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Introduction. Why QST

QM finitely many d. o. f.

∆q∆p & ~

positions = observables, dual to momentum;

in QFT, local observables:

A ∈ A(O);

O (double cones) - spacetime specifications, in terms of

coordinates - accessible through measurements of local

observables. Allows to formulate LOCALITY:

AB = BA
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whenever

A ∈ A(O1), B ∈ A(O2),

and

O1,O2

are spacelike separated.

RUDOLF HAAG’S FAR REACHING VIEW (mid Fifties):

CENTRAL PRINCIPLE OF QFT. Experiments: OK

at all accessible scales; Theory: in QFT OK at all

scales, ONLY if we neglect GRAVITATIONAL FORCES

BETWEEN ELEMENTARY PARTICLES.

(Rudolf’s intuition, ' 80ies: otherwise, A(O) ought to

be irreducible!)



If we DON’T neglect Gravity:

Heisenberg: localizing an event in a small region costs

energy (QM);

Einstein: energy generates a gravitational field (CGR).

QM + CGR:

PRINCIPLE OF Gravitational Stability against localization

of events [DFR, 1994, 95]:

The gravitational field generated by the concentra-

tion of energy required by the Heisenberg Uncer-

tainty Principle to localize an event in spacetime



should not be so strong to hide the event itself

to any distant observer - distant compared to the

Planck scale.

Spherically symmetric localization in space with accu-

racy a: an uncontrollable energy E of order 1/a has to

be transferred;

Schwarzschild radius R ' E

(in universal units where ~ = c = G = 1).

Hence we must have that

a & R ' 1/a;



so that

a & 1,

i.e. in CGS units

a & λP ' 1.6 · 10−33cm. (1)

(J.A.Wheeler? . . . ? FOLKLORE).

But elaborations in two significant directions are sur-

prisingly recent.



First, if we consider the energy content of a generic

quantum state where the location measurement is per-

formed, the bounds on the uncertainties should also

depend upon that energy content.

Second, if we consider generic uncertainties, the argu-

ment above suggests that they ought to be limited by

uncertainty relations.

To the first point:

background state: spherically symmetric distribution,

total energy E within a sphere of radius R, with E < R.



If we localize, in a spherically symmetric way, an event

at the origin with space accuracy a, heuristic argument

as above shows that

a & (E −R)−1

Thus, if R − E is much smaller than 1, the “minimal

distance” will be much larger than 1.

Quantum Spacetime can solve the Horizon Problem.

To the second point:

if we measure one or at most two space coordinates

with great precision a,



but the uncertainty L in another coordinates is large,

the energy 1/a may spread over a region of size L, and

generate a gravitational potential that vanishes every-

where as L→∞

(provided a, as small as we like but non zero, remains

constant).

This indicates that the ∆qµ must satisfy UNCER-

TAINTY RELATIONS.

Should be implemented by commutation relations.



QUANTUM SPACETIME.

Dependence of Uncertainty Relations, hence of Com-

mutators between coordinates, upon background quan-

tum state i.e. upon metric tensor.

CGR: Geometry ∼ Dynamics

QG: Algebra ∼ Dynamics



Quantum Minkowski Space

The Principle of Gravitational Stability against localization

of events implies :

∆q0 ·
3∑

j=1

∆qj & 1;
∑

1≤j<k≤3

∆qj∆qk & 1. (2)

Comments:

- Derived [DFR 1994 - 95] using the linearized ap-

proximation to EE,
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BUT [TV 2012]: adopting the Hoop Conjecture a stronger
form follows from an exact treatment, which applies to
a curved background as well.

[DMP 2013]: special case of spherically symmetric ex-
periments, with all spacetime uncertainties taking all
the same value, the exact semiclassical EE, without
any reference to energy, implies a MINIMAL COM-
MON VALUE of the uncertainties (of the minimal
proper length) of order of the Planck length.

STUR must be implemented by SPACETIME commu-
tation relations

[qµ, qν] = iλ2
PQµν (3)



imposing Quantum Conditions on the Qµν.

SIMPLEST solution:

[qµ, Qν,λ] = 0; (4)

QµνQ
µν = 0; (5)

((1/2) [q0, . . . , q3])2 = I, (6)

where QµνQµν is a scalar, and



[q0, . . . , q3] ≡ det

 q0 · · · q3
... . . . ...
q0 · · · q3


≡ εµνλρqµqνqλqρ =

= −(1/2)Qµν(∗Q)µν (7)

is a pseudoscalar, hence we use the square in the Quan-

tum Conditions.

