Non-Equilibrium Thermodynamics and Conformal Field Theory

Roberto Longo

Colloquium Local Quantum Physics and beyond - in memoriam Rudolf Haag

Hamburg, September 2016

Based on a joint work with S. Hollands

and previous works with Bischoff, Kawahigashi, Rehren and Camassa, Tanimoto, Weiner

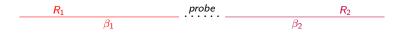
General frame

Non-equilibrium thermodynamics: study physical systems not in thermodynamic equilibrium but basically described by thermal equilibrium variables. Systems, in a sense, near equilibrium.

Non-equilibrium thermodynamics has been effectively studied for decades with important achievements, yet the general theory still missing. The framework is even more incomplete in the quantum case, *non-equilibrium quantum statistical mechanics*.

We aim provide a general, model independent scheme for the above situation in the context of quantum, two dimensional *Conformal Quantum Field Theory*. As we shall see, we provide the general picture for the evolution towards a *non-equilibrium steady state*.

A typical frame described by Non-Equilibrium Thermodynamics:



Two infinite reservoirs R_1 , R_2 in equilibrium at their own temperatures $T_1 = \beta_1^{-1}$, $T_2 = \beta_2^{-1}$, and possibly chemical potentials μ_1 , μ_2 , are set in contact, possibly inserting a probe.

As time evolves, the system should reach a non-equilibrium steady state.

This is the situation we want to analyse. As we shall see the *Operator Algebraic approach to CFT* provides a model independent description, in particular of the asymptotic steady state, and exact computation of the expectation values of the main physical quantities.

Thermal equilibrium states

Gibbs states

Finite system, \mathfrak{A} matrix algebra with Hamiltonian H and evolution $\tau_t = \mathrm{Ad} e^{itH}$. Equilibrium state φ at inverse temperature β given by

$$\varphi(X) = rac{\operatorname{Tr}(e^{-eta H}X)}{\operatorname{Tr}(e^{-eta H})}$$

KMS states (Haag, Hugenholtz, Winnink)

Infinite volume, \mathfrak{A} a C^* -algebra, τ a one-par. automorphism group of \mathfrak{A} , \mathfrak{B} a dense *-subalgebra. A state φ of \mathfrak{A} is KMS at inverse temperature $\beta > 0$ if for $X, Y \in \mathfrak{B} \exists F_{XY} \in A(S_\beta)$ s.t.

(a) $F_{XY}(t) = \varphi(X\tau_t(Y))$ (b) $F_{XY}(t+i\beta) = \varphi(\tau_t(Y)X)$

where $A(S_{\beta})$ is the algebra of functions analytic in the strip $S_{\beta} = \{0 < \Im z < \beta\}$, bounded and continuous on the closure \overline{S}_{β} .

Non-equilibrium steady states

Non-equilibrium statistical mechanics:

A non-equilibrium steady state **NESS** φ of \mathfrak{A} satisfies property (a) in the KMS condition, for all X, Y in a dense *-subalgebra of \mathfrak{B} , but not necessarily property (b).

For any X, Y in \mathfrak{B} the function

 $F_{XY}(t) = \varphi \big(X \tau_t(Y) \big)$

is the boundary value of a function holomorphic in S_{β} . (Ruelle)

Example: the tensor product of two KMS states at temperatures β_1 , β_2 is a NESS with $\beta = \min(\beta_1, \beta_2)$.

Problem: describe the NESS state φ and show that the initial state ψ evolves towards φ

$$\lim_{t \to \infty} \psi \cdot \tau_t = \varphi$$

Möbius covariant nets (Haag-Kastler nets on S^1) A local Möbius covariant net A on S^1 is a map

$$I \in \mathcal{I}
ightarrow \mathcal{A}(I) \subset \mathcal{B}(\mathcal{H})$$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

- ▶ **A.** *Isotony.* $I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$
- ▶ **B.** Locality. $I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$
- ► C. Möbius covariance. ∃ unitary rep. U of the Möbius group Möb on H such that

$$U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), g \in \mathrm{M\"ob}, I \in \mathcal{I}.$$

- D. Positivity of the energy. Generator L₀ of rotation subgroup of U (conformal Hamiltonian) is positive.
- E. Existence of the vacuum. ∃! U-invariant vector Ω ∈ H (vacuum vector), and Ω is cyclic for V_{I∈T} A(I).

Consequences

- Irreducibility: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = B(H)$.
- Reeh-Schlieder theorem: Ω is cyclic and separating for each A(I).
- Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ₁ and conjugation J₁ of (A(1), Ω), are

$$U(\delta_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$$
 dilations
 $U(r_I) = J_I$ reflection

(Fröhlich-Gabbiani, Guido-L.)

