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General frame

Non-equilibrium thermodynamics: study physical systems not in
thermodynamic equilibrium but basically described by thermal
equilibrium variables. Systems, in a sense, near equilibrium.

Non-equilibrium thermodynamics has been effectively studied for
decades with important achievements, yet the general theory still
missing. The framework is even more incomplete in the quantum
case, non-equilibrium quantum statistical mechanics.

We aim provide a general, model independent scheme for the above
situation in the context of quantum, two dimensional Conformal
Quantum Field Theory. As we shall see, we provide the general
picture for the evolution towards a non-equilibrium steady state.



A typical frame described by Non-Equilibrium Thermodynamics:

R1

β1

probe. . . . . . R2

β2

Two infinite reservoirs R1, R2 in equilibrium at their own
temperatures T1 = β−1

1 , T2 = β−1
2 , and possibly chemical

potentials µ1, µ2, are set in contact, possibly inserting a probe.

As time evolves, the system should reach a non-equilibrium steady
state.

This is the situation we want to analyse. As we shall see the
Operator Algebraic approach to CFT provides a model independent
description, in particular of the asymptotic steady state, and exact
computation of the expectation values of the main physical
quantities.



Thermal equilibrium states
Gibbs states

Finite system, A matrix algebra with Hamiltonian H and evolution
τt = Ade itH . Equilibrium state ϕ at inverse temperature β given by

ϕ(X ) =
Tr(e−βHX )

Tr(e−βH)

KMS states (Haag, Hugenholtz, Winnink)

Infinite volume, A a C ∗-algebra, τ a one-par. automorphism group
of A, B a dense ∗-subalgebra. A state ϕ of A is KMS at inverse
temperature β > 0 if for X ,Y ∈ B ∃ FXY ∈ A(Sβ) s.t.

(a) FXY (t) = ϕ
(
X τt(Y )

)
(b) FXY (t + iβ) = ϕ

(
τt(Y )X

)
where A(Sβ) is the algebra of functions analytic in the strip
Sβ = {0 < =z < β}, bounded and continuous on the closure S̄β.



Non-equilibrium steady states

Non-equilibrium statistical mechanics:

A non-equilibrium steady state NESS ϕ of A satisfies property (a)
in the KMS condition, for all X ,Y in a dense ∗-subalgebra of B,
but not necessarily property (b).

For any X ,Y in B the function

FXY (t) = ϕ
(
X τt(Y )

)
is the boundary value of a function holomorphic in Sβ. (Ruelle)

Example: the tensor product of two KMS states at temperatures
β1, β2 is a NESS with β = min(β1, β2).

Problem: describe the NESS state ϕ and show that the initial
state ψ evolves towards ϕ

lim
t→∞

ψ · τt = ϕ



Möbius covariant nets (Haag-Kastler nets on S1)
A local Möbius covariant net A on S1 is a map

I ∈ I → A(I ) ⊂ B(H)

I ≡ family of proper intervals of S1, that satisfies:

I A. Isotony. I1 ⊂ I2 =⇒ A(I1) ⊂ A(I2)

I B. Locality. I1 ∩ I2 = ∅ =⇒ [A(I1),A(I2)] = {0}
I C. Möbius covariance. ∃ unitary rep. U of the Möbius group

Möb on H such that

U(g)A(I )U(g)∗ = A(gI ), g ∈ Möb, I ∈ I.

I D. Positivity of the energy. Generator L0 of rotation subgroup
of U (conformal Hamiltonian) is positive.

I E. Existence of the vacuum. ∃! U-invariant vector Ω ∈ H
(vacuum vector), and Ω is cyclic for

∨
I∈I A(I ).



Consequences

I Irreducibility:
∨

I∈I A(I ) = B(H).

I Reeh-Schlieder theorem: Ω is cyclic and separating for each
A(I ).

I Bisognano-Wichmann property: Tomita-Takesaki modular
operator ∆I and conjugation JI of (A(I ),Ω), are

U(δI (2πt)) = ∆it
I , t ∈ R, dilations

U(rI ) = JI reflection

(Fröhlich-Gabbiani, Guido-L.)

