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Torsion Geometry

The set-up

Consider n-dimensional Riemannian manifolds (M,g),
dim(M) ≥ 3.

General orthogonal connection for vector fields has the form

∇X Y = ∇
g
X Y + A(X ,Y )

with ∇g Levi-Civita connection, A a (2,1)-tensor field.

The torsion (3,0)-tensor

Define torsion (3,0)-tensor field

AXYZ = g(A(X ,Y ),Z )

for any X ,Y ,Z ∈ TpM
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Torsion Geometry

Relation to torsion (2,1)-tensor Ã

Ã(X ,Y ) := ∇X Y −∇Y X − [X ,Y ] = A(X ,Y )− A(Y ,X ).

Curvatures:

Riem(X ,Y )Z = ∇X∇Y Z −∇Y∇X Z −∇[X ,Y ]Z

in general: no Bianchi identity for Riem

ric(X ,Y ) = trg

(
V 7→ Riem(V ,X )Y

)

in general: ric not symmetric

R = trg(ric)

For general connection ∇X Y = ∇
g
X Y + A(X ,Y ):

∇ is orthogonal ⇐⇒ A(X , ·) is skew-adjoint
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Torsion Geometry

The space of all torsion (3,0)-tensors:

T (TpM) =

{
A ∈

⊗3
T ∗

p M
∣∣ AXYZ = −AXZY ∀X ,Y ,Z ∈ TpM

}

Theorem (E. Cartan, 1925)

One has the following decomposition of T (TpM) into irreducible

O(TpM)-representations:

T (TpM) = V(TpM) ⊕ A(TpM) ⊕ C(TpM).

(orthogonal decomposition w.r.t. natural scalar product)
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Torsion Geometry

Where we define the vectorial torsion

V(TpM) =
{

A ∈ T (TpM)
∣∣ ∃V s.t. ∀X ,Y ,Z :

AXYZ = g(X ,Y ) · g(V ,Z )− g(X ,Z ) · g(V ,Y )
}
,

the totally anti-symmetric torsion

A(TpM) =
{

A ∈ T (TpM)
∣∣ ∀X ,Y ,Z : AXYZ = −AYXZ

}
,

and the torsion of Cartan-type

C(TpM) =
{

A ∈ T (TpM)
∣∣ ∀X ,Y ,Z : AXYZ + AYZX + AZXY = 0

and

4∑

a=1

A(ea,ea,Z ) = 0
}

with e1, ...en orthonormal basis of Tp(M).
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Torsion Geometry

Corollary

For any orth. connection ∇X Y = ∇
g
X Y + A(X ,Y ) exist a unique

vector field V , a unique 3-form T and a unique (3,0)-tensor

field C with Cp ∈ C(TpM) such that

A(X ,Y ) = g(X ,Y )V − g(V ,Y )X + T (X ,Y , ·)♯ + C(X ,Y , ·)♯.

Remark

Let ∇ be compatible with the Riemannian metric g.

Then ∇ has same geodesics as ∇g if and only if

A(X ,Y ) = T (X ,Y , ·)♯ is totally anti-symmetric.
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Dirac Operators with Torsion

The spinor connection

Now let (M,g) be a spin manifold. Let e1, ..,en be an

orthonormal frame and ψ ∈ ΣM a spinor field.

The spinor connection induced by ∇ is locally given by

∇Xψ = ∇
g
Xψ + 1

2

∑

i<j

A(X ,ei ,ej)ei · ej · ψ.

The Dirac operator D for ∇

Dψ = Dgψ + 1
4

∑

i ,j ,k

A(ei ,ej ,ek )ei · ej · ek · ψ

= Dgψ + 3
2
T · ψ − n−1

2
V · ψ,

Dg Dirac operator for ∇g.
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Dirac Operators with Torsion

Remark

∇ is compatible with the hermitian metric on the spinor bundle

ΣM and compatible with Clifford multiplication.

Theorem (S. Sulanke, T. Friedrich 1979)

The Dirac operator D associated to ∇ is symmetric iff

div∇ Z = div∇
g

Z for any vector field Z .

Equivalent to: vectorial torsion of ∇ is zero.

