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What is a particle?

The classical notion of particle as pointlike object is meaningless in
a quantum theory (Heisenberg uncertainty relation).

In Relativistic Quantum Mechanics, particles are associated to
positive energy unitary representations of the Poincaré group
(Wigner 1939). Representations should yield the states spaces of
the simplest physical system - particles.

What are localized states of U?

The language of standard subspace nets is useful to describe
localization properties of one particle states.

Brunetti, Guido and Longo in 2002 give a natural and canonical way
to localize particles - modular localization



Wedge regions

A wedge region is a Poincaré transformed of W3:

W3 = {p ∈ R1+3 : |p0| < p3},
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The set of wedge regions will be denoted by W.



Wedge regions

The causal complement of W3 is:

W ′3 = {p ∈ R1+3 : |p0| < −p3}
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W ′3

The set of wedge regions will be denoted by W.



Wedge regions

To W3 corresponds a pure Lorentz transformation, the boost fixing W3:

Λ3(t)(p0, p1, p2, p3) = (cosh(t)p0+sinh(t)p3, p1, p2, sinh(t)p0+cosh(t)p3)
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t

W3W ′3

ΛW is the boost associated to W ∈ W.



Modular Localization

Starting point is the Bisognano and Wichmann property: pure Lorentz
transformation implemented by modular groups of standard subspaces
associated to wedge subregions of the Minkowskii spacetime.
It always hold in Wightman fields.

U positive energy (anti-)unitary
representation of P+

B-W→
canonical net of standard subspaces

W 3W 7→ H(W ) ⊂ H
with B-W on wedges

It is possible to define the subspace associated to a region X ⊂ R1+3 as

H(X )=̇
⋂

W :W⊃X

H(W ).

Second quantization of such nets give free fields. The construction is
coordinate free (Wightman fields).



Modular localization and infinite spin particles

There are three families of particles (unitary Poincaré rep’s). Infinite spin
particles are usually considered unphysical.
Main results:

It is no possible to associate a Wightman field to such infinite
spin particles (Yngvason 1969).

Modular localization: it is possible to define the canonical net of
standard subspaces on wedges (and its second quantization) for
infinite spin particles. It can be restricted to spacelike cone, but on
double-cones the questions was still open. (BGL 2002)

Infinite spin free fields are generated by fields localized on
semi-infinite strings - spacelike cone (Mund, Schroer, Yngvason
2005)

Question: are infinite spin particles localizable in some bounded regions?



Double cone

A double cone region is a causally closed region obtained as
intersecting translations of a forward and a backward light cones:

O = (V+ + a) ∩ (V− + b)

where V+ = {p ∈ R1+3 : p2 > 0, p0 > 0} and V− = −V+
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Double cone

A double cone region is a causally closed region obtained as
intersecting translations of a forward and a backward light cones:

O = (V+ + a) ∩ (V− + b)

where V+ = {p ∈ R1+3 : p2 > 0} and V− = −V+

O

t
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It can be equivalently obtained as intersection of wedges.
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Part 1: one particle structure



Standard Subspaces
(Araki, Brunetti, Eckmann, Guido, Longo, Osterwalder, Rieffel, van Daele, ...)

Definition

We recall that a real linear closed subspace of an Hilbert space H ⊂ H is
called standard if it is cyclic (H + iH = H) and separating
(H ∩ iH = {0}).
Symplectic complement of H:
H ′ ≡ {ξ ∈ H : I〈ξ, η〉 = 0,∀η ∈ H} = (iH)⊥R

It can be stated the analogue of Tomita theory of standard subspace.

 Standard
subspace
H ⊂ H

 1:1←→


(J,∆)anti-unitary
and self-adjoint

operators onH s.t.
J∆J = ∆−1

 1:1←→


closed, densely def.

anti-linear inv.
S = J∆1/2


Remark

Let A ⊂ B(H) be v.N.a. with a cyclic and separating vector Ω and
H = AsaΩ. Then the Tomita operators SA,Ω = SH coincide.



Unitary representations of the Poincaré group
Wigner 1939

The Poincaré group is the group of the Minkowski spacetime
isometries. First, we will consider its connected component of the
identity P↑+ = R4 o L↑+ on the 1+3 dimensional spacetime.

Irreducible unitary representations of (the double covering of)

the Poincaré group P̃↑+ = R4 o SL(2,C) are all obtained induction.

Fixed a point q ∈ R1+3 in the joint spectrum of translations, one
induces from unitary representations of the stabilizer subgroup,
namely Stabq, of P̃↑+ w.r.t. q: U = IndStabq↑P̃↑

+
V .

