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Algebraic quantum field theory

A convenient framework to investigate conceptual problems in
QFT is the Algebraic Quantum Field Theory.

It started as the axiomatic framework of Haag-Kastler: a model is
defined by associating to each region O of Minkowski spacetime
an algebra A(O) of observables that can be measured in O.

The physical notion of subsystems is realized by the condition of
isotony, i.e.: O1 ⊂ O2 ⇒ A(O1) ⊂ A(O2). We obtain a net of
algebras.

Mathematicaly, AQFT makes use of functional analysis
techniques (operator algebras), but its various generalizations
involve many other branches of mathematics.
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Perturbative algebraic quantum field theory

Perturbative algebraic quantum field theory (pAQFT) is a
mathematically rigorous framework that allows to build
interacting LCQFT models.

It combines Haag’s idea of local quantum physics with methods
of perturbation theory.
Main contributions:

Free theory obtained by the formal deformation quantization of
Poisson (Peierls) bracket: ?-product ([Dütsch-Fredenhagen 00,
Brunetti-Fredenhagen 00, Brunetti-Dütsch-Fredenhagen 09, . . . ]).
Interaction introduced in the causal approach to renormalization
due to Epstein and Glaser ([Epstein-Glaser 73]),
Generalization to gauge theories using homological algebra
([Hollands 08, Fredenhagen-KR 11]).
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Physical input

A globally hyperbolic spacetime M (non-compact), as Alex
advertised!

Configuration space E(M): choice of objects we want to study in
our theory (scalars, vectors, tensors,. . . ).
Typically E(M) would be (at least locally) a space of smooth
sections of some vector bundle E π−→ M over M. For the scalar
field: E(M) ≡ C∞(M,R).
Dynamics: we use a modification of the Lagrangian formalism.
Since the manifold M is non-compact, we need to introduce a
cutoff function into the action functional. For the free scalar field

SM(f )(ϕ) =
1
2

∫
(∇µϕ∇µϕ− m2ϕ2)(x)f (x)dµ(x).

In general an action is a map SM : D(M)→ C∞(E(M),R),
where D(M) ≡ C∞c (M,R) are compactly supported smooth
functions.
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Propagators and Green functions

E(M) = C∞(M,R), observables are functionals on E(M).

Equations of motion are obtained from the action SM, essentially
by taking the functional derivative and removing the cutoff.

For the free scalar field the equation of motion is Pϕ = 0, where
P = −(2 + m2) is (minus) the Klein-Gordon operator.

Under some technical assumptions on M, P admits retarded and
advanced Green’s functions ∆R, ∆A. They satisfy:
P ◦∆R/A = idD(M), ∆R/A ◦ (P

∣∣
D(M)

) = idD(M) and

supp(∆R) ⊂ {(x, y) ∈ M2|y ∈ J−(x)} ,
supp(∆A) ⊂ {(x, y) ∈ M2|y ∈ J+(x)} .

supp f

supp ∆A(f )

supp ∆R(f )

Their difference is the causal propagator
∆

.
= ∆R −∆A.
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Poisson structure and the ?-product

The Poisson bracket of the free theory is

{F,G} .=
〈

F(1),∆G(1)
〉
.

We define the ?-product (deformation of the pointwise product):

(F ? G)(ϕ)
.
=
∞∑

n=0

~n

n!

〈
F(n)(ϕ),W⊗nG(n)(ϕ)

〉
,

where W is the 2-point function of a Hadamard state and it

differs from
i
2

∆ by a symmetric bidistribution, denoted by H.

The free QFT is defined as A0(M)
.
= (F(M)[[~]], ?, ∗), where

F∗(ϕ)
.
= F(ϕ) and F(M) is an appropriate functional space

(some WF set conditions on F(n)(ϕ)s induced by W).
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Time-ordered product

Let Freg(M) be the space of functionals whose derivatives are
test functions, i.e. F(n)(ϕ) ∈ D(Mn),

The time-ordering operator T is defined as:

T F(ϕ)
.
=
∞∑

n=0

1
n!

