hilbert space

$$
\mathcal{H}_1 = L^2(\mathbb{R}^{d-1}) \otimes I^2(\mathbb{N}),
$$

the corresponding Fock space \mathcal{F} , and $a_m(k)$, $a_m(k)^*$ fulfilling

$$
[a_m(k), a_{m'}(k')^*] = \delta_{mm'}\delta(k-k').
$$

Time-zero fields

▶ Corresponding to $\{\Phi_{k,m}\}_{k \in \mathbb{R}^{d-1}, m \in \mathbb{N}}$, define the one-particle Hilbert space

$$
\mathcal{H}_1 = L^2(\mathbb{R}^{d-1}) \otimes I^2(\mathbb{N}),
$$

the corresponding Fock space \mathcal{F} , and $a_m(k)$, $a_m(k)^*$ fulfilling

$$
[a_m(k), a_{m'}(k')^*] = \delta_{mm'}\delta(k-k').
$$

► For $F = (f_{\text{bk}}, f_{\text{bd}}) \in \text{dom}(\Delta^{-\frac{1}{4}})$, $G \in \text{dom}(\Delta^{\frac{1}{4}})$, define time zero fields

$$
\phi_0(F) = \sum_m \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(\langle \bar{F}, \Phi_{k,m} \rangle a_m(k) + \langle \Phi_{k,m}, F \rangle a_m(k) \right),
$$

$$
\pi_0(G) = -i \sum_m \int \mathrm{d}^{d-1}k \frac{\sqrt{\omega_{k,m}}}{\sqrt{2}} \left(\langle \bar{G}, \Phi_{k,m} \rangle a_m(k) - \langle \Phi_{k,m}, G \rangle a_m(k) \right).
$$

These fulfill the canonical equal time commutation relations, i.e.,

$$
[\phi_0(F), \phi_0(F')] = 0, \quad [\pi_0(G), \pi_0(G')] = 0, \quad [\phi_0(F), \pi_0(G)] = i \langle \overline{F}, G \rangle.
$$

Time-zero fields

▶ Corresponding to $\{\Phi_{k,m}\}_{k \in \mathbb{R}^{d-1}, m \in \mathbb{N}}$, define the one-particle Hilbert space

$$
\mathcal{H}_1 = L^2(\mathbb{R}^{d-1}) \otimes I^2(\mathbb{N}),
$$

the corresponding Fock space \mathcal{F} , and $a_m(k)$, $a_m(k)^*$ fulfilling

$$
[a_m(k), a_{m'}(k')^*] = \delta_{mm'}\delta(k-k').
$$

► For $F = (f_{\text{bk}}, f_{\text{bd}}) \in \text{dom}(\Delta^{-\frac{1}{4}})$, $G \in \text{dom}(\Delta^{\frac{1}{4}})$, define time zero fields

$$
\phi_0(F) = \sum_m \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(\langle \bar{F}, \Phi_{k,m} \rangle a_m(k) + \langle \Phi_{k,m}, F \rangle a_m(k) \right),
$$

$$
\pi_0(G) = -i \sum_m \int \mathrm{d}^{d-1}k \frac{\sqrt{\omega_{k,m}}}{\sqrt{2}} \left(\langle \bar{G}, \Phi_{k,m} \rangle a_m(k) - \langle \Phi_{k,m}, G \rangle a_m(k) \right).
$$

These fulfill the canonical equal time commutation relations, i.e.,

$$
[\phi_0(F), \phi_0(F')] = 0, \quad [\pi_0(G), \pi_0(G')] = 0, \quad [\phi_0(F), \pi_0(G)] = i \langle \overline{F}, G \rangle.
$$

▶ Inserting $F = (0, f_{\text{bd}})$, one obtains

$$
\phi_0(0,f_{\text{bd}})=\sum_m\int\frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}}\overline{d_m}\left(\hat{f}_{\text{bd}}(-k)a_m(k)+\hat{f}_{\text{bd}}(k)a_m(k)^*\right),
$$

which is well defined on a dense domain for $f_{\text{bd}} \in L^2(\partial \Sigma)$.

