Operator product expansion algebra

S. Hollands

UNIVERSITÄT LEIPZIG

based on joint work with M. Fröb, J. Holland and Ch. Kopper

Hamburg 26.09.2016

European Research Council Established by the European Commission

Commun.Math.Phys.313 (2012) , J.Math.Phys.54 (2013) , J. Math. Phys. 56 (2015), Commun. Math. Phys. 342 (2016), arXiv:1511.09425

"[...] At this time an idea occurred to me which at first I considered to be mainly of aesthetic value but which turned out to be so fertile that its elaborations and applications determined the direction of my work for many years. [...] My conclusion was that the theory must give us for each region of space-time an algebra corresponding to the set of all observables or operations pertaining to the region. This correspondence between space-time regions and algebras is the content of the theory; nothing more nor less. Relativistic causality demands that the algebras of two regions which lie space-like to each other should commute. In the case of a field theory the algebra of a region is generated by the fields "smeared out" by test functions with support in the region." [R. Haag: "Some people and some problems met in half a century..." Eur. Phys. J. H. 35 (2010)

History

The idea to formulate quantum theory in an "algebraic manner" had been proposed already by I. Segal in 1946 [Segal 1946]. NEW IDEAS:

- Ist idea: Segal did not associate different algebras to different Minkowski regions, i.e. a map $N \mapsto \mathfrak{A}(N)$. Special to the relativistic setting.
- ▶ 2nd idea: $\mathfrak{A}(N)$ should be "abstract" algebras. In theory with charges

$$\mathcal{H} = \oplus_q \underbrace{\mathcal{H}_q}_{\text{charge a "formula prime control"}} (0.1)$$

charge q "superselection sector"

Then on each \mathcal{H}_q the algebra acts in a different representation π_q and total representation of \mathfrak{A} is "diagonal"

$$\pi(\mathfrak{A}) = \begin{pmatrix} \ddots & & & \\ & \pi_q(\mathfrak{A}) & & \\ & & \pi_{q+1}(\mathfrak{A}) & \\ & & & \ddots \end{pmatrix}$$
(0.2)

 \implies redundant description.

History

In 1964 Haag and Kastler publish their influential paper which proposes these two ideas. While the 1st idea is well-motivated, they seemed to have settled on the 2nd idea due to their discovery of a mathematical result in the literature (which Haag attributes to Kastler [see "Some people and some problems..."]). This result [Fell 1960] states, in simple terms, that, given n local observables $\mathcal{O}_1, \ldots, \mathcal{O}_n$, one can approximate (for all $i = 1, \ldots, n$)

to arbitrary accuracy ε by some statistical operator in charge-0 Hilbert space

 $\operatorname{tr}(\begin{array}{c} \rho_0^{(\varepsilon)} & \mathcal{O}_i \end{array})$

statistical operator in charge $0\ {\rm Hilbert}\ {\rm space}$

 \implies finitely many local operations cannot distinguish "representation".

In 1964, Wilson proposes his "operator product expansion":

An alternative is proposed to specific Lagrangian models [...] operator products a the same point have no meaning. [...] a generalization of equal time commutation relations is assumed: Operator products at short distances have expansions at short distances involving local field multiplying singular functions [...] [K. Wilson: "Non-Lagrangian models of current algebra" PR 179 (1969)]

Rather than by conceptual thinking as Haag-Kastler, Wilson is influenced by ideas about "current algebras" [Gell-Mann 1962, Lee, Weinberg & Zumino 1967] that are influential around this time. Later, [Zimmermann 1972] shows that Wilsons proposals are indeed consistent with renormalized perturbation theory.

