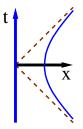
Waiting for Unruh

Jorma Louko

School of Mathematical Sciences, University of Nottingham

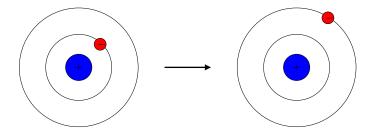
Quantum Field Theory, University of York, 4-7 April 2017

Christopher J Fewster, Benito A Juárez-Aubry, JL CQG 33 (2016) 165003 [arXiv:1605.01316]



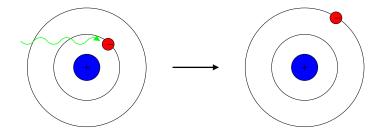
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Excitation



◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Excitation



◆□ ▶ < 圖 ▶ < 圖 ▶ < 圖 ▶ < 圖 • 의 Q @</p>

Plan

1. Unruh effect

Long time limit: adiabatic scaling versus plateau scaling

(ロ)、(型)、(E)、(E)、 E) の(の)

- 2. Detector
 - Unruh-DeWitt
- 3. Results
 - Thermalisation time at large E_{gap}
- 4. Summary

1. Unruh effect

Well established

► Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T = \frac{a}{2\pi}$ Unruh 1976

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

- Weak coupling, long time, negligible switching effects
- ► Thermal: Detector records detailed balance:

$$rac{P_{\downarrow}}{P_{\uparrow}}=e^{E_{
m gap}/T}$$

1. Unruh effect

Well established

► Uniformly linearly accelerated observer sees Minkowki vacuum as thermal, $T = \frac{a}{2\pi}$ Unruh 1976

- Weak coupling, long time, negligible switching effects
- ► Thermal: Detector records detailed balance:

$$rac{P_{\downarrow}}{P_{\uparrow}}=e^{E_{
m gap}/T}$$

Beyond: non-stationary

- Non-uniform acceleration
- Curved spacetime: Hawking effect
 E.g. detector falling into a black hole

"Time-dependent temperature" ?

Our aim

How long does a detector need to operate to record (approximate) detailed balance,

・ロト・日本・モート モー うへぐ

$$\frac{P_{\downarrow}}{P_{\uparrow}} = e^{E_{gap}/T}$$
?

Our aim

How long does a detector need to operate to record (approximate) detailed balance,

$$\frac{P_{\downarrow}}{P_{\uparrow}} = e^{E_{gap}/T}$$

Novel setting

- ► How long in terms of E_{gap} , at large E_{gap} → experiment?
- Switching: smooth and compact support
- Mathematically precise (nothing hidden in $i\epsilon$)

Our aim

How long does a detector need to operate to record (approximate) detailed balance,

$$\frac{P_{\downarrow}}{P_{\uparrow}} = e^{E_{\rm gap}/T}$$

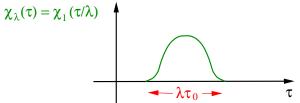
Novel setting

- ► How long in terms of E_{gap}, at large E_{gap} → experiment?
- Switching: smooth and compact support
- Mathematically precise (nothing hidden in $i\epsilon$)

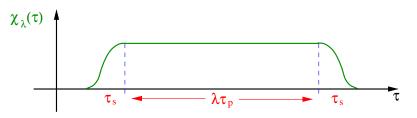
Limitations

- \blacktriangleright Weak coupling \longrightarrow first-order perturbation theory
- ▶ (3+1) Minkowski, massless scalar field (for core results)

How long? Adiabatic switching



Plateau switching



◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Long time: $\lambda \to \infty$

2. Detector

(Unruh-DeWitt)

Quantum field

(3 + 1)	spacetime	dimension
---------	-----------	-----------

$$\phi$$
 real scalar field, $m=0$

0 Minkowski vacuum

Two-state detector (atom)

- $\|0\rangle\!\rangle$ state with energy 0
- $\|1\rangle\rangle$ state with energy *E*
- $x(\tau)$ detector worldline,

au proper time

2. Detector

(Unruh-DeWitt)

Quantum field

- ϕ real scalar field, m = 0
- 0 Minkowski vacuum

Two-state detector (atom)

- $\|0\rangle\!\rangle$ state with energy 0
- $\|1\rangle\rangle$ state with energy *E*

 $x(\tau)$ detector worldline, τ proper time

Interaction

$$H_{\rm int}(\tau) = \boldsymbol{c}\chi(\tau)\mu(\tau)\phi(\mathbf{x}(\tau))$$

- c coupling constant
- χ switching function, C_0^{∞} , real-valued
- μ detector's monopole moment operator