I Haag duality: A(I )′ = A(I ′)

I Factoriality: A(I ) is III1-factor (in Connes classification)

I Additivity: I ⊂ ∪i Ii =⇒ A(I ) ⊂ ∨iA(Ii ) (Fredenhagen,
Jorss).



Local conformal nets

Diff(S1) ≡ group of orientation-preserving smooth diffeomorphisms of S1.

Diff I (S
1) ≡ {g ∈ Diff(S1) : g(t) = t ∀t ∈ I ′}.

A local conformal net A is a Möbius covariant net s.t.

F. Conformal covariance. ∃ a projective unitary representation U
of Diff(S1) on H extending the unitary representation of Möb s.t.

U(g)A(I )U(g)∗ = A(gI ), g ∈ Diff(S1),

U(g)xU(g)∗ = x , x ∈ A(I ), g ∈ Diff I ′(S
1),

−→ unitary representation of the Virasoro algebra

[Lm, Ln] = (m − n)Lm+n +
c

12
(m3 −m)δm,−n

[Ln, c] = 0, L∗n = L−n.



Representations

A (DHR) representation ρ of local conformal net A on a Hilbert
space H is a map I ∈ I 7→ ρI , with ρI a normal rep. of A(I ) on
B(H) s.t.

ρĨ �A(I ) = ρI , I ⊂ Ĩ , I , Ĩ ⊂ I .

ρ is diffeomorphism covariant: ∃ a projective unitary
representation Uρ of Diff(S1) on H such that

ρgI (U(g)xU(g)∗) = Uρ(g)ρI (x)Uρ(g)∗

for all I ∈ I, x ∈ A(I ) and g ∈ Diff(S1).

Index-statistics relation (L.):

d(ρ) =
[
ρI ′
(
A(I ′)

)′
: ρI
(
A(I )

)] 1
2

DHR dimension =
√

Jones index



Complete rationality

µA ≡
[(
A(I1) ∨ A(I3)

)′
:
(
A(I2) ∨ A(I4)

)]
<∞

=⇒
µA =

∑
i

d(ρi )
2

A is modular (Kawahigashi, Müger, L.)



Circle and real line picture

-1

∞

P 
P'

z 7→ i
z − 1

z + 1

We shall frequently switch between the two pictures.



KMS and Jones index

Kac-Wakimoto formula (conjecture)

Let A be a conformal net, ρ representations of A, then

lim
t→0+

Tr(e−tL0,ρ)

Tr(e−tL0)
= d(ρ)

Analog of the Kac-Wakimoto formula (theorem)

ρ a representation of A:

(ξ, e−2πKρξ) = d(ρ)

where Kρ is the generator of the dilations δI and ξ is any vector
cyclic for ρ(A(I ′)) such that (ξ, ρ(·)ξ) is the vacuum state on
A(I ′).



U(1)-current net

Let A be the local conformal net on S1 associated with the
U(1)-current algebra. In the real line picture A is given by

A(I ) ≡ {W (f ) : f ∈ C∞R (R), supp f ⊂ I}′′

where W is the representation of the Weyl commutation relations

W (f )W (g) = e−i
∫
fg ′W (f + g)

associated with the vacuum state ω

ω(W (f )) ≡ e−||f ||
2
, ||f ||2 ≡

∫ ∞
0

p|f̃ (p)|2dp

where f̃ is the Fourier transform of f .



W (f ) = exp
(
− i

∫
f (x)j(x)dx

)
[
j(f ), j(g)

]
= i

∫
fg ′dx

There is a one parameter family {γq, q ∈ R} of irreducible sectors
and all have index 1 (Buchholz, Mack, Todorov)

γq(W (f )) ≡ e i
∫
FfW (f ), F ∈ C∞,

1

2π

∫
F = q .

q is the called the charge of the sector.



A classification of KMS states (Camassa, Tanimoto,
Weiner, L.)

How many KMS states do there exist?