Actually, the Haag-Kastler proposal is also consistent with renormalized perturbation theory [Brunetti & Fredenhagen 1999]

Comparison

Despite obvious differences in motivation, technical setting, etc. there exist several obvious parallels between the OPE proposed by Wilson and the ideas of AQFT proposed by Haag-Kastler

- Both frameworks emphasize algebraic relations between observables (elements of an abstract C*-algebra here, local point like quantum field there) are independent of the state and the representation. In AQFT-framework, this is because the algebras are to be "abstractly defined". In the OPE, the coefficients do not depend on state.
- <u>Both</u> frameworks emphasize (and exploit) that there is a freedom of choosing the "generators" of the algebraic structure. In OPE: field redefinitions
- <u>Neither</u> framework in principle requires Lagrangian formulation
- <u>Both</u> frameworks emphasize that "equal time" algebraic relations are unsuitable in QFT.
- Relationship between both approaches was clarified by [Bostelmann 2008]

Further developments

Haag-Kastler nets:

- Superselection structure, braid statistics, ... [Doplicher-Haag-Robers 60s-90s, Fredenhagen-Rehren-Schroer 90s, Buchholz-Fredenhagen 1982, Buchholz-Roberts 2015]
- Relationship with sub factor theory [Longo 90s-]
- Classification of conformal QFTs in d=2 [Kawahigashi, Longo, ... 00s-]
- Algebraic viewpoint extremely natural for quantum field theories formulated on curved spacetimes [Kay-Wald 1990, Radzikowski 1998, Brunetti et al. 2003,...].
- ... (this conference: Lechner, Longo, Reidei)

Operator product expansion:

- ► In 1970s, various groups [Polyakov 1974, Mack 1977, Gatto et al. 1973, Schroer et al. 1974] realize that the OPE simplifies in CFTs and associativity constraints can be turned into "conformal bootstrap" recently: numerics, see e.g. [Rychkov 2016].
- ▶ In 1980s, OPE to study conformal field theories in d = 2 [Belavin et al. 1984].
- Borcherds and others propose to formalize their ideas in the framework of Vertex Operator Algebras [Borcherds 1988]

Technical challenges of QFT

Unfortunately, if they mathematically exist, QFTs must be rather complicated presumably in <u>any</u> approach/framework.

"In those years a theoretical physicist of modest talent could harvest results of great interest, today persons of great talent produce results of modest interest" [F. Hund]

BASIC REASONS

- ► One can show quite generally that O(x) at a sharp point x is a meaningless object (probability distribution has infinite fluctuations). One must think of O(x) as operator valued distribution.
- ▶ It is not possible to identify in \mathcal{H} subspaces associated with a definite localization in *x*-space: The set of vectors $\mathcal{O}(x)|0\rangle$ as $\mathcal{O}(x)$ ranges over composite fields spans entire Hilbert space! [Reeh-Schlieder 1968]
- ▶ $\mathcal{O}(x)|0\rangle$ contains arbitrarily many particles when there is interaction \Rightarrow situation worse than in non-relativisitic N-body systems

The inherent technical complications implied by these properties have so far strongly impeded progress in establishing the mathematical existence of interesting QFTs in d = 4 dimensions.

Formulating QFT via operator product expansion

An intrinsically <u>"generally covariant" formulation of QFT</u> can be given via algebraic methods, e.g. by formulating QFT via **O**perator **P**roduct **E**xpansion [Hollands-Wald 2012]. A quantum field theory consists of:

- ► A list of quantum fields {O_A}, where A is a label (incl. tensor/spinor indices)
- A state Ψ is an expectation value functional characterized by N-point "functions" $\langle \mathcal{O}_{A_1}(x_1) \dots \mathcal{O}_{A_N}(x_N) \rangle_{\Psi}$. Such a functional should be "positive" \rightarrow probability interpretation!
- ► N-point functions should satisfy a "micro local spectrum condition"
- The OPE should hold for a wide class of states Ψ

$$\langle \mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N)\rangle_{\Psi} = \sum_B \underbrace{\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N)}_{\text{OPE coefficients}} \langle \mathcal{O}_B(x_N)\rangle_{\Psi}$$

- The OPE coefficients are independent of Ψ .
- The OPE coefficients should be generally covariant functionals of the metric $g_{\mu\nu}$.
- ► The OPE should satisfy associativity law.