- Haag duality: $\mathcal{A}(I)' = \mathcal{A}(I')$
- ► Factoriality: A(I) is III₁-factor (in Connes classification)
- ► Additivity: $I \subset \cup_i I_i \implies \mathcal{A}(I) \subset \vee_i \mathcal{A}(I_i)$ (Fredenhagen, Jorss).

Local conformal nets

 $\operatorname{Diff}(S^1) \equiv$ group of orientation-preserving smooth diffeomorphisms of S^1

$$\operatorname{Diff}_{I}(S^{1}) \equiv \{g \in \operatorname{Diff}(S^{1}) : g(t) = t \; \forall t \in I'\}.$$

A local conformal net \mathcal{A} is a Möbius covariant net s.t.

F. Conformal covariance. \exists a projective unitary representation U of $\text{Diff}(S^1)$ on \mathcal{H} extending the unitary representation of Möb s.t.

$$egin{aligned} U(g)\mathcal{A}(I)U(g)^* &= \mathcal{A}(gI), \quad g\in \mathrm{Diff}(S^1), \ U(g)xU(g)^* &= x, \quad x\in \mathcal{A}(I), \ g\in \mathrm{Diff}_{I'}(S^1), \end{aligned}$$

 \longrightarrow unitary representation of the Virasoro algebra

$$[L_m, L_n] = (m - n)L_{m+n} + \frac{c}{12}(m^3 - m)\delta_{m, -n}$$

$$[L_n, c] = 0, \ L_n^* = L_{-n}.$$

Representations

A (DHR) representation ρ of local conformal net \mathcal{A} on a Hilbert space \mathcal{H} is a map $I \in \mathcal{I} \mapsto \rho_I$, with ρ_I a normal rep. of $\mathcal{A}(I)$ on $\mathcal{B}(\mathcal{H})$ s.t.

$$\rho_{\tilde{I}} \upharpoonright \mathcal{A}(I) = \rho_{I}, \quad I \subset \tilde{I}, \quad I, \tilde{I} \subset \mathcal{I}$$

 ρ is diffeomorphism *covariant*: \exists a projective unitary representation U_{ρ} of $\text{Diff}(S^1)$ on \mathcal{H} such that

$$\rho_{gl}(U(g) \times U(g)^*) = U_{\rho}(g) \rho_l(x) U_{\rho}(g)^*$$

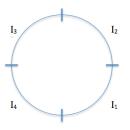
for all $I \in \mathcal{I}$, $x \in \mathcal{A}(I)$ and $g \in \operatorname{Diff}(S^1)$.

Index-statistics relation (L.):

$$d(\rho) = \left[\rho_{I'}(\mathcal{A}(I'))':\rho_{I}(\mathcal{A}(I))\right]^{\frac{1}{2}}$$

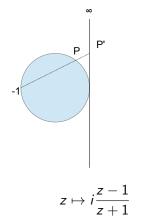
DHR dimension = $\sqrt{\text{Jones index}}$

Complete rationality



 \mathcal{A} is modular (Kawahigashi, Müger, L.)

Circle and real line picture



We shall frequently switch between the two pictures.

KMS and Jones index

Kac-Wakimoto formula (conjecture)

Let ${\mathcal A}$ be a conformal net, ρ representations of ${\mathcal A},$ then

$$\lim_{t\to 0^+} \frac{\operatorname{Tr}(e^{-tL_{0,\rho}})}{\operatorname{Tr}(e^{-tL_0})} = d(\rho)$$

Analog of the Kac-Wakimoto formula (theorem)

 ρ a representation of $\mathcal{A}:$

$$(\xi, e^{-2\pi K_{\rho}}\xi) = d(\rho)$$

where $K\rho$ is the generator of the dilations δ_I and ξ is any vector cyclic for $\rho(\mathcal{A}(I'))$ such that $(\xi, \rho(\cdot)\xi)$ is the vacuum state on $\mathcal{A}(I')$.

U(1)-current net

Let \mathcal{A} be the local conformal net on S^1 associated with the U(1)-current algebra. In the real line picture \mathcal{A} is given by

$$\mathcal{A}(I) \equiv \{ W(f) : f \in C^\infty_\mathbb{R}(\mathbb{R}), \text{ supp } f \subset I \}''$$

where W is the representation of the Weyl commutation relations

$$W(f)W(g) = e^{-i\int fg'}W(f+g)$$

associated with the vacuum state $\boldsymbol{\omega}$

$$\omega(W(f)) \equiv e^{-||f||^2}, \quad ||f||^2 \equiv \int_0^\infty p|\tilde{f}(p)|^2 \mathrm{d}p$$

where \tilde{f} is the Fourier transform of f.

$$W(f) = \exp\left(-i\int f(x)j(x)dx\right)$$
$$[j(f), j(g)] = i\int fg'dx$$

There is a one parameter family $\{\gamma_q, q \in \mathbb{R}\}$ of irreducible sectors and all have index 1 (Buchholz, Mack, Todorov)

$$\gamma_q(W(f))\equiv e^{i\int {\cal F} f}W(f), \quad F\in C^\infty, \quad rac{1}{2\pi}\int F=q\;.$$

q is the called the charge of the sector.