〈
F(2n)(ϕ), (~2 ∆F)⊗n

〉
,

where ∆F =
i
2

(∆A + ∆R) + H and H = W − i
2

∆.
Formally it corresponds to the operator of convolution with the
oscillating Gaussian measure “with covariance i~∆F”,

T F(ϕ)
formal

=

∫
F(ϕ− φ) dµi~∆F (φ) .

Define the time-ordered product ·T on Freg(M)[[~]] by:

F ·T G .
= T (T −1F · T −1G)
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Interaction

We now have an algebraic structure with two products
(Freg(M)[[~]], ?, ·T ), where ? is non-commutative, ·T is
commutative and they are related by a causal relation:

F ·T G = F ? G ,

if the support of F is later than the support of G.

Interaction is a functional V ∈ Freg(M)). Using the commutative
product ·T we define the S-matrix:

S(V)
.
= eiV/~

T = T (eT
−1(iV/~)) .

Interacting fields are defined by the formula of Bogoliubov:

RV(F)
.
= (eiV/~

T )?−1?(eiV/~
T ·T F) = −i~

d
dµ
S(V)−1S(V+µF)

∣∣
µ=0

We define the interacting star product as:

F ?int G .
= R−1

V (RV(F) ? RV(G)) ,
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Algebraic QFT and its generalizations
The Sine-Gordon model

Outline of the pAQFT framework
Scalar field

Renormalization problem

Because of singularities of ∆F, the time-ordered product ·T is
(usually) not well defined on local, non-constant functionals, but
the physical interaction is usually local!

Renormalization problem: extend S(.) to local arguments. This
is reduced to extending the n-fold time-ordered products, since
we can define:

S(V) =
∞∑

n=0

1
n!
Tn(V, ...,V) .

The time-ordered product Tn(F1, ...,Fn)
.
= F1 ·T ... ·T Fn of n

local functionals is well defined if their supports are pairwise
disjoint.
To extend Tn to arbitrary local functionals we use e.g. the causal
approach of Epstein and Glaser.
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Algebraic QFT and its generalizations
The Sine-Gordon model

Massless scalar field in 2D

Take M = M2, the 2D Minkowski spacetime.

Retarded and advanced fundamental solutions are given in terms
of the following distributions in one variable:

∆R(x) = −1
2
θ(t−|x|) ∆A(x) = −1

2
θ(−t−|x|) , x = (t, x) ∈M2 .

The 2-point function of the free massless scalar field in 2D
coincides with the Hadamard parametrix

W(x) = − 1
4π

ln
(
−x · x + iεt

Λ2

)
where Λ > 0 is the scale parameter.
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Algebraic QFT and its generalizations
The Sine-Gordon model

Vertex operators

Define the vertex operators Va(g)
.
=

∫
exp(iaΦx)g(x)dx, where

Φx(ϕ)
.
= ϕ(x) is the evaluation functional at x.

Note that we are constructing the abstract algebra first, with no
reference to Fock space.

We can prove the following commutation relations for such
functionals:

Va(x) ? Va′(y) = e−aa′~i∆(x,y)Va′(y) ? Va(x) .

In particular, for x = y and t > t′,

Va(t, x) ? Va′(t′, x) = eaa′i~/2Va′(t′, x) ? Va(t, x) ,

which is the well-known braiding property for vertex operators.
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Algebraic QFT and its generalizations
The Sine-Gordon model

Hadamard states I

Lesson from AQFT on curved spacetime: don’t worry about the
non-existence of the vacuum, just pick a Hadamard state!

The Hadamard Parametrix W differs from the 2-point function of
a Hadamard state by a smooth symmetric function v,
Wv = W + v.

Define ?v as the star product induced by Wv. We have

F ?v G = αv(α
−1
v F ? α−1

v G),

where αv
.
= e

~
2Dv and Dv

.
=
〈

v, δ2

δϕ2

〉
=

∫
v(x, y) δ2

δϕ(x)δϕ(y)dxdy.