Example:Free field

For a free scalar field theory in d=4 dimensions with action $\int |\partial \phi|^2$, the basic OPE relation is

$$\phi(x_1)\phi(x_2) = \frac{\lambda}{|x_1 - x_2|^2} \cdot 1$$

$$+ \phi^2(x_2) + \sum \frac{(x_1 - x_2)^{\mu_1} \dots (x_1 - x_2)^{\mu_N}}{N!} \phi \partial_{\mu_1 \dots \mu_N} \phi(x_2)$$
smooth part (0.3)

The <u>composite</u> fields such as $\mathcal{O} = \phi^2$ are <u>defined</u> by this equation. Other composite fields $\mathcal{O} = \phi^4, \phi^3 \nabla_\mu \phi, \ldots$ similarly occur in OPE of ϕ^2 , etc. Everything is constrained by <u>associativity</u>. So in this theory one has, e.g.

$$\mathcal{C}_{AB}^C = \frac{\lambda}{|x_1 - x_2|^2}$$

when $\mathcal{O}_A = \mathcal{O}_B = \phi$, $\mathcal{O}_C = 1$, etc. In <u>curved spacetime</u> the distances $|x_1 - x_2|$ in the coefficients are replaced by geometric quantities related to the theory of geodesics.

Example: Conformal field theory (CFT)

In conformal field theory (d = 4) on flat spacetime \mathbb{R}^4 , it is natural to group composite fields into "multiplets" transforming under the conformal group O(4, 2). Each multiplet contains a "primary field" \mathcal{O} , together with its "descendants", which are roughly given by $\partial_{\mu_1} \dots \partial_{\mu_N} \mathcal{O}$.

E.g. ϕ^2 is a primary field, $\phi \partial_\mu \phi$ a descendant. The OPE between two primary fields $\mathcal{O}_A, \mathcal{O}_B$ takes the form

$$\mathcal{O}_A(x_1)\mathcal{O}_B(x_2) = \sum_{\text{primary } C} \frac{\lambda_{AB}^C}{|x_1 - x_2|^{\Delta_A + \Delta_B - \Delta_C}} \mathcal{P}(x_1 - x_2, \partial)\mathcal{O}_C(x_2)$$

where $\mathcal{P} = \mathcal{P}_{AB}^{C}$ is a (pseudo-) differential operator that is determined <u>completely</u> by group theoretical considerations [Schroer & Swieca 1974]. Thus the content of the theory is determined by (i) structure constants λ_{AB}^{C} and (ii) dimensions Δ_{A} .

 $\label{eq:solution} Associativity+OS \ positivity \ put \ very \ stringent \ conditions \ on \ these \ data \rightarrow conformal \ bootstrap \ [Mack 1977, Polyakov 1974, Dolan-Osborne 2000,..., present].$

It is natural to ask:

- 1. How to compute OPE coefficients $C_{AB...}^C$ (even in principle) beyond free field or CFTs?
- 2. In what sense does associativity hold in general?
- 3. What is the magnitude of the "remainder" in the OPE (=error term)?
- 4. Can one devise an axiomatic framework for QFT in terms of OPE?

In this talk, I will give some answers to these questions.

Outline

How to construct the OPE coefficients

2 OPE factorisation

3 OPE convergence

General idea

- ► For free field theories (e.g. free scalar field theory with action $S_{CFT} = \int |\partial \phi|^2$) one can construct OPE directly by "Wick's theorem."
- ► CFTs in d = 2, one can use representation theoretic methods (Virasoro-algebra, W-algebras, current algebras, ...)
- ► For CFTs in d > 2 dimensions, one can use conformal bootstrap including its numerical versions [Polyakov, Mack, Gatto et al., ..., Rychkov et al., ...]
- Some progress has been made for lattice QFTs (numerical) [Monahan et al. 2013,2014]
- ▶ For <u>perturbations</u> of free field theories or CFTs (given intuitively by $S_{CFT} + g \int \mathcal{O}$, where \mathcal{O} is some "marginal" or "relevant" operator), one can attempt to derive a differential equation for the OPE coefficients $\mathcal{C}^D_{AB...C}$ as a function of the coupling g.
- This type of equation was found (and proved) by [Holland & Holland 2014], generalizing and correcting an earlier attempt by [Guida & Magnoli 1995].