A classification of KMS states (Camassa, Tanimoto, Weiner, L.)

How many KMS states do there exist?

Completely rational case

 \mathcal{A} completely rational: only one KMS state (geometrically constructed) $\beta = 2\pi$ exp: net on $\mathbb{R} \ \mathcal{A} \rightarrow$ restriction of \mathcal{A} to \mathbb{R}^+

$$\exp \restriction \mathcal{A}(I) = \operatorname{Ad} U(\eta)$$

 η diffeomorphism, $\eta \restriction I = exponential$

geometric KMS state on $\mathcal{A}(\mathbb{R}) =$ vacuum state on $\mathcal{A}(\mathbb{R}^+)$ \circ exp

$$\varphi_{\text{geo}} = \omega \circ \exp (\omega \rho)$$

Note: Scaling with dilation, we get the geometric KMS state at any give $\beta > 0$.

Comments

About the proof:

Essential use of the thermal completion and Jones index.

 ${\mathcal A}$ net on ${\mathbb R},\,\varphi$ KMS state:

In the GNS representation we apply Wiesbrock theorem

 $\mathcal{A}(\mathbb{R}^+) \subset \mathcal{A}(\mathbb{R})$ hsm modular inclusion ightarrow new net \mathcal{A}_{arphi}

Want to prove duality for A_{φ} in the KMS state, but A_{φ} satisfies duality up to finite Jones index.

Iteration of the procedure...

Conjecture: $\mathcal{A} \subset \mathcal{B}$ finite-index inclusion of conformal nets, $\varepsilon : \mathcal{B} \to \mathcal{A}$ conditional expectation. If φ is a translation KMS on \mathcal{A} then $\varphi \circ \varepsilon$ is a translation KMS on \mathcal{B} .

Non-rational case: U(1)-current model

The primary (locally normal) KMS states of the U(1)-current net are in one-to-one correspondence with real numbers $q \in \mathbb{R}$; each state φ^q is uniquely determined by

$$\varphi^{q}\left(W\left(f\right)\right)=e^{iq\int f\,dx}\cdot e^{-\frac{1}{4}\|f\|_{\mathcal{S}_{\beta}}^{2}}$$

where $||f||_{S_{\beta}}^2 = (f, S_{\beta}f)$ and $\widehat{S_{\beta}f}(p) := \operatorname{coth} \frac{\beta p}{2}\widehat{f}(p)$.

In other words:

Geometric KMS state: $\varphi_{\text{geo}} = \varphi^0$ Any primary KMS state:

$$\varphi^{\boldsymbol{q}} = \varphi_{\text{geo}} \circ \gamma_{\boldsymbol{q}}.$$

where γ_q is a BMT sector.

Virasoro net: c = 1

(With c < 1 there is only one KMS state: the net is completely rational)

Primary KMS states of the Vir₁ net are in one-to-one correspondence with positive real numbers $|q| \in \mathbb{R}^+$; each state $\varphi^{|q|}$ is uniquely determined by its value on the stress-energy tensor \mathcal{T} :

$$arphi^{\left|q
ight|}\left(\mathcal{T}\left(f
ight)
ight)=\left(rac{\pi}{12eta^{2}}+rac{q^{2}}{2}
ight)\int f\,dx.$$

The geometric KMS state corresponds to q = 0, and the corresponding value of the 'energy density' $\frac{\pi}{12\beta^2} + \frac{q^2}{2}$ is the lowest one in the set of the KMS states.

(We construct these KMS states by composing the geometric state with automorphisms on the larger U(1)-current net.)

Virasoro net: c > 1

There is a set of primary (locally normal) KMS states of the Vir_c net with c > 1 w.r.t. translations in one-to-one correspondence with positive real numbers $|q| \in \mathbb{R}^+$; each state $\varphi^{|q|}$ can be evaluated on the stress-energy tensor

$$arphi^{\left|q
ight|}\left(T\left(f
ight)
ight)=\left(rac{\pi}{12eta^{2}}+rac{q^{2}}{2}
ight)\int f\,dx$$

and the geometric KMS state corresponds to $q = \frac{1}{\beta} \sqrt{\frac{\pi(c-1)}{6}}$ and energy density $\frac{\pi c}{12\beta^2}$.

