Generalized Wentzell boundary conditions and holography

Jochen Zahn

Universität Leipzig

based on arXiv:1512.05512

LQP38, May 2016

We study a scalar field ϕ subject to the action

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$).

oduction
We study a scalar field
$$\phi$$
 subject to the action

$$\mathcal{S} = -\frac{1}{2} \int_{M} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$).

We study a scalar field ϕ subject to the action

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$\mathcal{S} = -\gamma \int_{\Xi} \sqrt{|\boldsymbol{g}|} \mathrm{d}^2 x - \boldsymbol{m} \int_{\partial \Xi} \sqrt{|\boldsymbol{h}|} \mathrm{d} x.$$

We study a scalar field ϕ subject to the action

$$S = -\frac{1}{2} \int_{M} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) d^{d+1}x - \frac{c}{2} \int_{\partial M} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) d^{d}x$$
Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^{d}$).
This is similar to
$$\cdot \text{ The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:}$$

$$S = -\gamma \int_{\Xi} \sqrt{|g|} d^{2}x - m \int_{\partial \Xi} \sqrt{|h|} dx.$$
Spring buston basis of bag
$$\int_{\Sigma} \int_{\Sigma} \int$$

We study a scalar field ϕ subject to the action

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$S = -\gamma \int_{\Xi} \sqrt{|g|} d^2 x - m \int_{\partial \Xi} \sqrt{|h|} dx.$$

Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$\mathcal{S} = -\frac{1}{16\pi G}\int_{\mathcal{M}}\sqrt{g}\left(\textit{R}_{g}-\frac{12}{\ell^{2}}\right)\mathrm{d}^{5}x - \frac{1}{8\pi G}\int_{\partial\mathcal{M}}\sqrt{h}\left(\Theta-\frac{\ell}{4}\textit{R}_{h}+\frac{3}{\ell}\right)\mathrm{d}^{4}x.$$

We study a scalar field ϕ subject to the action

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$S = -\gamma \int_{\Xi} \sqrt{|g|} d^2 x - m \int_{\partial \Xi} \sqrt{|h|} dx.$$

Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$S = -\frac{1}{16\pi G} \int_{M} \sqrt{g} \left(\frac{R_{g} - \frac{12}{\ell^{2}}}{E + \text{ with c.c.}} \right) d^{5}x - \frac{1}{8\pi G} \int_{\partial M} \sqrt{h} \left(\Theta - \frac{\ell}{4} \frac{R_{h} + \frac{3}{\ell}}{R_{h} + \frac{3}{\ell}} \right) d^{4}x.$$
Et with c.c.
extr. curv.
GHY turn

We study a scalar field ϕ subject to the action

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$S = -\gamma \int_{\Xi} \sqrt{|g|} d^2 x - m \int_{\partial \Xi} \sqrt{|h|} dx.$$

Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$\mathcal{S} = -\frac{1}{16\pi G} \int_{M} \sqrt{g} \left(R_{g} - \frac{12}{\ell^{2}} \right) \mathrm{d}^{5} x - \frac{1}{8\pi G} \int_{\partial M} \sqrt{h} \left(\Theta - \frac{\ell}{4} R_{h} + \frac{3}{\ell} \right) \mathrm{d}^{4} x.$$

Holographic renormalization [Skenderis et al]

$$\begin{split} \mathcal{S} &= -\frac{1}{2} \int_{\rho \geqslant \varepsilon} \sqrt{g} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \left(\frac{d^2}{4} - 1 \right) \phi^2 \right) \mathrm{d}^{d+1} x \\ &- \frac{\ell}{2} \int_{\partial M_{\varepsilon}} \sqrt{h} \left(\frac{1}{2} \log \varepsilon h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \left(\frac{d}{2} - 1 \right) \phi^2 \right) \mathrm{d}^d x. \end{split}$$

We study a scalar field ϕ subject to the action

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

Specifically, $M = \mathbb{R} \times \Sigma$ with $\Sigma = \mathbb{R}^{d-1} \times [-S, S]$ (but also general $\Sigma \subset \mathbb{R}^d$). This is similar to

The Nambu-Goto string with masses at the ends [Chodos & Thorn 74]:

$$S = -\gamma \int_{\Xi} \sqrt{|g|} d^2 x - m \int_{\partial \Xi} \sqrt{|h|} dx.$$

Counterterms in the AdS/CFT correspondence [Balasubramanian & Kraus 99]:

$$\mathcal{S} = -\frac{1}{16\pi G} \int_{\mathcal{M}} \sqrt{g} \left(R_g - \frac{12}{\ell^2} \right) \mathrm{d}^5 x - \frac{1}{8\pi G} \int_{\partial \mathcal{M}} \sqrt{h} \left(\Theta - \frac{\ell}{4} R_h + \frac{3}{\ell} \right) \mathrm{d}^4 x.$$