Action principle

To write down the action principle, use graphical notation. I draw an OPE coefficient

$$\mathcal{C}^B_{A_1\dots A_n}(x_1,\dots,x_n)$$

as

I draw a concatenation of OPE coefficients

$$\mathcal{C}^B_{A_1C}(x_1, x_n)\mathcal{C}^C_{A_2\dots A_n}(x_2, \dots, x_n)$$

as

Attention: None of these diagrams is a "Feynman graph"!

1

I also write

where

- \mathcal{O} denotes the "deformation"
- $\int dy = \text{integral over } \{ |y x_n| < L \}.$
- L =length scale that is part of the definition of the theory.

Action principle

There is a kind of "action principle" for OPE coefficients if we "deform" $S_{CFT} \rightarrow S_{CFT} + g \int \mathcal{O}$:

Figure: Functional equation, left side. The tree represents a coefficient $\mathcal{C}^B_{A_1...A_n}(x_1,\ldots,x_n)$

Figure: Functional equation, right side. The composite trees represent concatenations of coefficients, e.g. the rightmost tree means $\sum_{C} C^{C}_{A_{1}...A_{n}}(x_{1},...,x_{n}) C^{B}_{\mathcal{OC}}(y,x_{n})$

Action principle

Theorem (Hollands-JH)

To any order in g:

$$\partial_g \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = -\int_{|y-x_N| < L} \mathrm{d}^4 y \left[\mathcal{C}^B_{\mathcal{O}A_1\dots A_N}(y,x_1,\dots,x_N) - \sum_{i=1}^N \sum_{[C] \le [A_i]} \mathcal{C}^C_{\mathcal{O}A_i}(y,x_i) \mathcal{C}^B_{A_1\dots \widehat{A_i} \ C\dots A_N}(x_1,\dots,x_N) - \sum_{[C] < [B]} \mathcal{C}^C_{A_1\dots A_N}(x_1,\dots,x_N) \mathcal{C}^B_{\mathcal{O}C}(y,x_N) \right].$$

- Can compute OPE coefficients to any perturbation order by iteration.
- State independence obvious.
- $L \to L'$ equivalent to

$$\mathcal{O}_A \to \mathcal{O}'_A = \sum Z^B_A(g,\tau) \cdot \mathcal{O}_B$$
 (1.4)

and $g \to g' = g(g, \tau)$. \Rightarrow RG equations! ($\tau = \log L/L' =$ RG "time").

- In φ⁴ theory (d = 4), i.e. O = −φ⁴, one can compute OPE coefficients order by order. At each order, one d⁴y-integral ⇒ at order g^r we have r integrations ⇒ similar complexity as "Feynman diagram" method. But: Renormalization "automatic".
- ▶ For Gross-Neveu model (d = 2), i.e. $\mathcal{O} = -(\bar{\psi}\psi)^2$, we have all order bounds on OPE coefficients. Series in g seems to converge [Hollands & Holland, in prep.] \Rightarrow OPE coefficients analytic functions of g!
- ► For marginal perturbations of CFTs, simplification of equation to ODE.
- For local gauge theories (e.g. YM-theory), there holds a similar action principle, supplemented by an "evolution equation" for the BRST-operator (as a function of g) [Fröb 2016]