Are they all? Probably yes...

Rotation KMS states: Recent work with Y. Tanimoto

Chemical potential

 \mathcal{A} a local conformal net on \mathbb{R} (or on M) and φ an extremal β -KMS state on \mathfrak{A} w.r.t. the time translation group τ and ρ an irreducible DHR localized endomorphism of $\mathfrak{A} \equiv \bigcup_{I \subset \mathbb{R}} \mathcal{A}(I)$ with finite dimension $d(\rho)$. Assume that ρ is normal, namely it extends to a normal endomorphism of the weak closure \mathcal{M} of \mathfrak{A} ; automatic e.g. if φ satisfies essential duality $\pi_{\varphi}(\mathfrak{A}(I_{\pm}))' \cap \mathcal{M} = \pi_{\varphi}((\mathfrak{A}(I_{\mp}))'', I_{\pm}$ the \pm half-line.

U time translation unitary covariance cocycle in \mathfrak{A} :

$$\operatorname{Ad} U(t) \cdot \tau_t \cdot \rho = \rho \cdot \tau_t , \quad t \in \mathbb{R} ,$$

with $U(t + s) = U(t)\tau_t(U(s))$ (cocycle relation) (unique by a phase, canonical choice by Möb covariance).

U is equal up to a phase to a Connes Radon-Nikodym cocycle:

$$U(t) = e^{-i2\pi\mu_{\rho}(\varphi)t} d(\rho)^{-i\beta^{-1}t} (D\varphi \cdot \Phi_{\rho} : D\varphi)_{-\beta^{-1}t} .$$

 $\mu_{\rho}(\varphi) \in \mathbb{R}$ is the *chemical potential* of φ w.r.t. the charge ρ .

Here Φ_{ρ} is the left inverse of ρ , $\Phi_{\rho} \cdot \rho = id$, so $\varphi \cdot \Phi_{\rho}$ is a KMS state in the sector ρ .

The geometric β -KMS state φ_0 has zero chemical potential.

By the holomorphic property of the Connes Radon-Nikodym cocycle:

$$e^{2\pieta\mu_
ho(arphi)} = \mathop{\mathrm{anal.\,cont.\,}}_{t\longrightarrow ieta} arphiig(U(t)ig) ig/ \mathop{\mathrm{anal.\,cont.\,}}_{t\longrightarrow ieta} arphi_0ig(U(t)ig) \;.$$

Example, BMT sectors:

With $\varphi_{\beta,q}$ the β -state associated with charge q, the chemical potential w.r.t. the charge q is given by

 $\mu_p(\varphi_{\beta,q}) = qp/\pi$

2-dimensional CFT

 $M = \mathbb{R}^2$ Minkowski plane.

 $\begin{pmatrix} T_{00} & T_{10} \\ T_{01} & T_{11} \end{pmatrix}$ conserved and traceless stress-energy tensor.

As is well known, $T_L = \frac{1}{2}(T_{00} + T_{01})$ and $T_R = \frac{1}{2}(T_{00} - T_{01})$ are chiral fields,

$$T_L = T_L(t+x), \quad T_R = T_R(t-x).$$

Left and right movers.

 Ψ_k family of conformal fields on *M*: T_{ij} + relatively local fields $\mathcal{O} = I \times J$ double cone, *I*, *J* intervals of the chiral lines $t \pm x = 0$

$$\mathcal{A}(\mathcal{O}) = \{e^{i \Psi_k(f)}, \mathrm{supp} f \subset \mathcal{O}\}''$$

then by relative locality

$$\mathcal{A}(\mathcal{O}) \supset \mathcal{A}_L(I) \otimes \mathcal{A}_R(J)$$

 $\mathcal{A}_L, \mathcal{A}_R$ chiral fields on $t \pm x = 0$ generated by $\mathcal{T}_L, \mathcal{T}_R$ and other chiral fields

(completely) rational case: $\mathcal{A}_L(I)\otimes \mathcal{A}_R(J)\subset \mathcal{A}(\mathcal{O})$ finite Jones index

Phase boundaries (Bischoff, Kawahigashi, Rehren, L.) $M_L \equiv \{(t,x) : x < 0\}, M_R \equiv \{(t,x) : x > 0\}$ left and right half Minkowski plane, with a CFT on each half.