Probability of transition

$$\|0
angle\otimes|0
angle\longrightarrow\|1
angle\otimes|$$
anything $angle$

in first-order perturbation theory:

$$P(E) = c^{2} \underbrace{\left| \langle \langle 0 \| \mu(0) \| 1 \rangle \rangle \right|^{2}}_{\text{detector internals only:}} \times \underbrace{F(E)}_{\text{trajectory and } |0\rangle:}_{\text{response function}}$$

$$F(E) = \int_{-\infty}^{\infty} \mathrm{d}\tau' \int_{-\infty}^{\infty} \mathrm{d}\tau'' \,\mathrm{e}^{-iE(\tau'-\tau'')} \,\chi(\tau') \chi(\tau'') \,W(\tau',\tau'')$$

$$\begin{split} \mathcal{W}(\tau',\tau'') &= \langle \mathbf{0} | \phi \big(\mathsf{x}(\tau') \big) \phi \big(\mathsf{x}(\tau'') \big) | \mathbf{0} \rangle & \text{Wightman function} \\ & \text{(distribution)} \end{split}$$

Stationary

$$W(\tau',\tau'') = W(\tau'-\tau'')$$
$$F(E) = \frac{1}{2\pi} \int_{-\infty}^{\infty} d\omega |\widehat{\chi}(\omega)|^2 \,\widehat{W}(E+\omega)$$

Unruh

$$\widehat{W}(\omega) = \frac{\omega}{2\pi (e^{2\pi\omega/a} - 1)} \qquad a > 0: \text{ proper acceleration}$$
$$\frac{\widehat{W}(-\omega)}{\widehat{W}(\omega)} = e^{2\pi\omega/a} \quad \Rightarrow \quad T = \frac{a}{2\pi} \quad \text{Unruh temperature}$$

3. Results

Theorem 0. With either switching, for any **fixed** *E*,

$$\frac{F_{\lambda}(E)}{\lambda} \xrightarrow[\lambda \to \infty]{} (\text{const}) \times \widehat{W}(E)$$

 \Rightarrow Detailed balance at $\lambda \rightarrow \infty$

(as expected)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

3. Results

Theorem 0. With either switching, for any **fixed** *E*,

$$\frac{F_{\lambda}(E)}{\lambda} \xrightarrow[\lambda \to \infty]{} (\text{const}) \times \widehat{W}(E)$$

 $\Rightarrow \text{ Detailed balance at } \lambda \to \infty \qquad (\text{as expected})$

Theorem 1. For fixed λ , $F_{\lambda}(E)$ is **not** exponentially suppressed as $E \to \infty$.

 \Rightarrow Detailed balance at $\lambda \rightarrow \infty$ cannot be uniform in *E*.

3. Results

Theorem 0. With either switching, for any **fixed** *E*,

$$\frac{F_{\lambda}(E)}{\lambda} \xrightarrow[\lambda \to \infty]{} (\text{const}) \times \widehat{W}(E)$$

 $\Rightarrow \text{ Detailed balance at } \lambda \to \infty \qquad (\text{as expected})$

Theorem 1. For fixed λ , $F_{\lambda}(E)$ is **not** exponentially suppressed as $E \to \infty$.

 \Rightarrow Detailed balance at $\lambda \rightarrow \infty$ cannot be uniform in *E*.

Theorem 2. For either switching,

$$rac{F_\lambda(-E)}{F_\lambda(E)} \xrightarrow[E o\infty]{} e^{2\pi E/a}$$

with **exponentially** growing $\lambda(E)$

 \Rightarrow Detailed balance at large E_{gap} in exponentially long waiting time

Theorem 3. For adiabatic switching,

$$\frac{F_{\lambda}(-E)}{F_{\lambda}(E)} \xrightarrow[E \to \infty]{} e^{2\pi E/a} \qquad (*)$$

with polynomially growing $\lambda(E)$, provided $|\hat{\chi}(\omega)|$ has sufficiently strong falloff (Cf. Fewster and Ford 2015)

 \Rightarrow Detailed balance at large $E_{\rm gap}$ in polynomially long waiting time

Theorem 3. For adiabatic switching,

$$\frac{F_{\lambda}(-E)}{F_{\lambda}(E)} \xrightarrow[E \to \infty]{} e^{2\pi E/a} \qquad (*)$$

with polynomially growing $\lambda(E)$, provided $|\hat{\chi}(\omega)|$ has sufficiently strong falloff (Cf. Fewster and Ford 2015)

 \Rightarrow Detailed balance at large E_{gap} in **polynomially long waiting** time

Theorem 4. For **plateau** switching, no polynomially growing $\lambda(E)$ gives (*)

 \Rightarrow Detailed balance at large E_{gap} requires longer than polynomial waiting time.

4. Summary

Detailed balance in the Unruh effect at $E_{\text{gap}} \rightarrow \infty$:

- ▶ (3+1) massless scalar
- Polynomial waiting time suffices for adiabatically scaled switching with sufficiently strong Fourier decay
- No polynomial waiting time suffices for plateau scaled switching

Upshots:

Large E_{gap} regime has limited relevance for defining a "time dependent temperature"

Interest for (analogue) experiments?