Holographic renormalization [Skenderis et al]

$$\begin{split} \mathcal{S} &= -\frac{1}{2} \int_{\rho \geqslant \varepsilon} \sqrt{g} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \left(\frac{d^2}{4} - 1 \right) \phi^2 \right) \mathrm{d}^{d+1} x \\ &- \frac{\ell}{2} \int_{\partial M_{\varepsilon}} \sqrt{h} \left(\frac{1}{2} \log \varepsilon h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \left(\frac{d}{2} - 1 \right) \phi^2 \right) \mathrm{d}^d x. \end{split}$$

Questions

- Is the classical system well-behaved, i.e., is the Cauchy problem well-posed?
- Can one quantize the system? If yes, what is the interplay between bulk and boundary fields?

Outline

The wave equation

Quantization

Conclusion

Variation of

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

yields the equations of motion

$$-\Box_{g}\phi + \mu^{2}\phi = 0 \qquad \text{in } M, \tag{1}$$
$$-\Box_{h}\phi + \mu^{2}\phi = -c^{-1}\partial_{\perp}\phi \qquad \text{in } \partial M. \tag{2}$$

Using (1), one may write (2) alternatively as

$$\partial_{\perp}^2 \phi = -c^{-1} \partial_{\perp} \phi$$
 in ∂M . (3)

Such boundary conditions are known in the mathematical literature as generalized Wentzell, Wentzell-Feller type, kinematic, or dynamical boundary conditions.

Variation of

$$\mathcal{S} = -\frac{1}{2} \int_{\mathcal{M}} \left(g^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d+1} x - \frac{c}{2} \int_{\partial \mathcal{M}} \left(h^{\mu\nu} \partial_{\mu} \phi \partial_{\nu} \phi + \mu^{2} \phi^{2} \right) \mathrm{d}^{d} x$$

yields the equations of motion

$$-\Box_{g}\phi + \mu^{2}\phi = 0 \qquad \text{in } M, \tag{1}$$
$$-\Box_{h}\phi + \mu^{2}\phi = -c^{-1}\partial_{\perp}\phi \qquad \text{in } \partial M. \tag{2}$$

Using (1), one may write (2) alternatively as

$$\partial_{\perp}^2 \phi = -c^{-1} \partial_{\perp} \phi$$
 in ∂M . (3)

Such boundary conditions are known in the mathematical literature as generalized Wentzell, Wentzell-Feller type, kinematic, or dynamical boundary conditions.

Different interpretations possible:

- (3) as boundary condition for wave equation (1).
- $\boldsymbol{\cdot}$ (1), (2) as wave equations for the bulk and the boundary field, coupled by
 - The bulk field providing a source for the boundary field;
 - The boundary field providing the boundary value of the bulk field.

Strategy

Write full system as

$$-\partial_t^2 \Phi = \Delta \Phi$$

with Δ a self-adjoint operator on some Hilbert space H.

- Using Δ, rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.
- Derive causal propagation by local energy estimates.
- By glueing, this yields global well-posedness for smooth initial data.

Strategy

Write full system as

$$-\partial_t^2 \Phi = \Delta \Phi$$

with Δ a self-adjoint operator on some Hilbert space H.

Problem: Boundary condition

$$\partial_{L}^{2} \phi = -c^{-1} \partial_{L} \phi$$

does not guarantee
vanishing of current
 $j = lm(\overline{4} \partial_{L} \phi)$
twoongin boundary

• The following symplectic form is conserved:

$$\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \int_{\Sigma} \phi \dot{\psi} - \dot{\phi} \psi + c \int_{\partial \Sigma} \phi \dot{\psi} - \dot{\phi} \psi.$$

The following symplectic form is conserved:

$$\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \int_{\Sigma} \phi\dot{\psi} - \dot{\phi}\psi + c \int_{\partial\Sigma} \phi\dot{\psi} - \dot{\phi}\psi.$$

It is thus natural to consider the Hilbert space

$$H=L^2(\Sigma)\oplus cL^2(\partial\Sigma)$$

with scalar product

$$\langle (\phi_{\rm bk}, \phi_{\rm bd}), (\psi_{\rm bk}, \psi_{\rm bd}) \rangle = \langle \phi_{\rm bk}, \psi_{\rm bk} \rangle_{L^2(\Sigma)} + c \langle \phi_{\rm bd}, \psi_{\rm bd} \rangle_{L^2(\partial \Sigma)}$$

so that

$$\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \langle (\bar{\phi},\bar{\phi}|_{\partial\Sigma}),(\dot{\psi},\dot{\psi}|_{\partial\Sigma}) \rangle - \langle (\bar{\psi},\bar{\psi}|_{\partial\Sigma}),(\dot{\phi},\dot{\phi}|_{\partial\Sigma}) \rangle.$$