Chiral components of the stress-energy tensor:

$$T^{L}_{+}(t+x), T^{L}_{-}(t-x), T^{R}_{+}(t+x), T^{R}_{-}(t-x).$$

Energy conservation at the boundary $(T_{01}^{L}(t,0) = T_{01}^{R}(t,0))$:

$$T^{L}_{+}(t) + T^{R}_{-}(t) = T^{R}_{+}(t) + T^{L}_{-}(t).$$

Transmissive solution:

$$T^L_+(t) = T^R_+(t), \qquad T^L_-(t) = T^R_-(t).$$

A transpartent phase boundary is given by specifying two local conformal nets \mathcal{B}^L and \mathcal{B}^R on $M_{L/R}$ on the same Hilbert space \mathcal{H} ;

 $M_L \supset O \mapsto \mathcal{B}^L(O) ; \qquad M_R \supset O \mapsto \mathcal{B}^R(O) ,$

 \mathcal{B}^L and \mathcal{B}^R both contain a common chiral subnet $\mathcal{A} = \mathcal{A}_+ \otimes \mathcal{A}_-$. $\mathcal{B}^{L/R}$ extends on the entire M by covariance as the chiral nets \mathcal{A}_\pm on \mathbb{R} contain the Virasoro nets. By causality:

$$ig[\mathcal{B}^L(\mathcal{O}_2),\mathcal{B}^R(\mathcal{O}_1)ig]=0, \quad \mathcal{O}_1\subset M_L, \ \mathcal{O}_2\subset M_R, \ \mathcal{O}_1\subset \mathcal{O}_2'$$

By diffeomorphism covariance, \mathcal{B}^R is thus right local with respect to \mathcal{B}^L

Given a phase boundary, we consider the von Neumann algebras generated by $\mathcal{B}^{L}(O)$ and $\mathcal{B}^{R}(O)$:

$$\mathcal{D}(O)\equiv \mathcal{B}^L(O)ee \mathcal{B}^R(O)\;,\quad O\in \mathcal{K}\;.$$

 \mathcal{D} is another extension of \mathcal{A} , but \mathcal{D} is in general non-local, but relatively local w.r.t. \mathcal{A} . $\mathcal{D}(O)$ may have non-trivial center. In the completely rational case, $\mathcal{A}(O) \subset \mathcal{D}(O)$ has finite Jones index, so the center of $\mathcal{D}(O)$ is finite dimensional; by standard arguments, we may cut down the center to \mathbb{C} by a minimal projection of the center, and we may then assume $\mathcal{D}(O)$ to be a factor, as we will do for simplicity in the following.

The universal construction

A phase boundary is a transmissive boundary with chiral observables $\mathcal{A}_{2D} = \mathcal{A}_+ \otimes \mathcal{A}_-$. The phases on both sides of the boundary are given by a pair of Q-systems $\mathcal{A}^L = (\Theta^L, W^L, X^L)$ and $\mathcal{A}^R = (\Theta^R, W^R, X^R)$ in the sectors of \mathcal{A}_{2D} , describing local 2D extensions $\mathcal{A}_{2D} \subset \mathcal{B}_{2D}^L$ and $\mathcal{A}_{2D} \subset \mathcal{B}_{2D}^R$. Now consider the braided product Q-systems (Evans, Pinto)

$$(\Theta = \Theta^L \circ \Theta^R, W = W^L \times W^R, X = (1 \times \epsilon_{\Theta^L, \Theta^R}^{\pm} \times 1) \circ (X^L \times X^R))$$

and the corresponding extensions $\mathcal{A}_{2D} \subset \mathcal{D}_{2D}^{\pm}$. The original extensions \mathcal{B}_{2D}^{L} , \mathcal{B}_{2D}^{R} are intermediate

$$\mathcal{A}_{2\mathrm{D}} \subset \mathcal{B}_{2\mathrm{D}}^{\mathcal{L}} \subset \mathcal{D}_{2\mathrm{D}}^{\pm} \qquad \mathcal{A}_{2\mathrm{D}} \subset \mathcal{B}_{2\mathrm{D}}^{\mathcal{R}} \subset \mathcal{D}_{2\mathrm{D}}^{\pm},$$

and the nets \mathcal{D}_{2D}^{\pm} are generated by \mathcal{A}_{2D} and two sets of charged fields $\Psi_{\sigma\otimes\tau}^L$ ($\sigma\otimes\tau\prec\Theta^L$) and $\Psi_{\sigma\otimes\tau}^R$ ($\sigma\otimes\tau\prec\Theta^R$), suppressing possible multiplicity indices.