Actually it is enough to start with a representation of the little
group Stabq = Stabq ∩ SL(2,C)

Positivity of the energy: translations joint spectrum in V+



Unitary representations of the Poincaré group
Wigner 1939

Massive representations:

Choosing q = (m, 0, 0, 0) the little group is SU(2)

Um,s representations of mass m > 0 and spin s ∈ N
2 .

Massless representation:

Choosing q = (1, 0, 0, 1), the little group is the double cover of E (2)

Ẽ (2) = R2 o S̃O(2) representations are obtained by induction again.
Starting the induction with a positive or zero radius in (the dual
of) R2, we obtain two families of unit. rep’s:

- Vκ,ε κ > 0, ε = {0, 1
2} if Vκ,ε is faithful (continuous family)

- Vh, h ∈ N
2 if translation rep. is trivial (discrete family)

U0,κ,ε = Ind
Ẽ(2)↑P̃↑

+

Vρ,ε Infinite Spin

U0,h = Ind
Ẽ(2)↑P̃↑

+

Vn Finite Helicity



Standard subspaces Poincaré covariant nets

A Poincaré covariant “net” of standard subspace is a map
W 3W 7−→ H(W ) ⊂ H associating to any wedge region W , a real
linear subspaces of a Hilbert subspace of H s.t.

1 Isotony: if W1,W2 ∈ W, W1 ⊂W2 then H(W1) ⊂ H(W2)

2 Poincaré Covariance and Positivity of the energy: ∃ U positive
energy representation of the proper orthochronous Poincaré group
P̃↑+.

U(g)H(W ) = H(gW ), ∀W ∈ W,∀g ∈ P̃↑+.
3 Reeh - Schlieder: ∀W ∈ W, H(W ) is a cyclic subspace of H.

4 Bisognano-Wichmann: for every wedge W ∈ W
∆it

H(W ) = U(ΛW (−2πt))

5 Wedge twisted locality: For every wedge W ∈ W, we have

ZH(W ′) ⊂ H(W )′, with Z =
1 + iΓ

1 + i

where Γ = U(2π)



Part 2: Where Infinite Spin Particles are localizable



Infinite spin representations have no dilations

Lemma

Let G be a locally compact group, H ⊂ G a closed subgroup and β an
automorphism of G such that β(H) = H.
If V is a unitary representation of H and U ≡ IndH↑GV , then

U · β ' IndH↑GV · β0, whereβ0 ≡ β|H .

Let δt be the dilation automorphism of P̃↑+ s.t.

δt(g) = g ,∀g ∈ L↑+, δt(p) = etp, p ∈ R4.

If U was dilation covariant Uκ · δt ' Uκ.

Let αt be the P̃↑+ the automorphism implemented by boosts in
3-direction αt(q = (1, 0, 0, 1)) = (et , 0, 0, et).
Uκ · αt ' Uκ as α is inner.



Infinite spin representations have no dilations

Lemma

Let G be a locally compact group, H ⊂ G a closed subgroup and β an
automorphism of G such that β(H) = H.
If V is a unitary representation of H and U ≡ IndH↑GV , then

U · β ' IndH↑GV · β0, whereβ0 ≡ β|H .

Let δt be the dilation automorphism of P̃↑+ s.t.

δt(g) = g ,∀g ∈ L↑+, δt(p) = etp, p ∈ R4.

If U was dilation covariant Uκ · δt ' Uκ.

Let αt be the P̃↑+ the automorphism implemented by boosts in
3-direction αt(q = (1, 0, 0, 1)) = (et , 0, 0, et).
Uκ · αt ' Uκ as α is inner.



Infinite spin representations have no dilations

We can define the P̃↑+ automorphism

βt = α−t · δt

and βt(q) = q, β(P̃↑+) = P̃↑+ (⇒ βt(Stabq) = Stabq).
Clearly Uκ · βt ' Uκ · δt .

Proposition

Let Uκ ' IndStabq↑P̃↑
+
V̄κ be an infinite spin, irreducible unitary

representation of P̃↑+. Then

Uκ · βt ' Uκ′

where κ′ = e−tκ.

Corollary

Let U be an irreducible, positive energy, unitary representation of P̃↑+.
Then U is dilation covariant iff U is massless with finite spin.
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Double cone localization implies dilation covariance

A consequence of the Huygens theorem for massless K-G equation:

Lemma

Assume that U is a massless, unitary representation of P̃↑+ acting
covariantly on a twisted-local net of standard subspaces on double cones.
Let O1,O2 be double cones with O2 in the timelike complement of O1,
then

H(O2) ⊂ ZH(O1)′ .

Consequence: H(V+)=̇
∨

O⊂V+
H(O) is standard!