Basic model of Quantum Spacetime; implements ex-

actly Space Time Uncertainty Relations and is fully

Poincaré covariant.



The classical Poincaré group acts as symmetries;

translations, in particular, act adding to each qµ a real

multiple of the identity.

The noncommutative C* algebra of Quantum Space-

time can be associated to the above relations. The

procedure [DFR] applies to more general cases.

Assuming that the qλ, Qµν are selfadjoint operators and

that the Qµν commute strongly with one another and

with the qλ, the relations above can be seen as a bundle

of Lie Algebra relations based on the joint spectrum of

the Qµν.



Regular representations are described by representa-
tions of the C* group algebra of the unique simply con-
nected Lie group associated to the corresponding Lie
algebra.

The C* algebra of Quantum Spacetime is the C* alge-
bra of a continuos field of group C* algebras based on
the spectrum of a commutative C* algebra.

In our case, that spectrum - the joint spectrum of the
Qµν - is the manifold Σ of the real valued antisymmetric
2 - tensors fulfilling the same relations as the Qµν do: a
homogeneous space of the proper orthocronous Lorentz
group, identified with the coset space of SL(2, C) mod
the subgroup of diagonal matrices. Each of those ten-
sors, can be taken to its rest frame, where the electric



and magnetic parts e, m are parallel unit vectors, by

a boost, and go back with the inverse boost, specified

by a third vector, orthogonal to those unit vectors;

thus Σ can be viewed as the tangent bundle to two

copies of the unit sphere in 3 space - its base Σ1.

Irreducible representations at a point of Σ1: Shroedinger

p, q in 2 d. o. f..

The fibers, with the condition that I is not an inde-

pendent generator but is represented by I, are the C*

algebras of the Heisenberg relations in 2 degrees of free-

dom - the algebra of all compact operators on a fixed

infinite dimensional separable Hilbert space.



The continuos field can be shown to be trivial. Thus
the C* algebra E of Quantum Spacetime is identified
with the tensor product of the continuous functions
vanishing at infinity on Σ an the algebra of compact
operators. It describes representations of the qµ which
obey the Weyl relations

eihµq
µ
eikνq

ν
= e−

i
2hµQ

µνkνei(h+k)µqµ, h, k ∈ R4.

The mathematical generalization of points are pure
states.

Optimally localized states: those minimizing

Σµ(∆ωqµ)2;



minimum = 2, reached by states concentrated on Σ1,

at each point ground state of harmonic oscillator.

(Given by an optimal localization map composed with

a probability measure on Σ1).

But to explore more thoroughly the Quantum Geometry

of Quantum Spacetime we must consider independent

events.

Quantum mechanically n independent events ought to

be described by the n − fold tensor product of E with

itself; considering arbitrary values on n we are led to

use the direct sum over all n.



If A is the C* algebra with unit over C, obtained adding

the unit to E, we will view the (n + 1) tensor power

Λn(A) of A over C as an A-bimodule with the product

in A,

a(a1 ⊗ a2 ⊗ ...⊗ an) = (aa1)⊗ a2 ⊗ ...⊗ an;

(a1 ⊗ a2 ⊗ ...⊗ an)a = a1 ⊗ a2 ⊗ ...⊗ (ana);

and the direct sum

Λ(A) =
∞⊕
n=0

Λn(A)

as the A-bimodule tensor algebra,

(a1⊗a2⊗...⊗an)(b1⊗b2⊗...⊗bm) = a1⊗a2⊗...⊗(anb1)⊗b2⊗...⊗bm.

This is the natural ambient for the universal differential



calculus, where the differential is given by

d(a0⊗· · ·⊗an) =
n∑

k=0

(−1)ka0⊗· · ·⊗ak−1⊗I⊗a⊗ · · ·⊗an.

As usual d is a graded differential, i.e., if φ ∈ Λ(A), ψ ∈
Λn(A), we have

d2 = 0;

d(φ · ψ) = (dφ) · ψ + (−1)nφ · dψ.

Note that A = Λ0(A) ⊂ Λ(A), and the d-stable subal-

gebra Ω(A) of Λ(A) generated by A is the universal

differential algebra. In other words, it is the subalgebra

generated by A and

da = I ⊗ a− a⊗ I

as a varies in A.