The following symplectic form is conserved:

$$\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \int_{\Sigma} \phi\dot{\psi} - \dot{\phi}\psi + c \int_{\partial\Sigma} \phi\dot{\psi} - \dot{\phi}\psi.$$

It is thus natural to consider the Hilbert space

$$H=L^2(\Sigma)\oplus cL^2(\partial\Sigma)$$

with scalar product

$$\langle (\phi_{\rm bk}, \phi_{\rm bd}), (\psi_{\rm bk}, \psi_{\rm bd}) \rangle = \langle \phi_{\rm bk}, \psi_{\rm bk} \rangle_{L^2(\Sigma)} + c \langle \phi_{\rm bd}, \psi_{\rm bd} \rangle_{L^2(\partial \Sigma)}$$

so that

$$\sigma((\phi,\dot{\phi}),(\psi,\dot{\psi})) = \langle (\bar{\phi},\bar{\phi}|_{\partial\Sigma}),(\dot{\psi},\dot{\psi}|_{\partial\Sigma}) \rangle - \langle (\bar{\psi},\bar{\psi}|_{\partial\Sigma}),(\dot{\phi},\dot{\phi}|_{\partial\Sigma}) \rangle.$$

We may write the wave equation as

$$-\partial_t^2 \Phi = \Delta \Phi = \begin{pmatrix} -\Delta_{\Sigma} + \mu^2 & 0 \\ c^{-1}\partial_{\perp} \cdot |_{\partial \Sigma} & -\Delta_{\partial \Sigma} + \mu^2 \end{pmatrix} \begin{pmatrix} \phi_{\mathrm{bk}} \\ \phi_{\mathrm{bd}} \end{pmatrix},$$

where the boundary condition $\phi_{\rm bk}|_{\partial\Sigma}=\phi_{\rm bd}$ is encoded in the domain

$$\mathsf{dom}(\Delta) = \left\{ (\phi_{\mathrm{bk}}, \phi_{\mathrm{bd}}) \in \mathcal{H} \mid \phi_{\mathrm{bk}} \in \mathcal{H}^2(\Sigma), \phi_{\mathrm{bd}} \in \mathcal{H}^2(\partial \Sigma), \phi_{\mathrm{bk}}|_{\partial \Sigma} = \phi_{\mathrm{bd}} \right\}.$$

Proposition

 Δ is self-adjoint with spectrum contained in $[\mu^2, \infty)$.

Proof.

For $\Phi \in dom(\Delta)$, we compute (with $\mu = 0$):

$$\begin{split} \left< \Phi, \Delta \Phi \right> &= -\int_{\Sigma} \bar{\phi}_{\rm bk} \Delta_{\Sigma} \phi_{\rm bk} + \int_{\partial \Sigma} \bar{\phi}_{\rm bd} \partial_{\perp} \phi_{\rm bk} | - c \bar{\phi}_{\rm bd} \Delta_{\partial \Sigma} \phi_{\rm bd} \\ &= \int_{\Sigma} \partial_i \bar{\phi}_{\rm bk} \partial_i \phi_{\rm bk} + c \int_{\partial \Sigma} \partial_j \bar{\phi}_{\rm bd} \partial_j \phi_{\rm bd} \geqslant 0. \end{split}$$

This entails the bound on the spectrum. The claim on self-adjointness follows similarly by integration by parts: One shows that also on dom(Δ^*) the boundary condition $\phi_{\rm bk}|_{\partial\Sigma} = \phi_{\rm bd}$ has to be satisfied.

Strategy

Write full system as

$$-\partial_t^2 \Phi = \Delta \Phi$$

with Δ a self-adjoint operator on some Hilbert space H.

 Using Δ, rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.

Proposition For smooth Cauchy data $(\phi_0, \phi_1) \in H^{\infty}(\Sigma) \times H^{\infty}(\Sigma)$

such that

$$\partial_{\perp}^{2k+2} \phi_i |_{\partial \Sigma} = -c^{-1} \partial_{\perp}^{2k+1} \phi_i |_{\partial \Sigma}, \qquad \forall k \in \mathbb{N},$$

for i = 0, 1, there is a unique smooth solution $\phi(t)$ to the wave equation with $\mu > 0$. The properties of the Cauchy data are conserved under time evolution. Furthermore, denoting $\Phi(t) = (\phi(t), \phi(t)|_{\partial \Sigma})$, we have

$$\left\|\partial_{t}^{m}\Phi(t)\right\|_{k+1}^{2}+\left\|\partial_{t}^{m+1}\Phi(t)\right\|_{k}^{2}=\left\|\Phi_{0}\right\|_{k+m+1}^{2}+\left\|\Phi_{1}\right\|_{k+m}^{2}.$$