The braided product Q-system determines their commutation relations among each other:

$$\Psi^{R}_{\sigma\otimes\tau}\Psi^{L}_{\sigma'\otimes\tau'}=\epsilon^{\pm}_{\sigma'\otimes\tau',\sigma\otimes\tau}\cdot\Psi^{L}_{\sigma'\otimes\tau'}\Psi^{R}_{\sigma\otimes\tau}.$$

 $\epsilon_{\sigma'\otimes\tau',\sigma\otimes\tau}^{-} = \mathbf{1}$ whenever $\sigma'\otimes\tau'$ is localized to the spacelike left of $\sigma\otimes\tau$. Thus, the choice of \pm -braiding ensures that \mathcal{B}^{L} is left-local w.r.t. \mathcal{B}^{R} , as required by causality. Thus

$$\Theta = (\Theta^L, W^L, X^L) \times^- (\Theta^R, W^R, X^R),$$

Universal construction:

The extension \mathcal{D} of \mathcal{A} defined by the above Q-system implements a transmissive boundary condition in the sense. It is universal in the sense that every irreducible boundary condition appears as a representation of \mathcal{D} .

Cf. the work of Fröhlich, Fuchs, Runkel, Schweigert (Euclidean setting)

Non-equilubrium in CFT (S. Hollands, R.L.)

Two local conformal nets \mathcal{B}^L and \mathcal{B}^R on the Minkowski plane M, both containing the same chiral net $\mathcal{A} = \mathcal{A}_+ \otimes \mathcal{A}_-$. For the moment $\mathcal{B}^{L/R}$ is completely rational, so the KMS state is unique, later we deal wih chemical potentials.

Before contact. The two systems \mathcal{B}^L and \mathcal{B}^R are, separately, each in a thermal equilibrium state. KMS states $\varphi_{\beta_{L/R}}^{L/R}$ on $\mathfrak{B}^{L/R}$ at inverse temperature $\beta_{L/R}$ w.r.t. τ , possibly with $\beta_L \neq \beta_R$. \mathcal{B}^L and \mathcal{B}^R live independently in their own half plane M_L and M_R and their own Hilbert space. The composite system on $M_L \cup M_R$ is

given by

 $M_L \supset O \mapsto \mathcal{B}^L(O), \qquad M_R \supset O \mapsto \mathcal{B}^R(O)$

with C^* -algebra $\mathfrak{B}^L(M_L) \otimes \mathfrak{B}^R(M_R)$ and the state

$$\varphi = \varphi_{\beta_L}^L|_{\mathfrak{B}^L(M_L)} \otimes \varphi_{\beta_R}^R|_{\mathfrak{B}^R(M_R)};$$

 φ is a stationary state, NESS but not KMS.

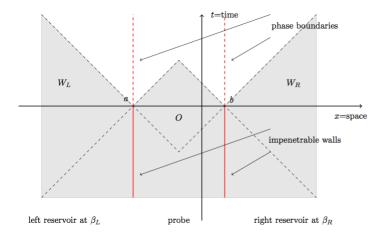


Figure 1: Spacetime diagram of our setup. The initial state ψ is set up in the shaded region before the system is in causal contact with the phase boundaries. In the shaded regions to the left/right of the probe, we have a thermal equilibrium state at inverse temperatures β_L/β_R . In the diamond shaped shaded region O, we have an essentially arbitrary probe state.

After contact.

At time t = 0 we put the two systems \mathcal{B}^L on M_L and \mathcal{B}^R on M_R in contact through a totally transmissible phase boundary and the time-axis the defect line. We are in the phase boundary case, with \mathcal{B}^L and \mathcal{B}^R now nets on M acting on a common Hilbert space \mathcal{H} . With $O_1 \subset M_L$, $O_2 \subset M_R$ double cones, the von Neumann algebras $\mathcal{B}^L(O_1)$ and $\mathcal{B}^R(O_2)$ commute if O_1 and O_2 are spacelike separated, so $\mathfrak{B}^L(W_L)$ and $\mathfrak{B}^R(W_R)$ commute. We want to describe the state ψ of the global system after time t = 0. As above, we set

$$\mathcal{D}(O) \equiv \mathcal{B}^{L}(O) \lor \mathcal{B}^{R}(O)$$

The origin **0** is the only t = 0 point of the defect line; the observables localized in the causal complement $W_L \cup W_R$ of the **0** thus do not feel the effect of the contact, so ψ should be a natural state on \mathfrak{D} that satisfies

$$\psi|_{\mathfrak{B}^{L}(W_{L})} = \varphi_{\beta_{L}}^{L}|_{\mathfrak{B}^{L}(W_{L})}, \quad \psi|_{\mathfrak{B}^{R}(W_{R})} = \varphi_{\beta_{R}}^{R}|_{\mathfrak{B}^{R}(W_{R})}.$$

In particular, ψ is to be a *local thermal equilibrium state* on $W_{L/R}$ in the sense of Buchholz.