In the case of n independent events one is led to de-
scribe the spacetime coordinates of the j − th event by
qj = I ⊗ ...⊗ I ⊗ q⊗ I...⊗ I (q in the j - th place); in this
way, the commutator between the different spacetime
components of the qj would depend on j.

A better choice is to require that it does not; this
is achieved as follows.

The centre Z of the multiplier algebra of E is the algebra
of all bounded continuos complex functions on Σ; so
that E, and hence A, is in an obvious way a Z−bimodule.

We therefore can, and will, replace, in the definition of
Λ(A), the C - tensor product by the Z−bimodule−tensor
product so that



dQ = 0.

As a consequence, the qj and the 2−1/2(qj − qk), j dif-
ferent from k, and 2−1/2dq, obey the same space-
time commutation relations, as does the normalized
barycenter coordinates, n−1/2(q1+q2+ ...+qn); and the
latter commutes with the difference coordinates.

These facts allow us to define a quantum diagonal map

from Λn(E) to E1 (the restriction to Σ1 of E),

E(n) : E ⊗Z · · · ⊗Z E −→ E1

which factors to that restriction map and a conditional
expectation which leaves the functions of the barycen-
ter coordinates alone, and evaluates on functions of the



difference variables the universal optimally localized map
(which, when composed with a probability measure on
Σ1, would give the generic optimally localized state).

Replacing the classical diagonal evaluation of a function
of n arguments on Minkowski space by the quantum

diagonal map allows us to define the Quantum Wick

Product.

But working in Ω(A) as a subspace of Λ(A) allows us
to use two structures:

- the tensor algebra structure described above, where
both the A bimodule and the Z bimodule structures en-
ter, essential for our reduced universal differential cal-
culus;



- the pre - C* algebra structure of Λ(A), which allows

us to consider, for each element a of Λn(A), its modulus

(a∗a)1/2, its spectrum, and so on.

In particular we can study the geometric operators: sep-

aration between two independent events, area, 3 - vol-

ume, 4 - volume, given by



dq;

dq ∧ dq;

dq ∧ dq ∧ dq;

dq ∧ dq ∧ dq ∧ dq,

where, for instance, the latter is given by

V = dq ∧ dq ∧ dq ∧ dq =

εµνρσdq
µdqνdqρdqσ.



Each of these forms has a number of spacetime com-
ponents:

e.g. 4 the first one (a vector), 1 the last one (a pseu-
doscalar).

Each component is a normal operator;

THEOREM

For each of these forms, the sum of the square mod-
uli of all spacetime components is bounded below
by a multiple of the identity of unit order of mag-
nitude.

Although that sum is (except for the 4 - volume!)
NOT Lorentz invariant, the bound holds in any Lorentz
frame.



In particular,

- the four volume operator has pure point spectrum, at
distance 51/2 − 2 from 0;

- the Euclidean distance between two independent events
has a lower bound of order one in Planck units.

Two distinct points can never merge to a point.

However, of course, the state where the minimum is
achieved will depend upon the reference frame where
the requirement is formulated.

(The structure of length, area and volume operators on
QST has been studied in full detail [BDFP 2011]).



Thus the existence of a minimal length is not at all in

contradiction with the Lorentz covariance of the model.

In the C* algebra E of Quantum Spacetime, define

[DFR 1995]:

- the von Neumann functional calculus: for each

f ∈ FL1(R4) the function f(q) of the quantum co-

ordinates qµ is given by

f(q) ≡
∫
f̌(α)eiqµα

µ
d4α ,

- the integral over the whole space and over 3 -



space at q0 = t by∫
d4qf(q) ≡

∫
f(x)d4x = f̌(0) = Trf(q),∫

q0=t
f(q)d3q ≡

∫
eik0tf̌(k0, ~0)dk0 =

= lim
m
Tr(fm(q)∗f(q)fm(q))),

where the trace is the ordinary trace at each point of
the joint spectrum Σ of the commutators, i.e. a Z
valued trace.

But on more general elements of our algebra both maps
give Q - dependent results.

Important to define the interaction Hamiltonian to be
used in the Gell’Mann Low formula for the S - Matrix.



Current investigations (D. Bahns, K. Fredenhagen, G.

Piacitelli, S.D.) concern models of QST where the al-

gebra of the commutators [q, q] is not central or not

even abelian.