Proposition

For smooth Cauchy data

$$(\phi_0,\phi_1)\in H^\infty(\Sigma)\times H^\infty(\Sigma)$$

such that

$$\partial_{\perp}^{2k+2} \phi_i |_{\partial \Sigma} = -c^{-1} \partial_{\perp}^{2k+1} \phi_i |_{\partial \Sigma}, \qquad \forall k \in \mathbb{N},$$

for i = 0, 1, there is a unique smooth solution $\phi(t)$ to the wave equation with $\mu > 0$. The properties of the Cauchy data are conserved under time evolution. Furthermore, denoting $\Phi(t) = (\phi(t), \phi(t)|_{\partial \Sigma})$, we have

$$\begin{aligned} \|\partial_{t}^{m} \Phi(t)\|_{k+1}^{2} + \|\partial_{t}^{m+1} \Phi(t)\|_{k}^{2} &= \|\Phi_{0}\|_{k+m+1}^{2} + \|\Phi_{1}\|_{k+m}^{2} \\ & \uparrow \\ & \uparrow \\ \|\phi\|_{K}^{2} &= \|\Delta^{\frac{1}{2}} \phi\|^{2} \end{aligned}$$

Strategy

Write full system as

$$-\partial_t^2 \Phi = \Delta \Phi$$

with Δ a self-adjoint operator on some Hilbert space H.

- Using Δ, rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.
- Derive causal propagation by local energy estimates.

We consider the bulk and boundary stress-energy tensors

$$T_{\mu\nu} = \partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}\left(\partial_{\lambda}\phi\partial^{\lambda}\phi + \mu^{2}\phi^{2}\right),$$

$$T|_{ab} = c\left[\partial_{a}\phi\partial_{b}\phi - \frac{1}{2}h_{ab}\left(\partial_{c}\phi\partial^{c}\phi + \mu^{2}\phi^{2}\right)\right].$$

We consider the bulk and boundary stress-energy tensors

$$\begin{split} T_{\mu\nu} &= \partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}\left(\partial_{\lambda}\phi\partial^{\lambda}\phi + \mu^{2}\phi^{2}\right), \\ T|_{ab} &= c\left[\partial_{a}\phi\partial_{b}\phi - \frac{1}{2}h_{ab}\left(\partial_{c}\phi\partial^{c}\phi + \mu^{2}\phi^{2}\right)\right]. \end{split}$$

- $T_{\mu
u}$ is conserved on-shell. For the boundary stress-energy tensor one finds

$$\partial^a T|_{ab} = T_{\perp b}.$$

We consider the bulk and boundary stress-energy tensors

$$\begin{split} T_{\mu\nu} &= \partial_{\mu}\phi\partial_{\nu}\phi - \frac{1}{2}g_{\mu\nu}\left(\partial_{\lambda}\phi\partial^{\lambda}\phi + \mu^{2}\phi^{2}\right), \\ T|_{ab} &= c\left[\partial_{a}\phi\partial_{b}\phi - \frac{1}{2}h_{ab}\left(\partial_{c}\phi\partial^{c}\phi + \mu^{2}\phi^{2}\right)\right]. \end{split}$$

- $T_{\mu
u}$ is conserved on-shell. For the boundary stress-energy tensor one finds

$$\partial^a T|_{ab} = T_{\perp b}.$$

• Both $T_{\mu\nu}$ and $T|_{ab}$ fulfill the dominant energy condition.

We integrate $\nabla^{\mu} T_{\mu 0}$ and $\nabla^{a} T|_{a0}$ over $D = D^{+}(S_{0}) \cap J^{-}(\Sigma_{1})$ and ∂D :

$$\int_{\partial D} \nabla^{a} T|_{a0} = \int_{S_{1} \cap \partial M} T|_{00} + \int_{S_{2} \cap \partial M} p^{a} T|_{a0} - \int_{S_{0} \cap \partial M} T|_{00} + \int_{S_{1}} T_{00} + \int_{S_{2}} \ell^{\mu} T_{\mu 0} + \int_{\partial D} T_{\perp 0} - \int_{S_{0}} T_{00}.$$

We integrate $\nabla^{\mu} T_{\mu 0}$ and $\nabla^{a} T|_{a0}$ over $D = D^{+}(S_{0}) \cap J^{-}(\Sigma_{1})$ and ∂D : $\int_{\partial D} \nabla^{a} T|_{a0} = \int_{S_{1} \cap \partial M} T|_{00} + \int_{S_{2} \cap \partial M} p^{a} T|_{a0} - \int_{S_{0} \cap \partial M} T|_{00}$ $+ \int_{S_{1}} T_{00} + \int_{S_{2}} \ell^{\mu} T_{\mu 0} + \int_{\partial D} T_{\perp 0} - \int_{S_{0}} T_{00}.$

