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Introduction

Klein—-Gordon operator (on half-densities):

/- Lorentzian metric

= |g|_% (_iau - Au)gyv |g|% (_iav - Au) |g|_% +Y

K:
electromagnetic potential Z\/

scalar potential

1. Is K essentially self-adjoint on C°(M) with respect to L2(M)?

2. Does the resolvent limit lim (K — ie)™" exist (in some sense)?
e->0*

Answerfor static spacetlmes [Derezinski-Siemssen "17]

eyWTW°‘§i7 %’Sé”té%‘ﬁ??ﬂ @'Féf‘fic Seé'ﬁ%i globally hyperbolic, then K is essen-




Motivation - “I never claimed that this is interesting”

+ Natural questions for any partial differential operator
+ Powerful functional calculus for self-adjoint operators

+ Make rigorous sense of heat kernel methods
(K-i0*)" =i / " gislk-i0) g
0

to define in-out Feynman propagators [Schwinger ‘51, DeWitt ‘65,
DeWitt '75, Rumpf-Urbantka '78, Rumpf '80]

+ Lorentzian spectral geometry? (see also [Bar-Strohmaier "15])
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Recent results

Fredholm properties ...

« ... for the wave operator in asymptotically flat spacetimes
[Gell-Redman-Haber-Vasy "16]

+ ... for the Klein—-Gordon operator in asymptotically flat spacetimes
[Gérard-Wrochna "16]

Self-adjointness and limiting absorption principle ...

+ ... for the Klein-Gordon operator in static spacetimes
[Derezinski-Siemssen "17]

+ ... for the wave operator in asymptotically flat spacetimes [Vasy '17]
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Methods and Formalism



Hamiltonian formalism

Suppose, for example, that M = R x X with metric
g=-df +g;s

gs(t) restricts to Riemannian metric on ¥ /

iy
W(t 1 W:=—As + 21g| 9:|g|
Introduce B(t) ::( (o) ) 1 4 i 1
0 L:=|g|*(~id; = A))g”gl*(~i9; = A))lg|"* +Y

Note that (9, +iB) ((a +uiW)u) - (l?u)
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Generator

Hen, Hen* are Hilbertizable spaces such that He, C Hen* continuously.
Introduce a bounded Hermitian form, the charge form,

Hen X Hen* 2 (u,v) & (u|Qv) € C
Suppose that B(t) is bounded and invertible from ¢, to Hen* such that

(ulV)en, = (B(t)u|Qv) = (u|QB(t)v)
(ulV)ene ¢ == (B(t)'ulQv) = (ulQB(t)™'v)

are compatible with Hep,, Hen+. This yields Hilbert spaces Hep, t, Hen* t-
B(t) is a self-adjoint operator on He,+ ; with domain Hep,.
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Scales of Hilbert spaces

We can construct a whole scale of Hilbert spaces:

Ha,t = |B(t)|(1_a)/2Hen,t = |B(t)|(_1_a)/2Hen*,t
(ulV)a,e = (ulIB(E)] TV )en,e = (UllB(E)™V)ent ¢

For a € [-1,1] their topology is independent of t.

The central space is Hgyn,: = Ho,r. We call it the dynamical space, and
denote the corresponding Hilbertizable space Hgyp.

The charge form is best understood on the dynamical space:

Hayn X Hayn 2 (u,v) » (u|Qv) € C
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Dynamics

Suppose that t = B(t) is continuous in B(Hepn, Hen*) and

/:C(r)dr

We apply the theory of non-autonomous evolution equations to find:

There is a unique family of bounded operators {R(t, 5)}s ter in Hen* With
the following properties (among several others):

1) R(t, t) =1, R(t,r)R(r,s) = R(t,s)

2) R(t,s)Hen C Hen

3) i0:R(t,s)u = +B(t)R(t, s)u for u € Hep
4) i94R(t, s)u = —R(t,s)B(s)u for u € Hen

with C el

loc

(R),C=0.