Hence ? and ?v are equivalent products, and αv is a “gauge
transformation”.
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Algebraic QFT and its generalizations
The Sine-Gordon model

Hadamard states II

Passing from ? to ?v means changing the Wick ordering. Denote
α−1

v F .
= :F:v and interpret it as a normally ordered observable.

The expectation value of the product of two normally-ordered
observables F,G in the quasi-free Hadamard state with 2-point
function Wv is:

ωv(:F:v ? :G:v)
.
= αv(:F:v ? :G:v)(0) = (F ?v G)(0).

Similar for the S-matrix:

ωv(S(λ :V:v))
.
= αv

(
eiλ :V:v /~
T

)
(0) = eiλV/~

Tv
(0).

Here ·Tv is the time-ordered product corresponding to ?v.
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Algebraic QFT and its generalizations
The Sine-Gordon model

Convergence of the S-matrix

Theorem (Bahns, KR 2016)

The formal S-matrix αv ◦ S(λ :V:v) = eiλV/~
Tv

in the Sine-Gordon

model with V =
1
2

(Va(f ) + V−a(f )) and 0 < β = ~a2/4π < 1,

f ∈ D(M), converges as a functional on the configuration space in the
appropriate topology (related to Hörmander topology on distribution
spaces).

Direct proof of the convergence of the S-matrix in the
Minkowski signature.

No issues with positivity/IR problems, no Wick rotation.

The abstract formal S-matrix is constructed before a state is
chosen.
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Algebraic QFT and its generalizations
The Sine-Gordon model

Some details of the proof I

The key feature of the proof is that n-fold time-ordered products
involve exponentials of the Feynman propagator, which in our
case is a logarithm.

Hence the estimates boil down to estimates of expressions of the
form:∏

1≤i<j≤k

|τ 2
ij − ζ2

ij|β
∏

1≤i≤k,k<j≤n

|τ 2
ij − ζ2

ij|−β
∏

k<i<j≤n

|τ 2
ij − ζ2

ij|β .

with the time variable differences τij = ti − tj and the space
variable differences ζij = xi − xj.
After a change of variables, this expression can be rewritten as a
determinant (analogous to [Fröhlich 76]):

Dij =

 wi−1
j , 1 ≤ i ≤ l− k ,

1/(zi−l+k − wj) , l− k < i ≤ l .
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Algebraic QFT and its generalizations
The Sine-Gordon model

Some details of the proof II

The technical part of the proof boils down to estimating some
Cauchy and Vandermonde determinants.

The estimates are possible due to the fact that β < 1 and for the
Vandermonde determinants they require one to choose the
support of the cutoff function sufficiently small.

The later requirement would not be necessary if we were using a
singular state obtained as the limit of the massive theory, instead
of a Hadamard state.

In our future work we expect to be able to drop the condition on
the support of the test function, in an appropriate class of
Hadamard states.
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Algebraic QFT and its generalizations
The Sine-Gordon model

Constructing a net of von Neumann algebras

Use the Bogoliubov formula to construct the interacting fields:

RλV(F) = −i~
d

dµ
S(λ :V:)−1S(λ :V: +µ :F:)

∣∣
µ=0

≡ −i~
d

dµ
Sλ :V:(µ :F:)

∣∣
µ=0 ,

where Sλ :V:(µ :F:) is the relative S-matrix.

Show the existence of relative S-matrices for some appropriate
class of Fs and prove unitarity.

Prove covariance.

Construct the local net using the prescription given in
[Fredenhagen, KR 2015].
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class of Fs and prove unitarity.

Prove covariance.

Construct the local net using the prescription given in
[Fredenhagen, KR 2015].
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Outlook

Extend our results to some range of β > 1 (e.g.
super-renormalizable range).

Construct conserved currents for Sine Gordon (i.e. show
integrability).

Apply the same methods to a larger class of integrable models.

Show equivalence with the O(3) model and the Thirring model.
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Last, but not least. . .

For Bernard and Henning:
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Last, but not least. . .

For Dorothea, Chris and Gandalf: Thank you for this wonderful event!
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Thank you very much for your attention!
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