We integrate $\nabla^{\mu} T_{\mu 0}$ and $\nabla^{a} T|_{a0}$ over $D = D^{+}(S_{0}) \cap J^{-}(\Sigma_{1})$ and ∂D :

$$\begin{split} \int_{\partial D} \nabla^a T|_{a0} &= \int_{S_1 \cap \partial M} T|_{00} + \int_{S_2 \cap \partial M} p^a T|_{a0} - \int_{S_0 \cap \partial M} T|_{00} \\ &+ \int_{S_1} T_{00} + \int_{S_2} \ell^{\mu} T_{\mu 0} + \int_{\partial D} T_{\perp 0} - \int_{S_0} T_{00}. \end{split}$$

Proposition

Causal propagation is implied by the local energy estimate

$$\begin{split} &\int_{\mathcal{S}_{1}} (\partial_{0}\phi)^{2} + g^{ij}\partial_{i}\phi\partial_{j}\phi + \mu^{2}\phi^{2} + c\int_{\mathcal{S}_{1}\cap\partial\mathcal{M}} (\partial_{0}\phi)^{2} + h^{ij}\partial_{i}\phi\partial_{j}\phi + \mu^{2}\phi^{2} \\ &\leqslant \int_{\mathcal{S}_{0}} (\partial_{0}\phi)^{2} + g^{ij}\partial_{i}\phi\partial_{j}\phi + \mu^{2}\phi^{2} + c\int_{\mathcal{S}_{0}\cap\partial\mathcal{M}} (\partial_{0}\phi)^{2} + h^{ij}\partial_{i}\phi\partial_{j}\phi + \mu^{2}\phi^{2}. \end{split}$$

Strategy

Write full system as

$$-\partial_t^2 \Phi = \Delta \Phi$$

with Δ a self-adjoint operator on some Hilbert space H.

- ► Using Δ, rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.
- Derive causal propagation by local energy estimates.
- By glueing, this yields global well-posedness for smooth initial data.

Strategy

Write full system as

$$-\partial_t^2 \Phi = \Delta \Phi$$

with Δ a self-adjoint operator on some Hilbert space H.

- Using Δ, rewrite the full system as a first order equation on suitable energy Hilbert spaces for the Cauchy data. This yields well-posedness for smooth initial data with suitable fall-off and global energy estimates.
- Derive causal propagation by local energy estimates.
- By glueing, this yields global well-posedness for smooth initial data.

Some comments:

- ▶ That $L^2(\Sigma) \oplus L^2(\partial \Sigma)$ is the appropriate space of Cauchy data has been observed by several authors [Feller 57; Ueno 73; Gal, Goldstein & Goldstein 03; ...].
- The global energy estimates for m = k = 0 were already known [Vitillaro 15].
- · Local energy estimates and thus causal propagation seem to be new.

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

$$\phi = \delta(t+z) - \delta(t-z) + 2c^{-1}e^{-\frac{t-z}{c}}\theta(t-z).$$

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

$$\phi = \delta(t+z) - \delta(t-z) + 2c^{-1}e^{-\frac{t-z}{c}}\theta(t-z).$$

- The singularity is reflected
- Boundary picks up energy and radiates it off on time-scale c.

Consider $\Sigma = \mathbb{R}^d_+$ and a singularity $\delta(t+z)$ infalling to the boundary from the right. The full solution is given by

$$\phi = \delta(t+z) - \delta(t-z) + 2c^{-1}e^{-\frac{t-z}{c}}\theta(t-z).$$

- The singularity is reflected
- Boundary picks up energy and radiates it off on time-scale c.

Open issue: Propagation of singularities.

Outline

The wave equation

Quantization

Conclusion

• We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.$$

• We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.$$

• $\{q_m\}$ is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$q_m = \frac{\pi}{2S}(m-1) + \frac{2c^{-1}}{\pi(m-1)} + \mathcal{O}((m-1)^{-3}).$$

• We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.$$

• $\{q_m\}$ is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$q_m = \frac{\pi}{25}(m-1) + \frac{2c^{-1}}{\pi(m-1)} + \mathcal{O}((m-1)^{-3}).$$

Dirichlet

• We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.$$

• $\{q_m\}$ is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$q_m = \frac{\pi}{2S}(m-1) + \frac{2c^{-1}}{\pi(m-1)} + \mathcal{O}((m-1)^{-3}).$$

