Feynman Propagators in a Functional Analytic Setting

Daniel Siemssen, Bergische Universität Wuppertal Joint work with Jan Dereziński (University of Warsaw)

Introduction

Klein-Gordon operator (on half-densities):

Lorentzian metric
$$K:=|g|^{-\frac{1}{4}}\left(-\mathrm{i}\partial_{\mu}-A_{\mu}\right)g^{\mu\nu}\,|g|^{\frac{1}{2}}\left(-\mathrm{i}\partial_{\nu}-A_{\mu}\right)|g|^{-\frac{1}{4}}+\mathsf{Y}$$
 electromagnetic potential scalar potential

Questions

- 1. Is K essentially self-adjoint on $C_c^{\infty}(M)$ with respect to $L^2(M)$?
- 2. Does the **resolvent limit** $\lim_{\epsilon \to 0^+} (K i\epsilon)^{-1}$ exist (in some sense)?

Answer for static spacetimes [Dereziński-Siemssen '17]

eylf (M, g) is standard static and globally hyperbolic, then K is essen-

Motivation – "I never claimed that this is interesting"

- Natural questions for any partial differential operator
- Powerful functional calculus for self-adjoint operators
- · Make rigorous sense of heat kernel methods

$$(K - i0^+)^{-1} = i \int_0^\infty e^{-is(K - i0^+)} ds$$

to define in-out Feynman propagators [Schwinger '51, DeWitt '65, DeWitt '75, Rumpf–Urbantka '78, Rumpf '80]

Lorentzian spectral geometry? (see also [Bär–Strohmaier '15])

Recent results

Fredholm properties ...

- ... for the wave operator in asymptotically flat spacetimes
 [Gell-Redman–Haber–Vasy '16]
- ... for the Klein–Gordon operator in asymptotically flat spacetimes [Gérard–Wrochna '16]

Self-adjointness and limiting absorption principle ...

- ... for the Klein–Gordon operator in static spacetimes [Dereziński–Siemssen '17]
- ... for the wave operator in asymptotically flat spacetimes [Vasy '17]

Methods and Formalism

Hamiltonian formalism

Suppose, for example, that $M = \mathbf{R} \times \Sigma$ with metric

$$g = -\,\mathrm{d}t^2 + g_\Sigma$$

 $g_{\scriptscriptstyle \Sigma}(t)$ restricts to Riemannian metric on Σ

Introduce
$$B(t) := \begin{pmatrix} W(t) & 1 \\ L(t) & \overline{W}(t) \end{pmatrix}$$
 $W := -A_0 + \frac{i}{4}|g|^{-1}\partial_t|g|$
 $L := |g|^{\frac{1}{4}}(-i\partial_i - A_i)g^{ij}|g|^{\frac{1}{2}}(-i\partial_j - A_j)|g|^{-\frac{1}{4}} + Y$

Note that
$$(\partial_t + iB) \begin{pmatrix} u \\ (\partial_t + iW)u \end{pmatrix} = \begin{pmatrix} 0 \\ Ku \end{pmatrix}$$

Generator

 \mathcal{H}_{en} , \mathcal{H}_{en^*} are **Hilbertizable spaces** such that $\mathcal{H}_{en} \subset \mathcal{H}_{en^*}$ continuously.

Introduce a bounded Hermitian form, the charge form,

$$\mathcal{H}_{en} \times \mathcal{H}_{en^*} \ni (u, v) \mapsto (u|Qv) \in \mathbf{C}$$

Suppose that B(t) is **bounded and invertible** from \mathcal{H}_{en} to \mathcal{H}_{en^*} such that

$$(u|v)_{en,t} := (B(t)u|Qv) = (u|QB(t)v)$$

 $(u|v)_{en^*,t} := (B(t)^{-1}u|Qv) = (u|QB(t)^{-1}v)$

are compatible with \mathcal{H}_{en} , \mathcal{H}_{en^*} . This yields **Hilbert spaces** $\mathcal{H}_{en,t}$, $\mathcal{H}_{en^*,t}$.

B(t) is a **self-adjoint** operator on $\mathcal{H}_{\mathsf{en}^*,t}$ with domain $\mathcal{H}_{\mathsf{en}}$.

Scales of Hilbert spaces

We can construct a whole scale of Hilbert spaces:

$$\mathcal{H}_{a,t} := |B(t)|^{(1-\alpha)/2} \mathcal{H}_{en,t} = |B(t)|^{(-1-\alpha)/2} \mathcal{H}_{en^*,t}$$
$$(u|v)_{a,t} := (u||B(t)|^{-1+\alpha}v)_{en,t} = (u||B(t)|^{1+\alpha}v)_{en^*,t}$$

For $\alpha \in [-1, 1]$ their topology is independent of t.

The central space is $\mathcal{H}_{dyn,t} = \mathcal{H}_{0,t}$. We call it the **dynamical space**, and denote the corresponding Hilbertizable space \mathcal{H}_{dyn} .