If I assume to be given a I-parameter families of CFTs with an exactly marginal operator \mathcal{O} (i.e. $\Delta_{\mathcal{O}} = d$ in d dimensions) parameterized by g, then action principle implies an equation of the form

$$\frac{d}{dg}\lambda = f_{\mathcal{O}}^{\lambda}(\Delta,\lambda)$$

$$\frac{d}{dg}\Delta = f_{\mathcal{O}}^{\Delta}(\Delta,\lambda)$$
(1.5)

where $f_{\mathcal{O}}^{\Delta}, f_{\mathcal{O}}^{\lambda}$ are explicit (quadratic) functions that depend on 6*j*-symbols of the group O(4,2) in d = 4 (i.e. entirely group theoretic=kinematic). Here $\lambda = \{\lambda_{AB}^C(g)\}$ and $\Delta = \{\Delta_A(g)\}$ are the CFT data which are now functions of g. \mathcal{O} is the (marginal) perturbation of the CFT, which enters the functions. [Hollands, in prep.]

Outline

How to construct the OPE coefficients

2 OPE factorisation

3 OPE convergence

The OPE factorises

Theorem (Holland-SH)

In ϕ^4 -theory, any arbitrary but fixed loop order:

$$\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = \sum_C \mathcal{C}^C_{A_1\dots A_M}(x_1,\dots,x_M) \mathcal{C}^B_{CA_{M+1}\dots A_N}(x_M,\dots,x_N)$$

holds on the domain $\xi \equiv \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|} < 1$. (Sum over C abs. convergent !)

The OPE factorises

Theorem (Holland-SH)

In ϕ^4 -theory, any arbitrary but fixed loop order:

$$\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = \sum_C \mathcal{C}^C_{A_1\dots A_M}(x_1,\dots,x_M) \mathcal{C}^B_{CA_{M+1}\dots A_N}(x_M,\dots,x_N)$$

holds on the domain
$$\xi \equiv \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|} < 1$$
. (Sum over *C* abs. convergent !)

The OPE factorises

Theorem (Holland-SH)

In ϕ^4 -theory, any arbitrary but fixed loop order:

$$\mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) = \sum_C \mathcal{C}^C_{A_1\dots A_M}(x_1,\dots,x_M) \mathcal{C}^B_{CA_{M+1}\dots A_N}(x_M,\dots,x_N)$$

holds on the domain
$$\xi \equiv \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|} < 1$$
. (Sum over C abs. convergent !)

For
$$N = 3$$
: $\xi = \frac{|x_1 - x_2|}{|x_2 - x_3|} < 1$
for $\xi \ll 1$
 $x_1 \longrightarrow x_2$
for $\xi \approx 1$
 $x_1 \longrightarrow x_2$
for $\xi \approx 1$

This shows associativity really holds!

- Bound on remainder
- Justification of "action principle"

Quantitative bound

Theorem

Up to any perturbation order $r \in \mathbb{N}$ the bound

$$\begin{split} & \left| \text{Remainder in associativity} \right| \\ & \leq \frac{K_r \xi^{D+1} \max_{N \leq v < N} |x_i - x_n|^{[B]}}{\prod_{v=1}^M \min_{1 \leq w \leq M, w \neq v} |x_v - x_w|^{[A_v] + \delta} \prod_{i=M+1}^N \min_{M < j \leq N, i \neq j} |x_i - x_j|^{[A_i] + \delta}} \end{split}$$

holds for some $\delta > 0$ and where

$$\xi := \frac{\max_{1 \le i \le M} |x_i - x_M|}{\min_{M < j \le N} |x_j - x_M|}$$

and where K_r is a constant which does not depend on D. (Here $[A] = \dim$. of op. in free theory).

Outline

How to construct the OPE coefficients

2 OPE factorisation

3 OPE convergence

- Wilson proposed his expansion as an asymptotic expansion for <u>short</u> distances
- ▶ In CFTs, Mack showed convergence (in d = 4) for finite distances [Mack 1977]; for a more formal argument see also [Pappadopoulo et al. 2012]
- There is a difference between space like separation and light like separation
- For theories without conformal invariance, situation was unclear

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$,

$$\boxed{\left|\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) \mathcal{O}_B(x_N)\right) \underbrace{\hat{\varphi}(p_1)\cdots\hat{\varphi}(p_n)}_{\text{Spectator fields}}\right\rangle\right|}$$