Space-time fields

For space-time fields, we admit $F = (f_{\text{bk}}, f_{\text{bd}}) \in S(M) \oplus S(\partial M)$ and define

$$
\phi(F)=\sum_m\int\mathrm{d} t\frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}}\left(\langle\bar{F}(t),\Phi_{k,m}\rangle e^{-i\omega_{k,m}t}\mathsf{a}_m(k)+\langle\Phi_{k,m},F(t)\rangle e^{i\omega_{k,m}t}\mathsf{a}_m(k)^*\right).
$$

Proposition

Let $\mu > 0$. The map $F \mapsto \phi(F)$ defines an operator valued distribution on a *dense invariant linear domain* $\mathfrak{D} \subset \mathcal{F}$ *and with F real* $\phi(F)$ *is essentially self-adjoint. The field is causal, i.e.,*

$$
\text{supp}(F)\,\bigtimes\,\text{supp}(G)\implies[\phi(F),\phi(G)]=0.
$$

There is a unitary representation U of the proper orthochronous Poincar´e group $\mathcal{P}_+^{\mathbb{T}}(d)$, under which the domain $\mathfrak D$ is invariant and such that

$$
U(a,\Lambda)\phi(F)U(a,\Lambda)^*=\phi(F_{(a,\Lambda)})
$$

The vacuum vector $\Omega \in \mathcal{D}$ *is invariant under U, cyclic w.r.t. polynomials of the fields* $\phi(f_{\rm bk}, f_{\rm bk}|_{\partial \Sigma})$ or $\phi(0, f_{\rm bd})$, and the spectrum of $P|_{\Omega^{\perp}}$ is contained in H_{μ} .

Proof.

- § Causality from causal propagation and equal time commutation relations.
- ▸ Map to generalized free field ψ on \mathbb{R}^d with ladder operators $a_m(k)^{(*)}$ and $masses \mu_m^2 = \mu^2 + q_m^2$:

$$
\phi(F)=\psi(f_F).
$$

Have to define $f_F \in S$ such that f_F takes prescribed values on the mass shells. Then use standard results on generalized free fields [Jost 65] to obtain self-adjointness, continuity, cyclicity.

г

§ Construction of *U* trivial.

The boundary field

For $f \in S(\partial M)$, we define the boundary field as

$$
\phi_{\rm bd}(f)=\phi(0,c^{-1}f).
$$

Restriction to the two boundaries separately yields

$$
\phi_{\rm bd}^{\pm}(x)=(2\pi)^{-\frac{d-1}{2}}\sum_m(\pm)^md_m\int\frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}}\left(e^{-i(\omega_{k,m}t-k_{\Delta})}a_m(k)+h.c.\right),
$$

i.e., a generalized free field with two-point function

$$
\Delta_+(x)=\sum_m |d_m|^2 \Delta_+^{\mu m}(x).
$$

The boundary field

For $f \in S(\partial M)$, we define the boundary field as

$$
\phi_{\text{bd}}(f)=\phi(0,c^{-1}f).
$$

Restriction to the two boundaries separately yields

$$
\phi_{\rm bd}^{\pm}(x)=(2\pi)^{-\frac{d-1}{2}}\sum_m(\pm)^md_m\int\frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}}\left(e^{-i(\omega_{k,m}t-k_{\Delta})}a_m(k)+h.c.\right),
$$

i.e., a generalized free field with two-point function

$$
\Delta_+(x)=\sum_m |d_m|^2 \Delta_+^{\mu_m}(x).
$$

Proposition

Let $\mu > 0$ or $d > 2$. Then Δ_+ is a tempered distribution. Its singular support *is contained in* $\{x \in \mathbb{R}^d | x^2 \le 0\}$ and the projection of its analytic wave front set *to the cotangent space is given by* ${k \in \mathbb{R}^d | k^2 \le 0, k^0 > 0}$ *. For* $d \ge 2$ *, the scaling degree of* Δ_+ *at coinciding points is* $d - 2$ *.*

The boundary field

For $f \in S(\partial M)$, we define the boundary field as

$$
\phi_{\text{bd}}(f)=\phi(0,c^{-1}f).
$$

Restriction to the two boundaries separately yields

$$
\phi_{\rm bd}^{\pm}(x)=(2\pi)^{-\frac{d-1}{2}}\sum_m(\pm)^md_m\int\frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}}\left(e^{-i(\omega_{k,m}t-k_{\Delta})}a_m(k)+h.c.\right),
$$

i.e., a generalized free field with two-point function

$$
\Delta_+(x)=\sum_m |d_m|^2 \Delta_+^{\mu_m}(x).
$$

Proposition

Let $\mu > 0$ or $d > 2$. Then Δ_+ is a tempered distribution. Its singular support *is contained in* $\{x \in \mathbb{R}^d | x^2 \le 0\}$ and the projection of its analytic wave front set *to the cotangent space is given by* ${k \in \mathbb{R}^d | k^2 \le 0, k^0 > 0}$ *. For* $d \ge 2$ *, the scaling degree of* Δ_+ *at coinciding points is* $d - 2$ *.*

- \triangleright Time-slice property does not hold for $\phi_{\rm bd}$. For time-slices larger than 2*S*?
- ▸ The bound on the analytic wave front set implies that $\phi_{\rm bd}^\pm$ satisfies the Reeh-Schlieder property [Strohmaier, Verch, Wollenberg 02].

