DECAY PROPERTIES OF THE VACUUM AND THERMAL TWO-POINT FUNCTIONS IN CURVED SPACETIMES FOR A MASSIVE INTERACTING SCALAR FIELD

Samuel Rutili

Department of Physics - University of Pavia

LQP36 Meeting - Universität Leipzig

(ロト イ母) イヨト

 QQ

May 31 2015

 S amuel Rutili (UniPv) May 31 2015 1 / 19

Outline

- \blacktriangleright Motivations and settings;
- \blacktriangleright Flat case;
- \blacktriangleright Generalization to curved spacetimes:
	- 1. Globally hyperbolic spacetimes with compact Cauchy surfaces;
	- 2. Schwarzschild black hole;
	- 3. Stationary and asymptotically Minkowskian (SAM) spacetimes.

イロト イ押 トイヨ トイヨ

 Ω

Motivations and setting

The applicability of AQFT to curved spacetimes allows the description of interesting phenomena, such as:

- \blacktriangleright Hawking radiation^{1,2}
- \blacktriangleright Unruh effect

Setting

- Globally hyperbolic spacetime (M, q)
- Massive scalar field $\phi : M \to \mathbb{R}$, such that $P \phi = 0$ with P the Klein-Gordon operator
- Algebra $\mathcal{A}(M)$ generated by smeared fields $\phi(f)$ $(f \in \mathcal{D}(M))$, encoding locality, causality, CCR
- ► Quasi-free Hadamard states over $A \Rightarrow \omega$ defined by a two-point function of Hadamard form

 $1R$. Haag, K. Fredenhagen - Commun. Math. Phys. 127, 273-284 (1990) ²G. Collini, V. Moretti, N. Pinamonti - Lett. Math. [Phy](#page-1-0)[s.](#page-3-0) $104, 217 - 232$ $104, 217 - 232$ $104, 217 - 232$ $104, 217 - 232$ $104, 217 - 232$ ([20](#page-18-0)[13](#page-0-0)[\)](#page-18-0) QQ Samuel Rutili (UniPv) and May 31 2015 3 / 19

Ground³ and KMS state

Ground state

The state ω is ground if the map $t \mapsto \omega(A\alpha_t(B))$ is such that

$$
\int_{-\infty}^{\infty} \hat{f}(t)\omega(A\alpha_t(B))dt = 0
$$

for each $A,B\in \mathcal{A}(M)$, $f\in C_0^\infty(\mathbb{R}^-)$, with $\{\alpha_t\}_{t\in\mathbb{R}}$ strongly continuous one-parameter $*$ -isomorphism of \mathcal{A} .

KMS state

The state ω is KMS at inverse temperature β if:

 \blacktriangleright The functions $t \mapsto \omega(A\alpha_t(B))$ and $t \mapsto \omega(\alpha_t(B)A)$ have an analytic extension to the strip $0 < Imz < \beta$ and $-\beta < Imz < 0$ respectively;

$$
\blacktriangleright \omega(A\alpha_t(B)) = \omega(\alpha_{t+i\beta}(B)A) \qquad \forall A, B \in \mathcal{A}(M)
$$

³H. Sahlmann, R. Verch - Passivity and Microlocal S[pec](#page-2-0)[tru](#page-4-0)[m](#page-2-0) [C](#page-3-0)[o](#page-4-0)[ndi](#page-0-0)[tio](#page-18-0)[n \(](#page-0-0)[20](#page-18-0)[00\)](#page-0-0) QQ S amuel Rutili (UniPv) May 31 2015 $4 / 19$

Interacting theory

Interaction

- \blacktriangleright Self-interaction $\mathcal{H}_I\in\mathcal{A}$ with coupling const. λ (e.g. $\lambda\phi^3)$
- \blacktriangleright S relative S-matrix

$$
S(\lambda) = \sum_{n=0}^{\infty} \frac{(-1)^n}{n!} \int_{M^n} d^4x_1 \dots d^4x_n T \mathcal{H}_I(x_1) \dots \mathcal{H}_I(x_n) \lambda(x_1) \dots \lambda(x_n)
$$

with T time-ordering operator

 \blacktriangleright Interacting algebra \mathcal{A}_λ : generated by $S_\lambda(f) = S(\lambda)^{-1} S(\lambda + f)$

Interacting KMS state

We can define the interacting dynamics $\alpha_I(t)$ in terms of $\alpha(t)$ \Rightarrow Interacting KMS state with respect to $\alpha_I(t)$

No a[s](#page-18-0)ymptotically free fields \Rightarrow I[R d](#page-3-0)[iv](#page-5-0)[er](#page-3-0)[ge](#page-4-0)[n](#page-5-0)[ce](#page-0-0)s

 Ω

Time-slice axiom

Time-slice axiom (TSA) in the free theory

- \blacktriangleright $O \subset M$ open s. t. $O \supset \Sigma$ Cauchy surface of M
- \blacktriangleright $\mathcal{A}(M)$ and $\mathcal{A}(O)$ algebras of observables on M and O resp.