The restriction to the boundary is given by

$$\phi_{k,m}|_{\partial_{\pm}\Sigma}(x) = (\pm)^m (2\pi)^{-\frac{d-1}{2}} d_m e^{ikx}$$

where the d_m are real, non-zero and fulfill

$$d_m = rac{2c^{-1}}{\pi\sqrt{S}(m-1)} + \mathcal{O}((m-1)^{-3}).$$

• We consider $\Sigma = \mathbb{R}^d \times [-S, S]$. A basis of eigenfunctions of Δ is

$$\phi_{k,m} = c_m (2\pi)^{-\frac{d-1}{2}} S^{-\frac{1}{2}} e^{ikx} \begin{cases} \cos q_m z & m \text{ even} \\ \sin q_m z & m \text{ odd} \end{cases}$$

with $k \in \mathbb{R}^{d-1}$, $m \in \mathbb{N}$ and the eigenvalue

$$\omega_{k,m}^2 = k^2 + q_m^2 + \mu^2.$$

• $\{q_m\}$ is an increasing sequence of non-negative reals with $q_0 = 0$ and

$$q_m = \frac{\pi}{2S}(m-1) + \frac{2c^{-1}}{\pi(m-1)} + \mathcal{O}((m-1)^{-3}).$$

The restriction to the boundary is given by

$$\phi_{k,m}|_{\partial_{\pm}\Sigma}(x) = (\pm)^m (2\pi)^{-\frac{d-1}{2}} d_m e^{ikx}$$

where the d_m are real, non-zero and fulfill

$$d_m = \frac{2c^{-1}}{\pi\sqrt{S}(m-1)} + \mathcal{O}((m-1)^{-3}).$$

Time-zero fields

▶ Corresponding to $\{\Phi_{k,m}\}_{k \in \mathbb{R}^{d-1}, m \in \mathbb{N}}$, define the one-particle Hilbert space

$$\mathcal{H}_1 = L^2(\mathbb{R}^{d-1}) \otimes l^2(\mathbb{N}),$$

the corresponding Fock space \mathcal{F} , and $a_m(k)$, $a_m(k)^*$ fulfilling

$$[\mathbf{a}_m(\mathbf{k}), \mathbf{a}_{m'}(\mathbf{k}')^*] = \delta_{mm'}\delta(\mathbf{k} - \mathbf{k}').$$

Time-zero fields

▶ Corresponding to $\{\Phi_{k,m}\}_{k \in \mathbb{R}^{d-1}, m \in \mathbb{N}}$, define the one-particle Hilbert space

$$\mathcal{H}_1 = L^2(\mathbb{R}^{d-1}) \otimes l^2(\mathbb{N}),$$

the corresponding Fock space \mathcal{F} , and $a_m(k)$, $a_m(k)^*$ fulfilling

$$[a_m(k), a_{m'}(k')^*] = \delta_{mm'}\delta(k-k').$$

▶ For $F = (f_{\rm bk}, f_{\rm bd}) \in dom(\Delta^{-\frac{1}{4}})$, $G \in dom(\Delta^{\frac{1}{4}})$, define time zero fields

$$\begin{split} \phi_0(F) &= \sum_m \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(\langle \bar{F}, \Phi_{k,m} \rangle a_m(k) + \langle \Phi_{k,m}, F \rangle a_m(k)^* \right), \\ \pi_0(G) &= -i \sum_m \int \mathrm{d}^{d-1}k \frac{\sqrt{\omega_{k,m}}}{\sqrt{2}} \left(\langle \bar{G}, \Phi_{k,m} \rangle a_m(k) - \langle \Phi_{k,m}, G \rangle a_m(k)^* \right). \end{split}$$

These fulfill the canonical equal time commutation relations, i.e.,

 $[\phi_0(F),\phi_0(F')] = 0, \quad [\pi_0(G),\pi_0(G')] = 0, \quad [\phi_0(F),\pi_0(G)] = i\langle \bar{F},G\rangle.$

Time-zero fields

▶ Corresponding to $\{\Phi_{k,m}\}_{k \in \mathbb{R}^{d-1}, m \in \mathbb{N}}$, define the one-particle Hilbert space

$$\mathcal{H}_1 = L^2(\mathbb{R}^{d-1}) \otimes l^2(\mathbb{N}),$$

the corresponding Fock space \mathcal{F} , and $a_m(k)$, $a_m(k)^*$ fulfilling

$$[a_m(k), a_{m'}(k')^*] = \delta_{mm'}\delta(k-k').$$

▶ For $F = (f_{\rm bk}, f_{\rm bd}) \in dom(\Delta^{-\frac{1}{4}})$, $G \in dom(\Delta^{\frac{1}{4}})$, define time zero fields

$$\begin{split} \phi_0(F) &= \sum_m \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(\langle \bar{F}, \Phi_{k,m} \rangle a_m(k) + \langle \Phi_{k,m}, F \rangle a_m(k)^* \right), \\ \pi_0(G) &= -i \sum_m \int \mathrm{d}^{d-1}k \frac{\sqrt{\omega_{k,m}}}{\sqrt{2}} \left(\langle \bar{G}, \Phi_{k,m} \rangle a_m(k) - \langle \Phi_{k,m}, G \rangle a_m(k)^* \right). \end{split}$$

These fulfill the canonical equal time commutation relations, i.e.,

$$[\phi_0(F),\phi_0(F')] = 0, \quad [\pi_0(G),\pi_0(G')] = 0, \quad [\phi_0(F),\pi_0(G)] = i\langle \bar{F},G\rangle.$$

• Inserting $F = (0, f_{bd})$, one obtains

$$\phi_0(\mathbf{0}, f_{\mathrm{bd}}) = \sum_m \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} d_m \left(\hat{f}_{\mathrm{bd}}(-k) \mathbf{a}_m(k) + \hat{f}_{\mathrm{bd}}(k) \mathbf{a}_m(k)^* \right),$$

which is well defined on a dense domain for $f_{bd} \in L^2(\partial \Sigma)$.