QFT on QST

The geometry of Quantum Spacetime and the free
field theories on it are fully Poincaré covariant.

One can introduce interactions in different ways, all
preserving spacetime translation and space rotation co-
variance, all equivalent on ordinary Minkowski space,
providing inequivalent approaches on QST; but all of
them, sooner or later, meet problems with Lorentz
covariance, apparently due to the nontrivial action of
the Lorentz group on the centre of the algebra of Quan-
tum Spacetime.

On this points in our opinion a deeper understanding is
needed.
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For instance, the interaction Hamiltonian on quantum

spacetime

HI(t) = λ
∫
q0=t

d3q : φ(q)n :

would be Q - dependent; no invariant probability

measure or mean on Σ; integrating on Σ1 [DFR 1995]

breaks Lorentz invariance.

Covariance is preserved by Yang Feldmann equations

but missed again at the level of scattering theory.

The Quantum Wick product selects a special frame

from the start. The interaction Hamiltonian on the

quantum spacetime is then given by



HI(t) = λ
∫
q0=t

d3q : φ(q)n :Q

where

: φn(q) :Q= E(n)(: φ(q1) · · ·φ(qn) :)

which does not depend on Q any longer, but brakes

Lorentz invariance at an earlier stage

The last mentioned approach takes into account, in the

very definition of Wick products, the fact that in our

Quantum Spacetime n (larger or equal to two) distinct

points can never merge to a point. But we can use the

canonical quantum diagonal map which associates to

functions of n independent points a function of a single



point, evaluating a conditional expectation which on
functions of the differences takes a numerical value,
associated with the minimum of the Euclidean distance
(in a given Lorentz frame!).

The “Quantum Wick Product” obtained by this
procedure leads to an interaction Hamiltonian on the
quantum spacetime given by as a constant operator–
valued function of Σ1 (i.e. HI(t) is formally in the
tensor product of C(Σ1) with the algebra of field oper-
ators).

The interaction Hamiltonian on the quantum spacetime
is then given by

HI(t) = λ
∫
q0=t

d3q : φ(q)n :Q



This leads to a unique prescription for the interaction

Hamiltonian on quantum spacetime. When used in the

Gell’Mann Low perturbative expansion for the S - Ma-

trix, this gives the same result as the effective non

local Hamiltonian determined by the kernel

exp

{
−

1

2

∑
j,µ

a
µ
j

2
}
δ(4)

(
1

n

n∑
j=1

aj

)
.

The corresponding perturbative Gell’Mann Low formula

is then free of ultraviolet divergences at each term

of the perturbation expansion [BDFP 2003] .

However, those terms have a meaning only after a sort

of adiabatic cutoff: the coupling constant should be

changed to a function of time, rapidly vanishing at in-

finity, say depending upon a cutoff time T.



But the limit T →∞ is difficult problem, and there are

indications it does not exist.

A major open problems is the following.

Suppose we apply this construction to the renormal-

ized Lagrangean of a theory which is renormalizable on

the ordinary Minkowski space, with the counter terms

defined by that ordinary theory, and with finite renor-

malization constants depending upon both the Planck

length λP and the cutoff time T .

Can we find a natural dependence such that in the limit

λP → 0 and T →∞ we get back the ordinary renormal-

ized Gell-Mann Low expansion on Minkowski space?



This should depend upon a suitable way of performing a

joint limit, which hopefully yields, for the physical value

of λP , to a result which is essentially independent of

T within wide margins of variation; in that case, that

result could be taken as source of predictions to be

compared with observations.



Comments on QST and cosmology

Heuristic argument we started with: commutators be-

tween coordinates ought to depend on gµ,ν; scenario:

Rµ,ν − (1/2)Rgµ,ν = 8πTµ,ν(ψ);

Fg(ψ) = 0;

[qµ, qν] = iQµ,ν(g);

Algebra is Dynamics.

Expect: dynamical minimal length.
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In particular, divergent near singularities. Would solve

Horizon Problem, without inflationary hypothesis.

How solid are these heuristic arguments?

Exact semiclassical EE, spherically simmetric case: min-

imal proper length is at least λP [DMP, 2013].