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N},$ there exists a K>0 such that

$$\begin{split} & \overbrace{\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) \mathcal{O}_B(x_N)\right) \underbrace{\hat{\varphi}(p_1)\cdots\hat{\varphi}(p_n)}_{\text{Spectator fields}} \right\rangle \right|} \\ & \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N|\right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m,\kappa)}\right)^{(D+2)(r+5)} \end{split}$$

•
$$M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$$
 mass or renormalization scale

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\frac{\partial \text{PE-Remainder}}{\left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}_{A_1 \dots A_N}^B(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \underbrace{\hat{\varphi}(p_1) \cdots \hat{\varphi}(p_n)}_{\text{Spectator fields}} \right\rangle \right| \\
\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)} \right)^{(D+2)(r+5)}$$

•
$$M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$$
 mass or renormalization scale

• $|P| = \sup_i |p_i|$: maximal momentum of spectators

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\begin{split} \hline & \underbrace{\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \underbrace{\hat{\varphi}(p_1) \cdots \hat{\varphi}(p_n)}_{\text{Spectator fields}} \right\rangle \right|} \\ & \leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)} \right)^{(D+2)(r+5)} \end{split}$$

•
$$M = \begin{cases} m & \text{for } m > 0 \\ \mu & \text{for } m = 0 \end{cases}$$
 mass or renormalization scale

• $|P| = \sup_i |p_i|$: maximal momentum of spectators

• $\kappa := \inf(\mu, \varepsilon)$, where $\varepsilon = \min_{I \subset \{1,...,n\}} |\sum_{I} p_i|$ ε : distance of (p_1, \ldots, p_n) to "exceptional" configurations

$$\text{``OPE remainder''} \leq \frac{M^{n-1}}{\sqrt{D!}} \ \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j|^{\sum_i \dim[A_i] + 1}} \cdot \ \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n

2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \to \infty$

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m>0): Bound is finite for arbitrary p_1,\ldots,p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow \mathsf{OPE}$ converges at any finite distances!

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow \mathsf{OPE}$ converges at any finite distances!
- 4. Convergence is slow if...
 - ► |P| is large ("energy scale" of spectators)

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow \mathsf{OPE}$ converges at any finite distances!
- 4. Convergence is slow if...
 - ► |P| is large ("energy scale" of spectators)
 - maximal distance of points x_i from reference point x_N is large

"OPE remainder"
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \leq i \leq N} |x_i - x_N|\right)^{D+1}}{\min_{1 \leq i < j \leq N} |x_i - x_j| \sum_i \dim[A_i] + 1} \cdot \sup\left(1, \frac{|P|}{\sup(m, \kappa)}\right)^{(D+2)(r+5)}$$

- I. Massive fields (m > 0): Bound is finite for arbitrary p_1, \ldots, p_n
- 2. Massless fields: Bound is finite only for non-exceptional p_1, \ldots, p_n
- 3. Bound vanishes as $D \rightarrow \infty \Rightarrow \mathsf{OPE}$ converges at any finite distances!
- 4. Convergence is slow if...
 - ► |P| is large ("energy scale" of spectators)
 - maximal distance of points x_i from reference point x_N is large
 - ratio of max. and min. distances is large, e.g. for ${\cal N}=3$

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$,

$$\left|\left\langle \left(\mathcal{O}_{A_1}(x_1)\cdots\mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \leq D} \mathcal{C}^B_{A_1\dots A_N}(x_1,\dots,x_N) \mathcal{O}_B(x_N)\right) \varphi(f_1)\cdots\varphi(f_n)\right\rangle \right|$$

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D \in \mathbb{N}$, there exists a K > 0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right| \\ \le \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j|^{\sum_i \dim[A_i] + 1}} \sum_{s_1 + \dots + s_N = 0}^{(D+2)(r+5)} \prod_{i=1}^n \frac{\|\hat{f}_i\|_{\frac{s_i}{2}}}{M^{s_i}} \right)$$