Space-time fields

For space-time fields, we admit $F = (f_{\rm bk}, f_{\rm bd}) \in \mathcal{S}(M) \oplus \mathcal{S}(\partial M)$ and define

$$\phi(F) = \sum_{m} \int \mathrm{d}t \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(\langle \bar{F}(t), \Phi_{k,m} \rangle e^{-i\omega_{k,m}t} a_m(k) + \langle \Phi_{k,m}, F(t) \rangle e^{i\omega_{k,m}t} a_m(k)^* \right).$$

Proposition

Let $\mu > 0$. The map $F \mapsto \phi(F)$ defines an operator valued distribution on a dense invariant linear domain $\mathfrak{D} \subset \mathcal{F}$ and with F real $\phi(F)$ is essentially self-adjoint. The field ϕ is causal, i.e.,

$$\mathrm{supp}(F) \, \leftthreetimes \, \mathrm{supp}(G) \implies [\phi(F), \phi(G)] = 0.$$

There is a unitary representation U of the proper orthochronous Poincaré group $\mathcal{P}^{\downarrow}_{\perp}(d)$, under which the domain \mathfrak{D} is invariant and such that

$$U(a,\Lambda)\phi(F)U(a,\Lambda)^* = \phi(F_{(a,\Lambda)})$$

The vacuum vector $\Omega \in \mathfrak{D}$ is invariant under U, cyclic w.r.t. polynomials of the fields $\phi(f_{\mathrm{bk}}, f_{\mathrm{bk}}|_{\partial \Sigma})$ or $\phi(0, f_{\mathrm{bd}})$, and the spectrum of $P|_{\Omega^{\perp}}$ is contained in H_{μ} .

Proof.

- Causality from causal propagation and equal time commutation relations.
- Map to generalized free field ψ on \mathbb{R}^d with ladder operators $a_m(k)^{(*)}$ and masses $\mu_m^2 = \mu^2 + q_m^2$:

$$\phi(F)=\psi(f_F).$$

Have to define $f_F \in S$ such that f_F takes prescribed values on the mass shells. Then use standard results on generalized free fields [Jost 65] to obtain self-adjointness, continuity, cyclicity.

• Construction of *U* trivial.

The boundary field

For $f \in S(\partial M)$, we define the boundary field as

$$\phi_{\mathrm{bd}}(f) = \phi(0, c^{-1}f).$$

Restriction to the two boundaries separately yields

$$\phi_{\mathrm{bd}}^{\pm}(x) = (2\pi)^{-\frac{d-1}{2}} \sum_{m} (\pm)^{m} d_{m} \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(e^{-i(\omega_{k,m}t-k\underline{x})} a_{m}(k) + h.c. \right),$$

i.e., a generalized free field with two-point function

$$\Delta_+(x) = \sum_m |d_m|^2 \Delta_+^{\mu_m}(x).$$

The boundary field

For $f \in \mathcal{S}(\partial M)$, we define the boundary field as

$$\phi_{\mathrm{bd}}(f) = \phi(0, c^{-1}f).$$

Restriction to the two boundaries separately yields

$$\phi_{\mathrm{bd}}^{\pm}(x) = (2\pi)^{-\frac{d-1}{2}} \sum_{m} (\pm)^{m} d_{m} \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(e^{-i(\omega_{k,m}t-k\underline{x})} a_{m}(k) + h.c. \right),$$

i.e., a generalized free field with two-point function

$$\Delta_+(x) = \sum_m |d_m|^2 \Delta_+^{\mu_m}(x).$$

Proposition

Let $\mu > 0$ or d > 2. Then Δ_+ is a tempered distribution. Its singular support is contained in $\{x \in \mathbb{R}^d | x^2 \leq 0\}$ and the projection of its analytic wave front set to the cotangent space is given by $\{k \in \mathbb{R}^d | k^2 \leq 0, k^0 > 0\}$. For $d \ge 2$, the scaling degree of Δ_+ at coinciding points is d - 2.