 $\mathcal{A}(M)$ is *-isomorphic to $\mathcal{A}(O)$ via the map $f \mapsto Py^+E(f)$, where:

- \blacktriangleright $f \in \mathcal{D}(M)$ generators of $\mathcal A$
- $\blacktriangleright \ \chi^+$ smooth function, $\chi^+=1$ in $J^+(O)\setminus O$, $\chi^+=0$ in $J^-(O)\setminus O$
- ► E causal propagator of $P(E = E^+ E^-$, E^{\pm} advanced/retarded fundamental solution of P)

TSA in the interacting theory

For generic coupling constant, TSA is valid also for interacting theories⁴

4B. Chilian, K. Fredenhagen - arXiv:0802.1642v3 (20[08\)](#page-4-0) Samuel Rutili (UniPv) May 31 2015 6 / 19

Interacting state

 $\omega_\beta^{I,h}$ $\varphi^{I,h}_\beta(A)$ $(A\in\mathcal{A})$ in terms of the connected correlation functions $\omega_\beta^C\colon$

$$
\omega_{\beta}^{I,h}(A) = \sum_{n=0}^{\infty} (-1)^n \int_{\beta S_n} du_1...du_n \int_{\Sigma^n} d^3 x_1...d^3 x_n h(x_1)...h(x_n) \times
$$

$$
\times \omega_{\beta}^C (A \otimes \mathcal{U}_h(u_1, x_1) \otimes ... \otimes \mathcal{U}_h(u_n, x_n))
$$

where:

- \blacktriangleright h spatial cutoff
- \triangleright $\beta S_n = \{(u_1, ..., u_n) \in \mathbb{R} | 0 < u_1 < ... < u_n < \beta\}$

$$
\blacktriangleright \mathcal{U}_h(u, x) = \int dt \dot{\chi}^-(t) \alpha_{iu}([\mathcal{H}_I(x)]_{h\chi})
$$

 $\blacktriangleright \chi^-$, χ s.t. $\chi = 1 - \chi^+ - \chi^-$

H[e](#page-5-0)uristic adiabatic limit: $h \to 1$ on the time-slice σ

Samuel Rutili (UniPv) May 31 2015 7 / 19

Lindner-Fredenhagen work⁵

Connected correlation functions:

$$
F_n^{vac}(u_1, x_1; ...; u_n, x_n) = \omega_{vac}^C(A_0 \otimes \alpha_{iu_1, x_1}(A_1) \otimes ... \otimes \alpha_{iu_n, x_n}(A_n)) =
$$

=
$$
\sum_G \frac{1}{Sym(G)} F_{n,G}^{vac}(u_1, x_1; ...; u_n, x_n)
$$

$$
F_{n,G}^{vac}(u_1, z_1; ...; u_n, z_n) = \int dX dY \prod_l D_+^{vac}(x_l - y_l) \Psi(X, Y)
$$

where:

$$
D_+^{vac}(x-y) = \frac{1}{2\pi} \int \frac{d^3p}{2\omega_p} e^{-i(\omega_p x^0 - px)}
$$

\n
$$
\Psi(X,Y) = \prod_{l \in E(G)} \frac{\delta^2}{\delta \phi_{s(l)}(x_l)\delta \phi_{r(l)}y_l} (A_0 \otimes \dots \otimes \alpha_{iu_n,z_n} A_n)|_{\phi_0 \otimes \dots \otimes \phi_n = 0}
$$

\n
$$
X = (x_1, ..., x_n), Y = (y_1, ..., y_n)
$$

5K. Fredenhagen, F. Lindner - arXiv:1306.6519v5 (2[014](#page-6-0)) Mass Assessment Reserves Samuel Rutili (UniPv) and the Communication of the Communication of the May 31 2015 8 / 19

Lindner-Fredenhagen result

Ground (KMS) state

Let ω_{vac} (ω_{β}) be the ground (KMS with inverse temperature $0 < \beta < \infty$) state of the free Klein-Gordon field with mass $m > 0$. Then:

$$
|F_n(u_1, x_1; ...; u_n, x_n)| \le ce^{-mr_e/\sqrt{n}}
$$

for
$$
r_e > 2R
$$
, with $r_e = \sqrt{\sum_{i=1}^n u_i^2 + |x_i|^2}$ $(r_e = \sqrt{\sum_{i=1}^n |x_i|^2})$ and $(u_1, ..., u_n) \in \beta S_n^{\infty} = \{(u_1, ..., u_n)|0 < u_1 < ... < u_n\}$
 $((u_1, ..., u_n) \in \beta S_n)$. In particular $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$.