M: mass for m>0 or renormalization scale μ for massless fields $\|\widehat{f}\|_s:=\sup_{p\in\mathbb{R}^4}|(p^2+M^2)^s\widehat{f}(p)|$ (Schwartz norm)

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$, there exists a K>0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right| \\ \le \frac{M^{n-1}}{\sqrt{D!}} \left| \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j|^{\sum_i \dim[A_i] + 1}} \sum_{s_1 + \dots + s_N = 0}^{(D+2)(r+5)} \prod_{i=1}^n \frac{\|\hat{f}_i\|_{\frac{s_i}{2}}}{M^{s_i}} \right|$$

M: mass for m>0 or renormalization scale μ for massless fields $\|\widehat{f}\|_s:=\sup_{p\in\mathbb{R}^4}|(p^2+M^2)^s\widehat{f}(p)|$ (Schwartz norm)

I. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$, there exists a K>0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right| \\ \le \frac{M^{n-1}}{\sqrt{D!}} \left| \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_{i \text{ dim}[A_i] + 1}} \sum_{s_1 + \dots + s_N = 0}^{(D+2)(r+5)} \prod_{i=1}^n \frac{\|\hat{f}_i\|_{\frac{s_i}{2}}}{M^{s_i}} \right|$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s:= \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

I. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution

2. Let
$$\hat{f}_i(p) = 0$$
 for $|p| > |P|$:

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$, there exists a K>0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right|$$
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \sup \left(1, \frac{|P|}{M} \right)^{(D+2)(r+5)}$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s := \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

I. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution

2. Let
$$\hat{f}_i(p) = 0$$
 for $|p| > |P|$:

Consider now smeared spectator fields $\varphi(f_i) = \int f_i(x)\varphi(x) d^4x$.

Theorem (Holland-Kopper-SH)

At any perturbation order r and for any $D\in\mathbb{N}$, there exists a K>0 such that

$$\left| \left\langle \left(\mathcal{O}_{A_1}(x_1) \cdots \mathcal{O}_{A_N}(x_N) - \sum_{\dim[B] \le D} \mathcal{C}^B_{A_1 \dots A_N}(x_1, \dots, x_N) \mathcal{O}_B(x_N) \right) \varphi(f_1) \cdots \varphi(f_n) \right\rangle \right|$$
$$\leq \frac{M^{n-1}}{\sqrt{D!}} \frac{\left(KM \max_{1 \le i \le N} |x_i - x_N| \right)^{D+1}}{\min_{1 \le i < j \le N} |x_i - x_j| \sum_i \dim[A_i] + 1} \sup \left(1, \frac{|P|}{M} \right)^{(D+2)(r+5)}$$

$$\begin{split} M: \text{ mass for } m > 0 \text{ or renormalization scale } \mu \text{ for massless fields} \\ \|\hat{f}\|_s := \sup_{p \in \mathbb{R}^4} |(p^2 + M^2)^s \hat{f}(p)| \text{ (Schwartz norm)} \end{split}$$

- 1. Bound is finite for any $f_i \in \mathcal{S}(\mathbb{R}^4)$ (Schwartz space) OPE remainder is a tempered distribution
- 2. Let $\hat{f}_i(p) = 0$ for |p| > |P|: Bound vanishes as $D \to \infty$ \Rightarrow OPE converges at any finite distances!

- I. QFT in CST is best formulated in terms of algebraic relations + states
- 2. The OPE converges at finite distances in perturbation theory.
- 3. The OPE factorises (associativity) in perturbation theory.
- 4. The OPE satisfies an action principle which is also useful for calculations

- I. QFT in CST is best formulated in terms of algebraic relations + states
- 2. The OPE converges at finite distances in perturbation theory.
- 3. The OPE factorises (associativity) in perturbation theory.
- 4. The OPE satisfies an action principle which is also useful for calculations

Possible Generalisations

- ► Gauge theories [Fröb 2016]
- Curved manifolds

- Minkowski space
- Non-perturbative constructions

...