Completely rational case

A completely rational: only one KMS state (geometrically
constructed) β = 2π
exp: net on R A → restriction of A to R+

exp �A(I ) = AdU(η)

η diffeomorphism, η�I = exponential

geometric KMS state on A(R) = vacuum state on A(R+) ◦ exp

ϕgeo = ω ◦ exp

Note: Scaling with dilation, we get the geometric KMS state at
any give β > 0.



Comments

About the proof:

Essential use of the thermal completion and Jones index.

A net on R, ϕ KMS state:

In the GNS representation we apply Wiesbrock theorem

A(R+) ⊂ A(R) hsm modular inclusion→ new net Aϕ

Want to prove duality for Aϕ in the KMS state, but Aϕ satisfies
duality up to finite Jones index.

Iteration of the procedure...

Conjecture: A ⊂ B finite-index inclusion of conformal nets,
ε : B → A conditional expectation. If ϕ is a translation KMS on A
then ϕ ◦ ε is a translation KMS on B.



Non-rational case: U(1)-current model

The primary (locally normal) KMS states of the U(1)-current net
are in one-to-one correspondence with real numbers q ∈ R; each
state ϕq is uniquely determined by

ϕq (W (f )) = e iq
∫
f dx · e−

1
4
‖f ‖2

Sβ

where ‖f ‖2
Sβ

= (f ,Sβf ) and Ŝβf (p):=coth βp
2 f̂ (p).

In other words:

Geometric KMS state: ϕgeo = ϕ0

Any primary KMS state:

ϕq = ϕgeo ◦ γq.

where γq is a BMT sector.



Virasoro net: c = 1

(With c < 1 there is only one KMS state: the net is completely
rational)

Primary KMS states of the Vir1 net are in one-to-one
correspondence with positive real numbers |q| ∈ R+; each state
ϕ|q| is uniquely determined by its value on the stress-energy
tensor T :

ϕ|q| (T (f )) =

(
π

12β2
+

q2

2

)∫
f dx .

The geometric KMS state corresponds to q = 0, and the

corresponding value of the ‘energy density’ π
12β2 + q2

2 is the lowest
one in the set of the KMS states.

(We construct these KMS states by composing the geometric state
with automorphisms on the larger U(1)-current net.)



Virasoro net: c > 1

There is a set of primary (locally normal) KMS states of the Virc
net with c > 1 w.r.t. translations in one-to-one correspondence
with positive real numbers |q| ∈ R+; each state ϕ|q| can be
evaluated on the stress-energy tensor

ϕ|q| (T (f )) =

(
π

12β2
+

q2

2

)∫
f dx

and the geometric KMS state corresponds to q = 1
β

√
π(c−1)

6 and
energy density πc

12β2 .

Are they all? Probably yes...

Rotation KMS states: Recent work with Y. Tanimoto



Chemical potential
A a local conformal net on R (or on M) and ϕ an extremal
β-KMS state on A w.r.t. the time translation group τ and ρ an
irreducible DHR localized endomorphism of A ≡ ∪I⊂RA(I ) with
finite dimension d(ρ). Assume that ρ is normal, namely it extends
to a normal endomorphism of the weak closure M of A; automatic
e.g. if ϕ satisfies essential duality
πϕ
(
A(I±)

)′ ∩M = πϕ
(
(A(I∓)

)′′
, I± the ±half-line.

U time translation unitary covariance cocycle in A:

AdU(t) · τt · ρ = ρ · τt , t ∈ R ,

with U(t + s) = U(t)τt
(
U(s)

)
(cocycle relation) (unique by a

phase, canonical choice by Möb covariance).

U is equal up to a phase to a Connes Radon-Nikodym cocycle:

U(t) = e−i2πµρ(ϕ)td(ρ)−iβ
−1t
(
Dϕ · Φρ : Dϕ

)
−β−1t

.

µρ(ϕ) ∈ R is the chemical potential of ϕ w.r.t. the charge ρ.



Here Φρ is the left inverse of ρ, Φρ · ρ = id, so ϕ · Φρ is a KMS
state in the sector ρ.

The geometric β-KMS state ϕ0 has zero chemical potential.