Adiabatic limit

The limit $\lim_{h\to 1}\omega^{I,h}_{vac}(A)$ $(\lim_{h\to 1}\omega^{I,h}_\beta$ $\beta^{I,n}(A)$), with $A\in\mathcal{A}_\lambda(\Sigma)$, exists and defines a ground (KMS) state on $A_{\lambda}(O)$.

ഹാദര

K ロ ト K 何 ト K ヨ ト K ヨ ト ニヨ

Spacetimes with compact Cauchy surfaces

What we know

- \blacktriangleright KMS with respect to $\alpha_I(t)$
- \blacktriangleright Time-slice axiom
- \blacktriangleright $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$

Adiabatic limit for the ground (KMS) state

Let ω_{vac} (ω_{β}) be a ground (KMS) state on the algebra $\mathcal{A}(O)$ with $(O, g|_O)$ time-slice of the spacetime (M, g) . Then the adiabatic limit

$$
\lim_{h \to 1} \omega_{vac(\beta)}^{I,h}(A) = \omega_{vac(\beta)}^{I}(A)
$$

exists and defines a ground (KMS) state on $A_\lambda(O)$, which induces a ground (KMS) state on $A_{\lambda}(M)$ via pull-back (TSA).

 Ω

K ロ ト K 何 ト K ヨ ト K ヨ ト ニヨ

Schwarzschild black hole

Schwarzschild metric

$$
ds^{2} = -\left(1 - \frac{2M}{r}\right)dt^{2} + \left(1 - \frac{2M}{r}\right)^{-1}dr^{2} + r^{2}d\Omega^{2}
$$

with M mass of the black hole.

Klein-Gordon equation

Massive scalar field $\phi : M \to \mathbb{R}$ with mass m:

$$
(\partial_{\mu}g^{\mu\nu}\sqrt{-g}\partial_{\nu} + m^2\sqrt{-g})\Phi(x) = 0
$$

イロト イ母 ト イヨ ト イヨ トー

G.

 QQQ

We are interested in the static region: $r > 2M$

Solutions to KG equation

$$
\Phi(x) = \sum_{l,n} Y_l^n(\vartheta,\varphi) \int_{-\infty}^{\infty} \frac{d\omega}{2\pi} e^{-i\omega t} \phi^l(r,\omega)
$$

where $\phi^l(r,\omega)$ satisfies:

$$
\left[\frac{\partial}{\partial r}r(r - 2M)\frac{\partial}{\partial r} + l(l+1) + m^2r^2 - \frac{\omega^2r^3}{r - 2M}\right]\phi^l(r,\omega) = 0
$$

We can find two (lin. ind.) solutions $\phi^l(r,\omega)$ and $\psi^l(r,\omega)$, such that:

$$
\phi^l(r,\omega) \stackrel{r \to \infty}{\sim} \frac{e^{i(qr+M/q(2\omega^2-m^2)\log r)}}{qri^{l+1}} \qquad \psi^l(r,\omega) \stackrel{r \to 2M}{\sim} \left(\frac{|r-2M|}{2M}\right)^{-2i\omega M}
$$

금 K - 금

 QQQ

K ロ ト K 何 ト K ヨ ト K

with $q^2=\omega^2-m^2$

Samuel Rutili (UniPv) and the Communication of the Communication of the May 31 2015 12 / 19

Ground state two-point function

Boulware ground state⁶

A Green operator has to fulfill the equation

$$
\left(-\frac{\partial}{\partial r}r(r-2M)\frac{\partial}{\partial r} + l(l+1) + m^2r^2 - \frac{\omega^2r^3}{r-2M}\right)G(r,r',\omega) = \delta(r-r')
$$

A solution can be written as:

$$
G(r,r',\omega) = \frac{1}{W[\phi,\psi]} \times \begin{cases} \phi(r,\omega)\psi(r',\omega) & r' < r\\ \phi(r',\omega)\psi(r,\omega) & r < r' \end{cases}
$$

 QQQ

where $W[\phi, \psi]$ is the Wronskian of ϕ and ψ . $G(r,r',\omega)$ defines a ground state

⁶D. G. Boulware - Physical Review (1974) Samuel Rutili (UniPv) and May 31 2015 13 / 19 The object we are interested in is the connected correlation function:

$$
F_{n,G}^{vac}(u_1, z_1; \ldots; u_n, z_n) = \int dX dY \prod_l G^{vac}(x_l, y_l) \Psi(X, Y)
$$

 $\Psi(X, Y)$ is rapidly decreasing (analogous to the flat case, microlocal methods), so $F_{n,G}^{vac}$ is well-defined.