Lemma

The Dirac operator is independent of the Cartan type

component C(TpM) of the torsion.
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Dirac Operators with Torsion

Chamseddine-Connes Spectral Action

The bosonic spectral action for Dirac operator D is the number

of eigenvalues of D∗D in the interval [0,Λ2] (with Λ ∈ R):

I = Tr f

(
D∗D

Λ2

)
,

where Tr is the L2-trace over the space of spinor fields,

and f is cut-off function with support in [0,+1] which is constant

near 0.

Spectral action on left- (or right-)handed Spinors:

IL/R = Tr f

(
PL/R

D∗D

Λ2

)
,

where PL/R = 1
2(id ∓ γ5).
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Dirac Operators with Torsion

Asymptotic expansion of Spectral Action

Define ∆L/R := PL/RD∗D.

From the heat trace asymptotics for t → 0

Tr
(

e−t ∆L/R

)
∼

∑

n≥0

tn−2a2n(∆L/R)

(with Seeley-deWitt coefficients a2n(∆L/R))

one gets (by t = Λ−2) an asymptotics for the spectral action

IL/R ∼ Λ4 f4 a0(∆L/R) + Λ2 f2 a2(∆L/R) + Λ0 f0 a4(∆L/R)

as Λ → ∞ with f4, f2, f0 moments of cut-off function f .
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Dirac Operators with Torsion

The square of the Dirac operator

Bochner formula for D

D∗Dψ = ∆ψ + 1
4Rg ψ + 3

2dT · ψ − 3
4‖T‖2 ψ

+3
2

divg(V )ψ − 9
2
‖V‖2 ψ

+9
(

T · V · ψ + (VyT ) · ψ
)

where ∆ = ∇̃∗∇̃ is the Laplacian associated to spin connection

∇̃Xψ = ∇
g
Xψ + 3

2(XyT ) · ψ − 3
2V · X · ψ − 3

2 g(V ,X )ψ,
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Dirac Operators with Torsion

Spectral Action IL up to Λ2

a2(D
∗D) = 1

16π2

∫

M

−1
3Rg + 3‖T‖2 + 18‖V‖2dvol

a2(γ5D∗D) = 1
16π2

∫

M

6dT + 36〈T , ∗V ♭〉3dvol

IL = Λ4 f4
2

∫

M

dvol + Λ2 f2
32π2

∫

M

−1
3Rg + 3‖T‖2 + 18‖V‖2dvol

+ Λ2 f2
32π2

∫

M

6dT + 36〈T , ∗V ♭〉3 dvol
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Dirac Operators with Torsion

The Holst density

Let dim(M) = 4 and θ1, ..., θ4 be the dual basis of e1, ...,e4.

Define the Holst density

ρH =

4∑

a,b=1

g(Riem(·, ·)ea,eb) ∧ θ
a ∧ θb

For any orthogonal connection ∇ without Cartan-type torsion

one finds

ρH = 6 dT + 12 〈T , ∗V ♭〉3 dvol

where 〈·, ·〉3 is the scalar product on 3-forms induced by g.
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Dirac Operators with Torsion

The Holst action

Let M be a 4-dim. manifold with Riemannian metric g and

connection ∇ without Cartan-type torsion. The Holst action is

IH =
1

16πG

∫

M

(
−R dvol +

1

γ
ρH

)

= −
1

16πG

∫

M

(
Rg − 6 ‖V‖2 − ‖T‖2

)
dvol

+
1

16πG

∫

M

1
γ

(
6dT + 12〈T , ∗V ♭〉3

)
dvol .

Loop Quantum Gravity

IH is one of the starting points for LQG.

The parameter γ is called Barbero-Immirzi parameter.
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Dirac Operators with Torsion

Spectral Action IL up to Λ2

a2(D
∗D) = 1

16π2

∫

M

−1
3R(3T ,3V )dvol

a2(γ5D∗D) = 1
48π2

∫

M

ρH(3T ,3V )dvol

IL = Λ4 f4
2

∫

M

dvol − Λ2 f2
96π2

∫

M

R(3T ,3V )dvol

+ Λ2 f2
96π2

∫

M

ρH(3T ,3V )dvol
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Particle Models with Torsion

Specific particle model

The ingredients:

internal Hilbert space: Hf with connection ∇Hf

full Hilbert space: HSM = L2(M,S)⊗Hf ∋ ψ ⊗ χ

twisted connection (with totally anti-symmetric torsion):

∇̂SM = ∇⊗ idHf
+ idS ⊗∇Hf

associated Dirac operator: D∇̂SM

field Φ of endomorphisms of Hf

(encodes Higgs boson ϕ, Yukawa couplings, etc.)