By the holomorphic property of the Connes Radon-Nikodym
cocycle:

e2πβµρ(ϕ) = anal. cont.
t−→ iβ

ϕ
(
U(t)

)/
anal. cont.

t−→ iβ
ϕ0

(
U(t)

)
.

Example, BMT sectors:

With ϕβ,q the β-state associated withe charge q, the chemical
potential w.r.t. the charge q is given by

µp(ϕβ,q) = qp/π



2-dimensional CFT

M = R2 Minkowski plane.(
T00 T10

T01 T11

)
conserved and traceless stress-energy tensor.

As is well known, TL = 1
2 (T00 + T01) and TR = 1

2 (T00 − T01) are
chiral fields,

TL = TL(t + x), TR = TR(t − x).

Left and right movers.



Ψk family of conformal fields on M: Tij + relatively local fields
O = I × J double cone, I , J intervals of the chiral lines t ± x = 0

A(O) = {e iΨk (f ), suppf ⊂ O}′′

then by relative locality

A(O) ⊃ AL(I )⊗AR(J)

AL,AR chiral fields on t ± x = 0 generated by TL,TR and other
chiral fields

(completely) rational case: AL(I )⊗AR(J) ⊂ A(O) finite Jones
index



Phase boundaries (Bischoff, Kawahigashi, Rehren, L.)
ML ≡ {(t, x) : x < 0}, MR ≡ {(t, x) : x > 0} left and right half
Minkowski plane, with a CFT on each half.

Chiral components of the stress-energy tensor:

T L
+(t + x),T L

−(t − x),TR
+ (t + x),TR

− (t − x).

Energy conservation at the boundary (T L
01(t, 0) = TR

01(t, 0)):

T L
+(t) + TR

− (t) = TR
+ (t) + T L

−(t).

Transmissive solution:

T L
+(t) = TR

+ (t), T L
−(t) = TR

− (t).

A transpartent phase boundary is given by specifying two local
conformal nets BL and BR on ML/R on the same Hilbert space H;

ML ⊃ O 7→ BL(O) ; MR ⊃ O 7→ BR(O) ,

BL and BR both contain a common chiral subnet A = A+ ⊗A−.

BL/R extends on the entire M by covariance as the chiral nets A±
on R contain the Virasoro nets.



By causality:[
BL(O2),BR(O1)

]
= 0, O1 ⊂ ML, O2 ⊂ MR , O1 ⊂ O ′2

By diffeomorphism covariance, BR is thus right local with respect
to BL

Given a phase boundary, we consider the von Neumann algebras
generated by BL(O) and BR(O):

D(O) ≡ BL(O) ∨ BR(O) , O ∈ K .

D is another extension of A, but D is in general non-local, but
relatively local w.r.t. A. D(O) may have non-trivial center. In the
completely rational case, A(O) ⊂ D(O) has finite Jones index, so
the center of D(O) is finite dimensional; by standard arguments,
we may cut down the center to C by a minimal projection of the
center, and we may then assume D(O) to be a factor, as we will
do for simplicity in the following.



The universal construction

A phase boundary is a transmissive boundary with chiral
observables A2D = A+ ⊗A−. The phases on both sides of the
boundary are given by a pair of Q-systems AL = (ΘL,W L,X L) and
AR = (ΘR ,W R ,XR) in the sectors of A2D, describing local 2D
extensions A2D ⊂ BL2D and A2D ⊂ BR2D.
Now consider the braided product Q-systems (Evans, Pinto)

(Θ = ΘL ◦ΘR ,W = W L×W R ,X = (1× ε±
ΘL,ΘR ×1)◦ (X L×XR))

and the corresponding extensions A2D ⊂ D±2D. The original
extensions BL2D, BR2D are intermediate

A2D ⊂ BL2D ⊂ D±2D A2D ⊂ BR2D ⊂ D±2D,

and the nets D±2D are generated by A2D and two sets of charged
fields ΨL

σ⊗τ (σ ⊗ τ ≺ ΘL) and ΨR
σ⊗τ (σ ⊗ τ ≺ ΘR), suppressing

possible multiplicity indices.