The boundary field

For $f \in \mathcal{S}(\partial M)$, we define the boundary field as

$$\phi_{\mathrm{bd}}(f) = \phi(0, c^{-1}f).$$

Restriction to the two boundaries separately yields

$$\phi_{\mathrm{bd}}^{\pm}(x) = (2\pi)^{-\frac{d-1}{2}} \sum_{m} (\pm)^{m} d_{m} \int \frac{\mathrm{d}^{d-1}k}{\sqrt{2\omega_{k,m}}} \left(e^{-i(\omega_{k,m}t-k\underline{x})} a_{m}(k) + h.c. \right),$$

i.e., a generalized free field with two-point function

$$\Delta_+(x) = \sum_m |d_m|^2 \Delta_+^{\mu_m}(x).$$

Proposition

Let $\mu > 0$ or d > 2. Then Δ_+ is a tempered distribution. Its singular support is contained in $\{x \in \mathbb{R}^d | x^2 \leq 0\}$ and the projection of its analytic wave front set to the cotangent space is given by $\{k \in \mathbb{R}^d | k^2 \leq 0, k^0 > 0\}$. For $d \ge 2$, the scaling degree of Δ_+ at coinciding points is d - 2.

- Time-slice property does not hold for ϕ_{bd} . For time-slices larger than 2S?
- \blacktriangleright The bound on the analytic wave front set implies that $\phi_{\rm bd}^{\pm}$ satisfies the Reeh-Schlieder property [Strohmaier, Verch, Wollenberg 02].

The bulk-to-boundary map

Bulk fields $\phi_{\rm bk}$ may be defined as

$$\phi_{\rm bk}(f) = \phi(f, 0)$$

We then have

$$\begin{split} \phi_{\rm bd}^{\pm}(f) &= \phi_{\rm bk}(f\delta(z\mp S)),\\ \phi_{\rm bd}^{\pm}((-\Box_h + \mu^2)f) &= \mp c^{-1}\phi_{\rm bk}(f\delta'(z\mp S)). \end{split}$$

The bulk-to-boundary map

Bulk fields $\phi_{\rm bk}$ may be defined as

$$\phi_{\rm bk}(f) = \phi(f, 0)$$

We then have

$$\begin{split} \phi^{\pm}_{\rm bd}(f) &= \phi_{\rm bk}(f\delta(z\mp S)),\\ \phi^{\pm}_{\rm bd}((-\Box_h + \mu^2)f) &= \mp c^{-1}\phi_{\rm bk}(f\delta'(z\mp S)). \end{split}$$

Proposition

Let $\mu^2 > 0$. To each $f \in \mathcal{S}(M)$ there exists $f' \in \mathcal{S}(\partial_+ M)$ s.t. $\phi_{bk}(f) = \phi_{bd}^+(f')$.

The bulk-to-boundary map

Bulk fields $\phi_{\rm bk}$ may be defined as

$$\phi_{\rm bk}(f) = \phi(f, 0)$$

We then have

$$\begin{split} \phi_{\rm bd}^{\pm}(f) &= \phi_{\rm bk}(f\delta(z\mp S)),\\ \phi_{\rm bd}^{\pm}((-\Box_h + \mu^2)f) &= \mp c^{-1}\phi_{\rm bk}(f\delta'(z\mp S)). \end{split}$$

Proposition

Let $\mu^2 > 0$. To each $f \in \mathcal{S}(M)$ there exists $f' \in \mathcal{S}(\partial_+ M)$ s.t. $\phi_{bk}(f) = \phi_{bd}^+(f')$.

- $f' \in \mathfrak{D}(\partial_+ M)$ is in general not possible. Maybe for d = 1?
- Also works for Wick powers (but locality is lost).

Comparison with other boundary conditions

- Restriction to boundary also possible for Neumann boundary condition.
- Boundary two-point function inherits degree of singularity from the bulk.
- For Dirichlet boundary conditions, one may restrict ∂⊥φ to the boundary. Singularity of boundary two-point function is then even stronger than that of the bulk.

Comparison with other boundary conditions

- Restriction to boundary also possible for Neumann boundary condition.
- Boundary two-point function inherits degree of singularity from the bulk.
- For Dirichlet boundary conditions, one may restrict ∂⊥ φ to the boundary. Singularity of boundary two-point function is then even stronger than that of the bulk.
- In the AdS/CFT correspondence for scalar fields, the boundary fields also have anomalous dimensions.
- \blacktriangleright Holographic image of a bulk observable contained in a local algebra $\mathfrak{A}(\mathcal{O})$ $_{[Rehren 00].}$

Outline

The wave equation

Quantization

Conclusion

Summary & Outlook

Summary:

- Well-posedness of the wave equation with Wentzell boundary conditions.
- Canonical quantization of the free field.
- Holographic relation between bulk and boundary field.

Summary & Outlook

Summary:

- Well-posedness of the wave equation with Wentzell boundary conditions.
- Canonical quantization of the free field.
- Holographic relation between bulk and boundary field.

Outlook:

- Propagation of singularities.
- Interacting fields.
- Fermions.