Since $\mathfrak{B}^{L}(M_{L})$ and $\mathfrak{B}^{R}(M_{R})$ are not independent, the existence of such state ψ is not obvious. Clearly the C^{*} -algebra on \mathcal{H} generated by $\mathfrak{B}^{L}(W_{L})$ and $\mathfrak{B}^{R}(W_{R})$ is naturally isomorphic to $\mathfrak{B}^{L}(W_{L}) \otimes \mathfrak{B}^{R}(W_{R})$ ($\mathfrak{B}^{L}(W_{L})''$ and $\mathfrak{B}^{R}(W_{R})''$ are commuting factors) and the restriction of ψ to it is the product state $\varphi_{\beta_{L}}^{L}|_{\mathfrak{B}^{L}(W_{L})} \otimes \varphi_{\beta_{R}}^{R}|_{\mathfrak{B}^{R}(W_{R})}$.

Construction of the doubly scaling automorphism:

Let C be a conformal net on \mathbb{R} . Given $\lambda_-, \lambda_+ > 0$, there exists an automorphism α of the C^* -algebra $\mathfrak{C}(\mathbb{R} \smallsetminus \{0\})$ or $\mathfrak{D}(\check{M})$ such that

$$\alpha|_{\mathfrak{C}(-\infty,\mathbf{0})} = \delta_{\lambda_{-}} , \quad \alpha|_{\mathfrak{C}(\mathbf{0},\infty)} = \delta_{\lambda_{+}} ,$$

Then we construct an automorphism on the C^* -algebra $\mathfrak{D}(x \pm t \neq 0)$

$$\alpha|_{\mathfrak{D}(W_L)} = \delta_{\lambda_L} , \quad \alpha|_{\mathfrak{D}(W_R)} = \delta_{\lambda_R} .$$

where δ_{λ} is the λ -dilation automorphism of $\mathfrak{A}_{\pm}(\mathbb{R})$.

There exists a natural state $\psi \equiv \psi_{\beta_L,\beta_R}$ on $\mathfrak{D}(x \pm t \neq 0)$ such that $\psi|_{\mathfrak{B}(W_{L/R})}$ is $\varphi_{\beta_L/\beta_R}^{L/R}$.

The state ψ is given by $\psi \equiv \varphi \cdot \alpha_{\lambda_L,\lambda_R}$, where φ is the geometric state on \mathfrak{D} (at inverse temperature 1) and $\alpha = \alpha_{\lambda_L,\lambda_R}$ is the above automorphism with $\lambda_L = \beta_L^{-1}$, $\lambda_R = \beta_R^{-1}$.

It is convenient to extend the state ψ to a state on \mathfrak{D} by the Hahn-Banach theorem. By inserting a probe ψ the state will be normal.

The large time limit. Waiting a large time we expect the global system to reach a stationary state, a non equilibrium steady state. The two nets \mathcal{B}^L and \mathcal{B}^R both contain the same net $\mathcal{A} = \mathcal{A}_+ \otimes \mathcal{A}_-$. And the chiral net \mathcal{A}_\pm on \mathbb{R} contains the Virasoro net with central charge c_\pm . In particular \mathcal{B}^L and \mathcal{B}^R share the same stress energy tensor.

Let $\varphi_{\beta_L}^+$, $\varphi_{\beta_R}^-$ be the geometric KMS states respectively on \mathfrak{A}_+ and \mathfrak{A}_- with inverse temperature β_L and β_R ; we define

 $\omega \equiv \varphi_{\beta_L}^+ \otimes \varphi_{\beta_R}^- \cdot \varepsilon ,$

so ω is the state on \mathfrak{D} obtained by extending $\varphi_{\beta_L}^+ \otimes \varphi_{\beta_R}^-$ from \mathfrak{A} to \mathfrak{D} by the conditional natural expectation $\varepsilon : \mathfrak{D} \to \mathfrak{A}$. Clearly ω is a stationary state, indeed:

 ω is a NESS on \mathfrak{D} with $\beta = \min\{\beta_L, \beta_R\}$.

We now want to show that the evolution $\psi \cdot \tau_t$ of the initial state ψ of the composite system approaches the non-equilibrium steady state ω as $t \to +\infty$. Note that:

$$\psi|_{\mathcal{D}(\mathcal{O})} = \omega|_{\mathcal{D}(\mathcal{O})} \text{ if } \mathcal{O} \in \mathcal{K}(V_+)$$

We have:

For every $Z \in \mathfrak{D}$ we have:

$$\lim_{t\to+\infty}\psi\bigl(\tau_t(Z)\bigr)=\omega(Z)\;.$$

Indeed, if $Z \in \mathcal{D}(O)$ with $O \in \mathcal{K}(M)$ and $t > t_O$, we have $\tau_t(Z) \in \mathfrak{D}(V_+)$ as said, so

$$\psi(\tau_t(Z)) = \omega(\tau_t(Z)) = \omega(Z) , \quad t > t_O ,$$

because of the stationarity property of ω . See the picture.