The braided product Q-system determines their commutation
relations among each other:

ΨR
σ⊗τΨL

σ′⊗τ ′ = ε±σ′⊗τ ′,σ⊗τ ·Ψ
L
σ′⊗τ ′Ψ

R
σ⊗τ .

ε−σ′⊗τ ′,σ⊗τ = 1 whenever σ′ ⊗ τ ′ is localized to the spacelike left of

σ ⊗ τ . Thus, the choice of ±-braiding ensures that BL is left-local
w.r.t. BR , as required by causality. Thus

Θ = (ΘL,W L,X L)×− (ΘR ,W R ,XR),

Universal construction:

The extension D of A defined by the above Q-system implements
a transmissive boundary condition in the sense. It is universal in
the sense that every irreducible boundary condition appears as a
representation of D.

Cf. the work of Fröhlich, Fuchs, Runkel, Schweigert (Euclidean
setting)



Non-equilubrium in CFT (S. Hollands, R.L.)
Two local conformal nets BL and BR on the Minkowski plane M,
both containing the same chiral net A = A+ ⊗A−. For the
moment BL/R is completely rational, so the KMS state is unique,
later we deal wih chemical potentials.

Before contact. The two systems BL and BR are, separately, each

in a thermal equilibrium state. KMS states ϕ
L/R
βL/R

on BL/R at

inverse temperature βL/R w.r.t. τ , possibly with βL 6= βR .

BL and BR live independently in their own half plane ML and MR

and their own Hilbert space. The composite system on ML ∪MR is
given by

ML ⊃ O 7→ BL(O) , MR ⊃ O 7→ BR(O)

with C ∗-algebra BL(ML)⊗BR(MR) and the state

ϕ = ϕL
βL
|BL(ML) ⊗ ϕR

βR
|BR(MR) ;

ϕ is a stationary state, NESS but not KMS.





After contact.

At time t = 0 we put the two systems BL on ML and BR on MR in
contact through a totally transmissible phase boundary and the
time-axis the defect line. We are in the phase boundary case, with
BL and BR now nets on M acting on a common Hilbert space H.
With O1 ⊂ ML, O2 ⊂ MR double cones, the von Neumann
algebras BL(O1) and BR(O2) commute if O1 and O2 are spacelike
separated, so BL(WL) and BR(WR) commute.
We want to describe the state ψ of the global system after time
t = 0. As above, we set

D(O) ≡ BL(O) ∨ BR(O)

The origin 0 is the only t = 0 point of the defect line; the
observables localized in the causal complement WL ∪WR of the 0
thus do not feel the effect of the contact, so ψ should be a natural
state on D that satisfies

ψ|BL(WL) = ϕL
βL
|BL(WL), ψ|BR(WR) = ϕR

βR
|BR(WR) .



In particular, ψ is to be a local thermal equilibrium state on WL/R

in the sense of Buchholz.

Since BL(ML) and BR(MR) are not independent, the existence of
such state ψ is not obvious. Clearly the C ∗-algebra on H
generated by BL(WL) and BR(WR) is naturally isomorphic to
BL(WL)⊗BR(WR) (BL(WL)′′ and BR(WR)′′ are commuting
factors) and the restriction of ψ to it is the product state
ϕL
βL
|BL(WL) ⊗ ϕR

βR
|BR(WR).

Construction of the doubly scaling automorphism:
Let C be a conformal net on R. Given λ−, λ+ > 0, there exists an
automorphism α of the C ∗-algebra C(Rr {0}) or D(M̌) such that

α|C(−∞,0) = δλ− , α|C(0,∞) = δλ+ ,



Then we construct an automorphism on the C ∗-algebra
D(x ± t 6= 0)

α|D(WL) = δλL , α|D(WR) = δλR .

where δλ is the λ-dilation automorphism of A±(R).

There exists a natural state ψ ≡ ψβL,βR on D(x ± t 6= 0) such that

ψ|B(WL/R) is ϕ
L/R
βL/βR

.