Suggests:

massless scalar field semiclassical coupling with gravity;

use Quantum Wick product to define Energy - Momen-

tum Tensor Tµ,νQ (q);



Exact EE with source ω⊗ηx(Tµ,νQ (q)), where ω is a KMS

state and ηx is a state on E optimally localized at x;

these simplifying ansaetze imply a solution describing

spacetime without the horizon problem [DMP 2013].

Near the Big Bang every pair of points were in causal

contact, as indicated by the heuristic argument that the

range of a-causal effects should diverge.

Work in progress (Morsella, Piacitelli, Pinamonti, Tomassini,

. . . , SD): search better grounds for the use of the

Quantum Wick Product on curved spacetime.

Also: possible emergence of an effective inflationary

potential as an effect of Quantum Spacetime.



Problem of the Cosmological Constant.

These would be new explanations of known scenarios.

Any new phenomenon?



QST: where to look for its shadows?

Not Lorentz violations, unless physical reasons impose

them in special frames (rest system of CMB?).

But:

- Free Classical Electromagnetic Fields are not free on

QST;

(discussions with Klaus Fredenhagen, mid nineties: en-

ergy loss passing a partially reflecting mirror evaluated

to a fraction 10−130).
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- Neutral particles are not free of em interactions

on QST.

Indeed this scenario was independently studied by other

Authors:

R. Horvat, D. Kekez, P. Schupp, J. Trampetic, J. You:

”Photon-neutrino interaction in theta-exact covariant

noncommutative field theory” arXiv:1103.3383

Work in progress with Klaus Fredenhagen, Gerardo

Morsella and Nicola Pinamonti:

- Is Dark Matter really dark? A pale quantum - gravi-

tational moonshine might be possible.



On QST a U(1) Gauge theory becomes a U(∞) theory,

with gauge group (at each point of Σ) U(CI +K), and

neutral scalar fields are no longer gauge invariant, i.e.

em interaction does not vanish: covariant derivative:

Dµϕ(q) := ∂µϕ(q)− ie[Aµ(q), ϕ(q)], (8)

yields to a minimal interaction where a constant mag-

netic field B couples to a scalar neutral field as

LI =
e

2
εjkhB

jQkµ({∂µφ(q), ∂hφ(q)}.



Remark: other choices of the covariant derivative must
be possible - problem of the fractional charge of Quarks.

The expectation value of the right hand side in a state
Φ can be used as an indication of the order of magni-
tude of the magnetic moment of neutral matter in that
state, arising from QST.

Choose a constant magnetic field along the third axis
and specialize to a point in the spectrum of the Q ’s,
where e = m = e1. The above term corresponds to the
energy density of a magnetic moment with components

Mj = (e/2)λ2
P

∫
q0=t

d3q

[
1

2
({∂l, ∂l}jk − {∂j, ∂k})−jkh {∂0, ∂

h}
]
ek,



whose expectation value in a state Φ can be written as

(Φ,MjΦ) = (e/2)λ2
PΛj,

and can be used to give order of magnitudes. In a state

Φ which describes a precession of the magnetic moment

m with angular speed ω, according to Classical Maxwell

Theory, the electromagnetic energy radiated per unit

time is given by

(2/3)c−3ω4m2,

so that in our case, neglecting constants of order one

and setting c = 1, it would be



dE/dt = e2(λPω)4Λ2 = e2(τP/T )4Λ2

where Λ2 = Λ2
1+Λ2

2+Λ2
3, and T is the revolution period

of the precession.

What if Φ describes an astrophysical object composed

of dark matter, in rapid precession, as in the collapse

of a binary system?

This might possibly give a seizable effect if T were of

Planckian order, which would probably mean that our

object collapsed into a black hole and no radiation is

visible.



Can otherwise Λ be large enough? A reasonable com-
putation in significant situations, e.g. of fast rotating
binary systems of dark matter stellar objects, would be
quite interesting.

We fit numbers suggested by the GW150914 event.

For an object of the size of our sun and water density,
composed of particles of mass = 1GeV , T = 10−2sec,
R = 103km, a very rough estimate suggests that the
fraction of the total energy which is emitted per second
as electromagnetic radiation is of the order of

10−89.

However, recall: QST suggests that near singularities
the effective Planck length might diverge.



Results in [DMP 2013] mean in particular that in a

flat Friedmann- Robertson-Walker (FRW) background

(which is spherically symmetric with respect to every

point), with metric, in spatial spherical coordinates,

ds2 = −dt2 + a(t)2[dr2 + r2dS2], the size of a locali-

sation region centered around an event at cosmological

time t, measured by the radial coordinate r, must be

at least of order λPa(0)/a(t) (EFFECTIVE PLANCK

LENGTH).