Crucial point: asymptotyc behavior of $G^{vac}(x, y)$

K ロ ▶ K 優 ▶ K 경 ▶ K 경 ▶ │ 경

 Ω

Samuel Rutili (UniPv) and May 31 2015 14 / 19

Convergence

Two-point function

\n- ► Region
$$
\omega^2 < m^2
$$
\n $\phi(r, \omega) \stackrel{r \to \infty}{\sim} \frac{a}{i^{l+2}} \frac{e^{-br}}{r} r^{-c}$ \n with $a = (m^2 - \omega^2)^{-\frac{1}{2}}$; $b = \sqrt{m^2 - \omega^2}$; $c = M(m^2 - \omega^2)^{-\frac{1}{2}} (2\omega^2 - m^2)$ \n
\n- ▶ Region $\omega > m$ \n $\phi(r, \omega) \stackrel{r \to \infty}{\sim} \frac{e^{i(qr + a \log r)}}{i^{l+1}qr}$ \n with $a = (2\omega^2 - m^2)M/q$ \n
\n- (analogous for $\psi(r, \omega)$)\n In both cases we have a well-behaved two-point function (and it is valid for an arbitrary ω), so $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$.
\n

K ロ ▶ K 個 ▶ K 할 ▶ K 할 ▶ 이 할 → 이 있어

Main result

What we know

- \blacktriangleright KMS with respect to $\alpha_I(t)$
- \blacktriangleright Time-slice axiom
- \blacktriangleright $F_{n,G}^{vac} \in L^1(\beta S_n \times \Sigma)$

Existence of the adiabatic limit

Let ω be a quasi-free Hadamard ground state on the algebra $\mathcal{A}(O)$ with O time-slice in the Schwarzschid spacetime M . Then the adiabatic limit

$$
\lim_{h \to 1} \omega_{vac}^{I,h}(A) = \omega_{vac}^{I}(A)
$$

exists and defines a ground state on the interacting algebra $A_\lambda(O)$, which induces a ground state on $A_{\lambda}(M)$ $A_{\lambda}(M)$ via pull-back [\(T](#page-14-0)[S](#page-16-0)A[\).](#page-15-0)

 Ω

Samuel Rutili (UniPv) May 31 2015 16 / 19

Thermal state

Integral kernel of the Green operator

$$
G(x, x') = i \int_0^{\infty} d\omega e^{-i\omega(t - t')} \frac{e^{\beta \omega}}{e^{\beta \omega} - 1} G_{vac}(r, r', \omega)
$$

- \blacktriangleright exists for the extension: $t\rightarrow t+i\tau,~t^\prime\rightarrow t^\prime+i\tau^\prime$
- \blacktriangleright satisfies the KMS condition

Adiabatic limit

Let ω_{β} be a quasi-free Hadamard KMS state on the algebra $\mathcal{A}(O)$ with O as before. The adiabatic limit

$$
\lim_{h \to 1} \omega_{\beta}^{I,h}(A) = \omega_{\beta}^{I}(A)
$$

exists and defines a KMS state on the interacting algebra $A_\lambda(O)$, which induces a KMS state on $A_{\lambda}(M)$ via pull-back ([TS](#page-15-0)[A\)](#page-17-0)[.](#page-15-0) $\mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n \times \mathbb{R}^n$ Samuel Rutili (UniPv) May 31 2015 17 / 19

Extension to SAM spacetimes?

SAM spacetime

- \triangleright Stationary \rightarrow KMS condition
- \blacktriangleright Asymptotically Minkowskian

We basically used asymptotic considerations, so we expect our results to be true for asymptotically Minkowskian spacetimes

 200

Conclusions

What has been done:

Existence of the adiabatic limit for an interacting massive scalar field in:

- ▶ Spacetimes with compact Cauchy surfaces (ground and KMS)
- \triangleright Schwarzschild (ground and KMS)

What has to be done:

- \triangleright Existence of the adiabatic limit for an interacting massive scalar field in stationary asymptotically Minkowskian spacetimes
- Extension to the massless interacting scalar field'
- Extension to spinor fields

⁷N. Drago, T. P. Hack, N. Pinamonti - arXiv:150202[705](#page-17-0) [\(2](#page-18-0)[0](#page-17-0)[15\)](#page-18-0) S amuel Rutili (UniPv) May 31 2015 19 / 19