The state ψ is given by ψ ≡ ϕ · αλL,λR , where ϕ is the geometric
state on D (at inverse temperature 1) and α = αλL,λR is the above
automorphism with λL = β−1

L , λR = β−1
R .

It is convenient to extend the state ψ to a state on D by the
Hahn-Banach theorem. By inserting a probe ψ the state will be
normal.



The large time limit. Waiting a large time we expect the global
system to reach a stationary state, a non equilibrium steady state.
The two nets BL and BR both contain the same net
A = A+ ⊗A−. And the chiral net A± on R contains the Virasoro
net with central charge c±. In particular BL and BR share the
same stress energy tensor.

Let ϕ+
βL

, ϕ−βR be the geometric KMS states respectively on A+ and
A− with inverse temperature βL and βR ; we define

ω ≡ ϕ+
βL
⊗ ϕ−βR · ε ,

so ω is the state on D obtained by extending ϕ+
βL
⊗ϕ−βR from A to

D by the conditional natural expectation ε : D→ A. Clearly ω is a
stationary state, indeed:

ω is a NESS on D with β = min{βL, βR}.



We now want to show that the evolution ψ · τt of the initial state
ψ of the composite system approaches the non-equilibrium steady
state ω as t → +∞.

Note that:
ψ|D(O) = ω|D(O) if O ∈ K(V+)

We have:

For every Z ∈ D we have:

lim
t→+∞

ψ
(
τt(Z )

)
= ω(Z ) .

Indeed, if Z ∈ D(O) with O ∈ K(M) and t > tO , we have
τt(Z ) ∈ D(V+) as said, so

ψ
(
τt(Z )

)
= ω

(
τt(Z )

)
= ω(Z ) , t > tO ,

because of the stationarity property of ω.
See the picture.





Case with chemical potential

We suppose here that A± in the net C contains is generated by the
U(1)-current J± (thus BL/R is non rational with central charge
c = 1).

Given q ∈ R, the β-KMS state ϕβ,q on D with charge q is defined
by

ϕβ,q = ϕ+
β,q ⊗ ϕ

−
β,q · ε ,

where ϕ±β,q is the KMS state on A± with charge q.

ϕβ,q satisfies the β-KMS condition on D w.r.t. to τ .



Similarly as above we have:

Given βL/R > 0, qL/R ∈ R, there exists a state ψ on D such that

ψ|BL(WL) = ϕβL,qL |BL(WL) , ψ|BR(WR) = ϕβR ,qR |BR(WR) .

and for every Z ∈ D we have:

lim
t→+∞

ψ
(
τt(Z )

)
= ω(Z ) .

We can explicitly compute the expected value of the asymptotic
NESS state ω on the stress energy tensor and on the
current(chemical potential enters):





Now ω = ϕ+
βL,qL

⊗ ϕ−βR ,qR · ε is a steady state is a NESS and ω is
determined uniquely by βL/R and the charges qL/R

ϕ+
βL,qL

(
J+(0)

)
= qL , ϕ−βR ,qR

(
J−(0)

)
= qR .

We also have

ϕ+
βL,qL

(
T+(0)

)
=

π

12β2
L

+
q2
L

2
, ϕ−βR ,qR

(
T−(0)

)
=

π

12β2
R

+
q2
R

2
.

In presence of chemical potentials µL/R = 1
πqL/R , the large time

limit of the two dimensional current density expectation value
(x-component of the current operator Jµ) in the state ψ is, with
Jx(t, x) = J−(t + x)− J+(t − x)

lim
t→+∞

ψ
(
Jx(t, x)

)
= ϕ−βL,qL

(
J−(0)

)
−ϕ+

βR ,qR

(
J+(0)

)
= −π(µL−µR) ,

whereas on the stress energy tensor

lim
t→+∞

ψ
(
Ttx(t, x)

)
= ϕ+

βL,qL

(
T+(0)

)
− ϕ−βR ,qR

(
T−(0)

)
=

π

12

(
β−2
L − β

−2
R

)
+
π2

2

(
µ2
L − µ2

R

)
,

(cf. Bernard-Doyon)
The above discussion could be extended to the case A± contains a
higher rank current algebra net.
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