The bulk-to-boundary map

Bulk fields $\phi_{\rm bk}$ may be defined as

$$
\phi_{\rm bk}(f)=\phi(f,0)
$$

We then have

$$
\phi_{\text{bd}}^{\pm}(f) = \phi_{\text{bk}}(f\delta(z \mp S)),
$$

$$
\phi_{\text{bd}}^{\pm}((-\Box_h + \mu^2)f) = \mp c^{-1}\phi_{\text{bk}}(f\delta'(z \mp S)).
$$

The bulk-to-boundary map

Bulk fields $\phi_{\rm bk}$ may be defined as

$$
\phi_{\rm bk}(f)=\phi(f,0)
$$

We then have

$$
\phi_{\text{bd}}^{\pm}(f) = \phi_{\text{bk}}(f\delta(z \mp S)),
$$

$$
\phi_{\text{bd}}^{\pm}((-\Box_h + \mu^2)f) = \mp c^{-1}\phi_{\text{bk}}(f\delta'(z \mp S)).
$$

Proposition

Let $\mu^2 > 0$. To each $f \in \mathcal{S}(M)$ there exists $f' \in \mathcal{S}(\partial_+ M)$ s.t. $\phi_{\text{bk}}(f) = \phi_{\text{bd}}^+(f').$

The bulk-to-boundary map

Bulk fields $\phi_{\rm bk}$ may be defined as

$$
\phi_{\rm bk}(f)=\phi(f,0)
$$

We then have

$$
\phi_{\text{bd}}^{\pm}(f) = \phi_{\text{bk}}(f\delta(z \mp S)),
$$

$$
\phi_{\text{bd}}^{\pm}((-\Box_h + \mu^2)f) = \mp c^{-1}\phi_{\text{bk}}(f\delta'(z \mp S)).
$$

Proposition

Let $\mu^2 > 0$. To each $f \in \mathcal{S}(M)$ there exists $f' \in \mathcal{S}(\partial_+ M)$ s.t. $\phi_{\text{bk}}(f) = \phi_{\text{bd}}^+(f').$

- ▶ $f' \in \mathfrak{D}(\partial_+ M)$ is in general not possible. Maybe for $d = 1$?
- § Also works for Wick powers (but locality is lost).

Comparison with other boundary conditions

- ▶ Restriction to boundary also possible for Neumann boundary condition.
- ▶ Boundary two-point function inherits degree of singularity from the bulk.
- ► For Dirichlet boundary conditions, one may restrict $\partial_{\perp}\phi$ to the boundary. Singularity of boundary two-point function is then even stronger than that of the bulk.

Comparison with other boundary conditions

- ▶ Restriction to boundary also possible for Neumann boundary condition.
- \triangleright Boundary two-point function inherits degree of singularity from the bulk.
- ► For Dirichlet boundary conditions, one may restrict $\partial_{\perp}\phi$ to the boundary. Singularity of boundary two-point function is then even stronger than that of the bulk.
- § In the AdS/CFT correspondence for scalar fields, the boundary fields also have anomalous dimensions.
- \rightarrow Holographic image of a bulk observable contained in a local algebra $\mathfrak{A}(\mathcal{O})$ [Rehren 00].

Outline

[The wave equation](#page-10-0)

[Quantization](#page-35-0)

[Conclusion](#page-54-0)

Summary & Outlook

Summary:

- § Well-posedness of the wave equation with Wentzell boundary conditions.
- § Canonical quantization of the free field.
- § Holographic relation between bulk and boundary field.

Summary & Outlook

Summary:

- § Well-posedness of the wave equation with Wentzell boundary conditions.
- \blacktriangleright Canonical quantization of the free field.
- § Holographic relation between bulk and boundary field.

Outlook:

- ▶ Propagation of singularities.
- \blacktriangleright Interacting fields.
- § Fermions.