”u”ens = ”u”entexp
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Classical propagators

Given R(t, s), we can write the kernels for the classical propagators:

EP(t,s) := R(t,s) (Pauli-Jordan propagator)
EV(t,s) := O(t — s)R(t,s) (retarded propagator)
E™(t,s) := —0(s — t)R(t, s) (advanced propagator)

The corresponding propagators are given by

(E*F) (1) = /R E*(t, 5)f(s) ds

They can be understood as bisolutions resp. inverses between various
spaces. For example,

(0; +iB)EPf =0, f € LR Hen)
EP(0; +iB)f =0, f € LY(R;Hen) N AC(R; Hen*)
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Involutions

We call S an admissible involution if 5> = 1and
(ulv)s = (ulQSv) = (SulQv)
defines a scalar product compatible with Hgyn.

Note that, to each S are associated two projections

An example of an admissible involution is
S(t) = sgn B(t) = B(t)|B(t)|”’

The corresponding projections are I'I(ti) = T[0,00)(£B(t))
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Non-classical propagators

Given R(t, s), an admissible involution S and any T € R, we can write
kernels for non-classical propagators:

E£+)(t, s) == R(t, T)ITHR(1, 5) (positive frequency bisol.)
Eg_)(t, s) := —R(t, T)[17)R(T, 5) (negative frequency bisol.)
EF(t,s) = O(t - s)E£+)(t, s)+6(s - t)Ei_)(t, s) (Feynman propagator)
Ef(t, s):=0(t - 5)E£_)(t, s)+6(s - t)E£+)(t, s) (anti-Feynman propagator)

Again, they can be understood as bisolutions resp. inverses between
various spaces. Moreover, the following relations hold

A R A S - ey A L Y

R A A A - L A R Y ey

T
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Pairs of projections

Let I'I$+), I'I(2+) be projections on . Set H(._) =1- I7(,+). Suppose that

v=1- (" -y

is invertible. Then Ran I7(+) and Ran ﬂg_) are complementary, i.e.
Ran I'Ig *) A Ran I'I = {0}, Ran I7$+) +Ran I7(2_) =H.

Moreover,

)along Ran 11 (2 ))

)
)

Al = /7$+)Y‘1 nt (projection onto Ran I7(

2
A=) = n(z_)Y“I'Ig_) (projection onto Ran I7(2 ) along Ran /1

are complementary projections, i.e. At) + A-) =1
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Pairs of admissible involutions

Let S5, S, be admissible involutions (with associated projections I'I(.i)).

ThenY =1- (I'I$+) - I'I(;))2 is invertible.

Proof. First we prove the identity ¥ = () + mS7)(m8) + 1t"). Next we set
c= n‘(|+)(1 - 5251)(1 + 5251)_1/72_)
and show that [|c|[s, < 1. Wrt. the decomposition Hgy, = Ran I7$+) ® Ran ﬂg_) we find

~ 1- *\—1 1- * =1
n§>=(° O)’ I7(2+)=(( cc)_1 c(1-c"c) )

0 1 —c*(1-cc®)" =c*c(1-cc)”
Therefore we can directly compute the inverse:
(-) (-1 _ 1—2CC* —C
(n1 + I_IZ ) - C* 1 .
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In/out positive/negative frequency bisolutions

Fix two times t,, t_ € R and define (admissible involutions)
Sy 1= sgn B(ts) = B(t.)|B(t:)| ™"
We define time-evolved projections

nS’)(t) = R(t, t
o) = R(t, t)1TR(ts, 1)

Often one would take the limit t, — +oo0.
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In-out Feynman propagator

Since Y(t) =1— (1 (t) - I'I(:)(t))2 is invertible, we obtain

Therefore we can define the in-out Feynman propagator

EF(t,s) := O(t — s)R(t, s)A™)(s) + B(s — t)R(t, s)A)(s)

NB: This Feynman propagator is generally not associated to a single state!

Taking the limit t, - +00, we conjecture that this kernel yields the same
Feynman propagator as obtained from the resolvent limit (if it exists).
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Proving the conjecture?
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+ The Klein-Gordon operator is essentially self-adjoint in many cases
+ The resolvent limit yields a ‘distinguished’ Feynman propagator

* In cases were the Klein—Gordon operator is not essentially self-adjoint,
maybe one can construct a distinguished self-adjoint extension
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