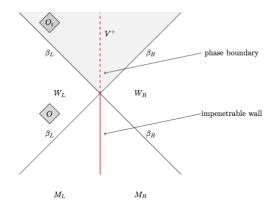


Figure 2: Spacetime diagram of simplified setup. There is just one phase boundary and no probe. Every time-translated diamond will eventually enter the future lightcone V^+ .

Case with chemical potential

We suppose here that A_{\pm} in the net C contains is generated by the U(1)-current J^{\pm} (thus $\mathcal{B}^{L/R}$ is non rational with central charge c = 1).

Given $q \in \mathbb{R}$, the β -KMS state $\varphi_{\beta,q}$ on \mathfrak{D} with charge q is defined by

$$\varphi_{\beta,\boldsymbol{q}} = \varphi_{\beta,\boldsymbol{q}}^+ \otimes \varphi_{\beta,\boldsymbol{q}}^- \cdot \varepsilon ,$$

where $\varphi_{\beta,q}^{\pm}$ is the KMS state on \mathcal{A}_{\pm} with charge q. $\varphi_{\beta,q}$ satisfies the β -KMS condition on \mathfrak{D} w.r.t. to τ . Similarly as above we have:

Given $\beta_{L/R} > 0$, $q_{L/R} \in \mathbb{R}$, there exists a state ψ on \mathfrak{D} such that

$$\psi|_{\mathfrak{B}^{L}(W_{L})} = \varphi_{\beta_{L},q_{L}}|_{\mathfrak{B}^{L}(W_{L})}, \qquad \psi|_{\mathfrak{B}^{R}(W_{R})} = \varphi_{\beta_{R},q_{R}}|_{\mathfrak{B}^{R}(W_{R})}.$$

and for every $Z \in \mathfrak{D}$ we have:

$$\lim_{t\to+\infty}\psi\bigl(\tau_t(Z)\bigr)=\omega(Z)\;.$$

We can explicitly compute the expected value of the asymptotic NESS state ω on the stress energy tensor and on the current(chemical potential enters):

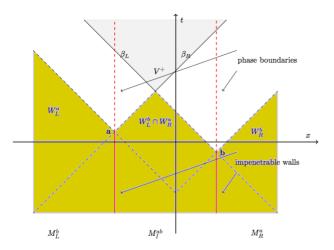


Figure 3: Spacetime diagram of our setup. The initial state ψ is set up in the shaded region before the system is in causal contact with the phase boundaries. In W_L^a resp. W_R^b , we have a thermal equilibrium state at inverse temperatures β_L resp. β_R . In the diamond shaped shaded region $W_L^b \cap W_R^a$, we have an essentially arbitrary probe state. Again, every time-translated causal diamond in this region will eventually enter V^+ .

Now $\omega = \varphi^+_{\beta_L, q_L} \otimes \varphi^-_{\beta_R, q_R} \cdot \varepsilon$ is a steady state is a NESS and ω is determined uniquely by $\beta_{L/R}$ and the charges $q_{L/R}$

$$arphi^+_{eta_L, q_L}ig(J^+(0)ig) = q_L \;, \qquad arphi^-_{eta_R, q_R}ig(J^-(0)ig) = q_R \;.$$

We also have

$$arphi^+_{eta_L,q_L}(T^+(0)) = rac{\pi}{12eta_L^2} + rac{q_L^2}{2} , \qquad arphi^-_{eta_R,q_R}(T^-(0)) = rac{\pi}{12eta_R^2} + rac{q_R^2}{2}$$

In presence of chemical potentials $\mu_{L/R} = \frac{1}{\pi}q_{L/R}$, the large time limit of the two dimensional current density expectation value (*x*-component of the current operator J^{μ}) in the state ψ is, with $J^{x}(t,x) = J^{-}(t+x) - J^{+}(t-x)$

 $\lim_{t\to+\infty}\psi(J^{\mathsf{x}}(t,\mathsf{x}))=\varphi_{\beta_{L},q_{L}}^{-}(J^{-}(0))-\varphi_{\beta_{R},q_{R}}^{+}(J^{+}(0))=-\pi(\mu_{L}-\mu_{R}),$

whereas on the stress energy tensor

$$\lim_{t \to +\infty} \psi (T_{tx}(t,x)) = \varphi_{\beta_L,q_L}^+ (T^+(0)) - \varphi_{\beta_R,q_R}^- (T^-(0))$$
$$= \frac{\pi}{12} (\beta_L^{-2} - \beta_R^{-2}) + \frac{\pi^2}{2} (\mu_L^2 - \mu_R^2) ,$$

(cf. Bernard-Doyon)