The generalised Dirac operator

DΦ(ψ ⊗ χ) = D∇̂SM

(ψ ⊗ χ) + γ5ψ ⊗Φ(χ)
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Particle Models with Torsion

Fermion-doubling and the “physical” Dirac operator

The twisted Hilbert space HSM = L2(M,S) ⊗Hf has too many

degrees of freedom (fermion doubling problem).

HSM = (L2(M,S)− ⊕ L2(M,S)+)⊗ (Hℓ
f ⊕Hr

f )

= L2(M,S)− ⊗Hℓ
f ⊕ L2(M,S)+ ⊗Hr

f

⊕ L2(M,S)+ ⊗Hℓ
f ⊕ L2(M,S)− ⊗Hr

f .

Project with P onto the “physical” Hilbert space

Hphys.
SM

= L2(M,S)− ⊗Hℓ
f ⊕ L2(M,S)+ ⊗Hr

f

And define

∆ := PD∗
ΦDΦ
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Particle Models with Torsion

The a2(∆)-term)

a2(∆) = − rk(HSM )
96π2

∫

M

R(3T ,3V )dx + 1
γρH(3T ,3V )

− 1
8π2

∫

M

tr(Φ2)dx

with Barbero-Immirzi parameter |γ| =
∣∣∣ rk(HSM )

tr(γf )

∣∣∣ ≥ 1
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Particle Models with Torsion

The a4(∆)-term

a4(∆) = 1
16π2

∫

M

(
5
12 tr

(
Ω2

f

)
+ tr

(
[∇Hf ,Φ]2

)
+ tr(Φ4)

)
dx

−3 rk(HSM )
64π2

∫

M

1
30
‖W‖2 dx −

(
‖δT‖2 + ‖dV ♭‖2

)
dx

+ 1
96π2

∫

M

(
Rg − 9‖T‖2

)
tr(Φ2)dx

+ tr(γf )
1152π2

∫

M

R(3T ,3V )ρH(3T ,3V )

+11 rk(HSM )
1440 χ(M)− tr(γf )

96 p1(M) + 1
96π2

∫

M

tr
(
∗ ΩfΩf

)
dx
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Particle Models with Torsion

The Bosonic Spectral Action

ISM = rk(HSM ) Λ4f4
8π2

∫

M

dx − rk(HSM ) Λ2f2
96π2

∫

M

R(3T ,3V )dx

− rk(HSM ) Λ2f2
96π2

∫

M

1
γρH(3T ,3V )− Λ2f2

8π2

∫

M

tr(Φ2)dx

f0
16π2

∫

M

(
5
12 tr

(
Ω2

f

)
+ tr

(
[∇Hf ,Φ]2

)
+ tr(Φ4)

)
dx

−3 rk(HSM ) f0
64π2

∫

M

1
30‖W‖2 dx −

(
‖δT‖2 + ‖dV ♭‖2

)
dx

+ f0
96π2

∫

M

(
Rg − 9‖T‖2

)
tr(Φ2)dx

+ tr(γf ) f0
1152π2

∫

M

R(3T ,3V )ρH(3T ,3V ) + top. terms
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Particle Models with Torsion

The full Standard Model action

ISM = Tr f
(

PD∗

ΦDΦ

Λ2

)
+ 〈Ψ,DΦΨ〉J with Ψ ∈ H

phys.
SM

Observations

Vectorial & totally anti-symm. torsion couple to fermions.

Totally anti-symm. torsion couples to the Higgs field.

Existence of the derivative terms of T and V .

 Torsion becomes dynamical

Barbero-Immirzi parameter measures left-right-asymmetry

of the particle model: tr(γf ) = rkHr
f − rkHℓ

f .
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Current Projects & Questions

Current Projects

Manifolds with boundaries

(B. Iochum, C. Levy, D. Vassilevich, A. Connes,...)

Spectral triples /spectral action in Lorentzian signature

(R. Verch, A. Rennie, M. Eckstein, N. Franco, C.S.,...)

Some Questions

Critical points of ISM with non-zero torsion?

Dynamical torsion? (see also Tolksdorf)

Spectral triples for non-symmetric Dirac operators?

Low Energy value of the Barbero-Immirzi parameter?

Renormalisation-group running? (see Reuter et al.,

Benedetti & Speziale)
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