The charge form is best understood on the dynamical space:

$$\mathcal{H}_{dyn} \times \mathcal{H}_{dyn} \ni (u, v) \mapsto (u|Qv) \in \mathbf{C}$$

Dynamics

Suppose that $t \mapsto B(t)$ is continuous in $B(\mathcal{H}_{en}, \mathcal{H}_{en^*})$ and

$$||u||_{\mathrm{en},s} \leq ||u||_{\mathrm{en},t} \exp \left| \int_{s}^{t} C(r) \, \mathrm{d}r \right| \quad \text{with} \quad C \in L^{1}_{\mathrm{loc}}(\mathbf{R}), C \geq 0.$$

We apply the theory of **non-autonomous evolution equations** to find:

Theorem

There is a unique family of bounded operators $\{R(t,s)\}_{s,t\in\mathbb{R}}$ in \mathcal{H}_{en^*} with the following properties (among several others):

- 1) R(t,t) = 1, R(t,r)R(r,s) = R(t,s)
- 2) $R(t,s)\mathcal{H}_{en} \subset \mathcal{H}_{en}$
- 3) $i\partial_t R(t,s)u = +B(t)R(t,s)u$ for $u \in \mathcal{H}_{en}$
- 4) $i\partial_s R(t,s)u = -R(t,s)B(s)u$ for $u \in \mathcal{H}_{en}$

Classical propagators

Given R(t, s), we can write the **kernels for the classical propagators**:

$$E^{PJ}(t,s) := R(t,s)$$
 (Pauli–Jordan propagator)
 $E^{\vee}(t,s) := \theta(t-s)R(t,s)$ (retarded propagator)
 $E^{\wedge}(t,s) := -\theta(s-t)R(t,s)$ (advanced propagator)

The corresponding propagators are given by

$$(E^{\bullet}f)(t) = \int_{\mathbf{R}} E^{\bullet}(t,s)f(s) \, \mathrm{d}s$$

They can be understood as **bisolutions** resp. **inverses** between various spaces. For example,

$$(\partial_t + iB)E^{PJ}f = 0, \quad f \in L^1_c(\mathbf{R}; \mathcal{H}_{en})$$

 $E^{PJ}(\partial_t + iB)f = 0, \quad f \in L^1_c(\mathbf{R}; \mathcal{H}_{en}) \cap AC_c(\mathbf{R}; \mathcal{H}_{en^*})$

Involutions

We call S an **admissible involution** if $S^2 = 1$ and

$$(u|v)_S = (u|QSv) = (Su|Qv)$$

defines a scalar product compatible with \mathcal{H}_{dyn} .

Note that, to each S are associated two projections

$$\Pi^{(\pm)} := \frac{1}{2} (\mathbf{1} \pm S)$$

An example of an admissible involution is

$$S(t) = \operatorname{sgn} B(t) = B(t)|B(t)|^{-1}$$

The corresponding projections are $\Pi_t^{(\pm)} = \mathbf{1}_{[0,\infty)}(\pm B(t))$

Non-classical propagators

Given R(t, s), an admissible involution S and any $\tau \in \mathbf{R}$, we can write **kernels for non-classical propagators**:

$$E_{\tau}^{(+)}(t,s) := R(t,\tau)\Pi^{(+)}R(\tau,s) \qquad \text{(positive frequency bisol.)}$$

$$E_{\tau}^{(-)}(t,s) := -R(t,\tau)\Pi^{(-)}R(\tau,s) \qquad \text{(negative frequency bisol.)}$$

$$E_{\tau}^{F}(t,s) := \theta(t-s)E_{\tau}^{(+)}(t,s) + \theta(s-t)E_{\tau}^{(-)}(t,s) \qquad \text{(Feynman propagator)}$$

$$E_{\tau}^{F}(t,s) := \theta(t-s)E_{\tau}^{(-)}(t,s) + \theta(s-t)E_{\tau}^{(+)}(t,s) \qquad \text{(anti-Feynman propagator)}$$

Again, they can be understood as **bisolutions** resp. **inverses** between various spaces. Moreover, the following relations hold

$$\begin{split} E^{\mathsf{F}}_{\tau} &= E^{\wedge} + E^{(+)}_{\tau} = E^{\vee} + E^{(-)}_{\tau}, & E^{\mathsf{F}}_{\tau} + E^{\overline{\mathsf{F}}}_{\tau} &= E^{\vee} + E^{\wedge}, & E^{(+)}_{\tau} - E^{(-)}_{\tau} &= E^{\mathsf{PJ}}, \\ E^{\overline{\mathsf{F}}}_{\tau} &= E^{\vee} - E^{(+)}_{\tau} &= E^{\wedge} - E^{(-)}_{\tau}, & E^{\mathsf{F}}_{\tau} - E^{\overline{\mathsf{F}}}_{\tau} &= E^{(+)}_{\tau} + E^{(-)}_{\tau} & E^{\vee} - E^{\wedge} &= E^{\mathsf{PJ}}. \end{split}$$

Pairs of projections

Theorem

Let $\Pi_1^{(+)}$, $\Pi_2^{(+)}$ be **projections** on \mathcal{H} . Set $\Pi_{\bullet}^{(-)} = \mathbf{1} - \Pi_{\bullet}^{(+)}$. Suppose that

$$Y = 1 - (\Pi_1^{(+)} - \Pi_2^{(+)})^2$$

is **invertible**. Then Ran $\Pi_1^{(+)}$ and Ran $\Pi_2^{(-)}$ are **complementary**, i.e.