Could this make the em radiation, caused by the mag-

netic moment of neutral matter, considerably larger?

Note that the metric of a collapsing homogenous sphere

of dust is given by the Oppenheimer-Snyder solution,



which is a Schwarzschild metric outside the sphere,

matched with a closed FRW metric inside.

This continuous match makes our antsatz less arbitrary.

In other words λP is replaced by λPa(0)/a(t), and a

rough estimate of the total energy Er radiated by a

neutral object precessing in the gravitational field of a

collapsing object (as might be the case of some binary

systems) would be given by the integral

Er =
∫ collapse
−∞

e2(τPa(0)/T (t)a(t))4Λ2dt

where:



1. We first have to average over Σ1.

2. The time integration extends to the time when the
second object is trapped within the event horizon of the
first.

For, the em radiation emitted later would not reach
distant observers.

As an indication we can extend the integration to the
time when the radius of the collapsing object becomes
the Schwarzschild radius.

3. The time dependence of T should take into account
the energy emitted by the precessing object, at the cost
of its kinetic energy.



4. Eventually, recalling that initially the metric is the

Friedman Robertson Walker metric describing the inte-

rior of a collapsing star, we set a(0) =
√
R3

0/2GM .

With M the ADM mass of the collapsing sphere, R0 ≥
2M the initial areal radius, the mass of the precessing

object ' M , taking into account the smallness of λ4
P ,

we obtain for the total radiated energy

E ' e2(λPa(0))4M2R2ω6
0

(
2GM

R3
0

)3/2

F (η2M),

where

η2M = cos−1(4GM/R0 − 1)



is the conformal time at which the sphere is completely

inside its Schwarzschild radius, and

F (η) :=
∫ η

0

dx

(1 + cosx)3
=

sin η(6 cos η + cos(2η) + 8)

15(1 + cos η)3
.

Thus we see that for 2GM/R0 = 1, F (η2M) vanishes,

as it should, since the collapse takes place at the be-

ginning.

If 2GM/R0 is smaller than 1 but of that order, then

F (η2M) is also of the same order. We take

M 'M0 ' 1056GeV = 1037MP ' E0,



R0 = 4GM ' 1037M−1
P ' 10−1 km,

so that, assuming again

R ' 103km ' 1041M−1
P

T ' 10−2s ' 1042τP ,

we get

E ' 10−96E0 ' 10−40GeV,



i.e. the same order of magnitude as the previous rough
estimate per unit time, if we take into account the time
duration, ' 10−7sec.

No indication of visible effects so far!

Possible moral: the effects of Quantum Spacetime,
even at astrophysical scales, become relevant only when
hidden within an event horizon, hence not accessible to
observations. Only signatures: those maybe left in

the Big Bang.

BUT:

* Here GR corrections to the emission of em radia-
tion by a precessing magnetic moment have NOT been



studied. Also quantum corrections might well be im-
portant.

As mentioned, ω is NOT constant: the radiation is
emitted at the cost of

- kinetic energy (rotation, precession, revolution); mak-
ing ω(t) decreasing;

but also of:

- energy in the gravitational field of the companion ob-
ject; making ω(t) increasing;

(to be computed; no significant corrections may be ex-
pected);



Other possibilities / aspects:

* A massive fast rotating astrophysical object of

dark matter might hide a distant source both of

photons and of charged particles; the latter be-

yond the gravitational deflection would feel the

magnetic field due to the moment we discussed

here, as the electrons causing northern light near

the earth pole. This different behaviour might be

a signature of QST.

* Self gravitating Bose - Einstein Condensates of

NEUTRAL scalar particles (high density and high

angular momentum)?



* Comparison with graviton mediated em interac-

tion?

* Comparison with Hawking radiation?

(DFMP, work in project).

HOWEVER x ray emission from the BH at the

center of the Milky way already points to a similar

scenario:





Warning: Quantum effects at Planck scale result from

extrapolation of EE to that scale.

But: Newton’s law is experimentally checked only for

distances not less than .01 centimeter! (Adelberger

et al, 2003, 2004), i.e. we are extrapolating 31 steps

down in base 10 - log scale; while the size of the

known universe is ”only” 28 steps up.
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