Proposition

Let U be a massless representation of P̃↑+, acting covariantly on a net H
of standard subspaces on wedges satisfying properties 1–5.
If H(O) is cyclic for some double cone O, then U is dilation covariant as
D(2πt) = ∆−itH(V+), t ∈ R .

It follows by Borchers’ Theorem and Bisognano Wichmann property.
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Infinite spin particles are not localizable on double cone

Our main result:

Theorem

Let U be an irreducible unitary, infinite helicity, representation of P̃↑+ and

W 3W 7−→ H(W ) ⊂ H

be a U-covariant net of standard subspaces, satisfying 1-5.

Then
H(O)=̇

⋂
W⊃O

H(W ) = {0}

for any double cone O.



First and Second quantization
“The first quantization is a mystery, the second is a functor”(E.Nelson)

• First quantization net: R1+s ⊃ O 7−→ H(O) ⊂ H satisfying 1-5.
• Second quantization net: a map

R1+s ⊃ O 7−→ R±(O) ⊂ F±(H)

where F± is the symmetric (resp. anti-symmetric) Fock space.

R+(H) ≡ {w(ξ) : ξ ∈ H}′′, R−(H) ≡ {Ψ(ξ) : ξ ∈ H}′′ ,

with w(ξ) the Weyl unit’s and Ψ(ξ) the Fermi field op’s on F±(H).
We have a (free) net of local algebras satisfying relativistic and quantum
basic assumptions.

Theorem

Let R± be the free Bose/Fermi infinite spin free field net.
Then R±(C ) is cyclic on the vacuum vector if C is a spacelike cone, but
R±(O) = C · 1 if O is any bounded spacetime region.

Remark: needed abstract duality R+(H)′ = R+(H ′), R−(H) = ZR−(iH ′)Z∗ to

prove that R±(∩aHa) =
⋂

a R±(Ha) (Leyland, Roberts, Testard; Foit).
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The interacting case

In an interacting theory:

Theorem

Let U be a positive energy unitary representation of P↑+ acting covariantly
on a double cone localized, isotonous, local, net of von Neumann algebras

W 3 O 7−→ A(O) ⊂ B(H),

with a unique vacuum vector Ω ∈ H, s.t.
• Bisognano and Wichmann property hold
• Reeh-Schlieder property holds for double cones
Then U has no infinite spin in its direct integral disintegration (up to a
null measure set).

The proof relies on the fact that the associated standard subspace net

W 3W 7−→ H(W ) = A(O)saΩ

decomposes accordingly to the U direct integral disintegration (by B-W)
and we conclude using the result for standard subspaces (by R-S).



Part 3: Generalization and counterexample



s + 1 dimensional case (s ≥ 2)

Infinite spin representations in Rs+1 are massless representation
induced by (unitary) faithful representation of the little group.

They are a continuous family: fixing q = (1, 1, 0, . . . , 0) ∈ Rs+1

Stabq = Ẽ (s − 1) ⊂ P̃↑+

where P̃↑+ is the universal covering of P↑+ in s + 1 spacetime

dimensions and Ẽ (s − 1) is the double cover of the s − 1
dimensional Euclidean group (we just consider bose/fermi
alternative in 2 space dimensions.)

In even space dimensions Huygens principle does not hold but one
can show that spacelike (twisted) locality implies

H(O1) ⊂ iZH(O2), O1 ⊂ Ot
2.

In these cases any net of standard subspaces satisfying 1-5, undergoing

an infinite spin representation have trivial double cones subspaces.



Counter-example
B-W property is necessary

Bisognano and Wichmann is an essential assumption:

Let V be a real, bosonic, unitary representation of SL(2,C) on an Hilbert
space K: there exists a real vector space K ⊂ K s.t. K + iK = K,
JK = K , V (SL(2,C))K = K .

Let U0 be the scalar, zero mass, unitary irreducible representation of P̃+.
Let

W 3W 7→ H(W ) ∈ H

the canonical BGL-net associated to U0.

We can define the new standard subspaces net

H̃ :W 3W 7−→ K ⊗ H(W ) ⊂ H̃=̇K ⊗H



Counter-example
B-W property is necessary

There are two representations acting on H̃:

UI : P̃↑+ 3 (a,A) 7−→ 1K ⊗ U0(a,A) ∈ U(H̃)

UV : P̃↑+ 3 (a,A) 7−→ V (A)⊗ U0(a,A) ∈ U(H̃)

Double cones subspaces

H̃(O)=̇
⋂

W⊃O

H̃(W ) = K ∩ (∩W⊃OH(W ))

are cyclic and separating.

If V does not contain the trivial representation then UV is purely
infinite spin.

Bisognano and Wichmann property holds for UI (not for UV ).
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