$$\operatorname{Ran} \Pi_1^{(+)} \cap \operatorname{Ran} \Pi_2^{(-)} = \{0\}, \quad \operatorname{Ran} \Pi_1^{(+)} + \operatorname{Ran} \Pi_2^{(-)} = \mathcal{H}.$$

Moreover,

$$\Lambda^{(+)} = \Pi_1^{(+)} Y^{-1} \Pi_2^{(+)} \qquad \text{(projection onto Ran } \Pi_1^{(+)} \text{ along Ran } \Pi_2^{(-)})$$

$$\Lambda^{(-)} = \Pi_2^{(-)} \Upsilon^{-1} \Pi_1^{(-)}$$
 (projection onto Ran $\Pi_2^{(-)}$ along Ran $\Pi_1^{(+)}$) are **complementary projections**, i.e. $\Lambda^{(+)} + \Lambda^{(-)} = 1$.

Daniel Siemssen, Bergische Universität Wuppertal Feynman Propagators in a Functional Analytic Setting

Pairs of admissible involutions

Theorem

Let S_1 , S_2 be **admissible involutions** (with associated projections $\Pi_{\bullet}^{(\pm)}$). Then $\Upsilon = \mathbf{1} - (\Pi_1^{(+)} - \Pi_2^{(+)})^2$ is **invertible**.

Proof. First we prove the identity $Y = (\Pi_1^{(-)} + \Pi_2^{(+)})(\Pi_2^{(-)} + \Pi_1^{(+)})$. Next we set

$$c = \Pi_1^{(+)} (\mathbf{1} - S_2 S_1) (\mathbf{1} + S_2 S_1)^{-1} \Pi_1^{(-)}$$

and show that $||c||_{S_1} < 1$. Wrt. the decomposition $\mathcal{H}_{dyn} = \operatorname{Ran} \Pi_1^{(+)} \oplus \operatorname{Ran} \Pi_1^{(-)}$ we find

$$\Pi_1^{(-)} = \begin{pmatrix} 0 & 0 \\ 0 & 1 \end{pmatrix}, \quad \Pi_2^{(+)} = \begin{pmatrix} (1 - cc^*)^{-1} & c(1 - c^*c)^{-1} \\ -c^*(1 - cc^*)^{-1} & -c^*c(1 - c^*c)^{-1} \end{pmatrix}.$$

Therefore we can directly compute the inverse:

$$\left(\Pi_1^{(-)} + \Pi_2^{(+)}\right)^{-1} = \begin{pmatrix} 1 - 2cc^* & -c \\ c^* & 1 \end{pmatrix}.$$

In/out positive/negative frequency bisolutions

Fix two times $t_+, t_- \in \mathbf{R}$ and define (admissible involutions)

$$S_{\pm} := \operatorname{sgn} B(t_{\pm}) = B(t_{\pm})|B(t_{\pm})|^{-1}$$

We define time-evolved projections

$$\Pi_{\pm}^{(+)}(t) := R(t, t_{\pm}) \Pi_{\pm}^{(+)} R(t_{\pm}, t)$$

$$\Pi_{\pm}^{(-)}(t) := R(t, t_{\pm}) \Pi_{\pm}^{(-)} R(t_{\pm}, t)$$

From this we can define in/out positive/negative frequency bisolutions:

$$E_{\pm}^{(+)}(t,s) := R(t,s)\Pi_{\pm}^{(+)}(s)$$

$$E_{\pm}^{(-)}(t,s) := -R(t,t_{\pm})\Pi_{\pm}^{(-)}(s)$$

Often one would take the limit $t_+ \to \pm \infty$.

In-out Feynman propagator

Since
$$Y(t) = 1 - (\Pi_{-}^{(+)}(t) - \Pi_{+}^{(+)}(t))^2$$
 is invertible, we obtain

$$\Lambda^{(+)}(t) := \Pi_{-}^{(+)}(t) \Upsilon(t)^{-1} \Pi_{+}^{(+)}(t)$$

$$\Lambda^{(-)}(t) := \Pi_+^{(-)}(t) \Upsilon(t)^{-1} \Pi_-^{(-)}(t)$$

Therefore we can define the in-out Feynman propagator

$$E^{\mathsf{F}}(t,s) := \theta(t-s)R(t,s)\Lambda^{(+)}(s) + \theta(s-t)R(t,s)\Lambda^{(-)}(s)$$

NB: This Feynman propagator is generally not associated to a single state!

Taking the limit $t_{\pm} \to \pm \infty$, we **conjecture** that this kernel yields the same Feynman propagator as obtained from the resolvent limit (if it exists).

Proving the conjecture?

Summary

- The Klein–Gordon operator is essentially self-adjoint in many cases
- · The resolvent limit yields a 'distinguished' Feynman propagator
- In cases were the Klein–Gordon operator is not essentially self-adjoint, maybe one can construct a distinguished self-adjoint extension