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Tensor networks
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NB: The inner product < A,B > of two tensors is given by:
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Quantum spin chains

A quantum spin chain is a linear arrangement of quantum things, each of
which is called a "spin" and whose states are given by a finite dimensional
Hilbert space H.

Thus the state space of the whole chain is

H = ⊗NH

(where there are N spins).
The chain structure is given by an interaction between spins and their
nearest neighbours. Possibly a Hamiltonian of the form

H =
N−1∑
i=1

id ⊗ id ⊗ ...hi ,i+1 ⊗ id · · · ⊗ id

where h : H⊗H → H⊗H is a selfadjoint operator giving the interaction
between two adjacent spins.
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It is common to impose PERIODIC BOUNDARY CONDITIONS so that
the last spin is connected to the first. The whole chain can then be
thought of as sitting in an annulus. We may be a bit sloppy about this.

In terms of tensor networks, the action of H on a vector ξ in H is given by
the following:
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Transfer Matrix

We here describe a beautiful way of generating Hamiltonians like the one
above, due to the St. Petersburg school in the 1980’s.

If t(λ) is an element
of End(H) depending on a (spectral) parameter λ, the corresponding
transfer matrix is the operator:
T (λ) =

λλ λ λ λ λ

(Where we have represented t(λ) by just λ.)
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Further suppose that t(0) =

then by calculus,
NB λ must be able to VARY-a single value is not much use.

T ′(0) =
∑
i

i+1

h

i

where h = t ′(0).
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So

T (0)−1T ′(0) =

i+1

h

i

and in case I went too quickly here’s the intermediate step:

i+1

h

i
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YBE

The matrices t(λ) are said to satisfy the YBE if, for each λ and µ there is
a σ such that

λ
µ

σ = σ

µ
λ
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CTM

By a cute argument YBE implies

T (λ)T (µ) = T (µ)T (λ)

or pictorially

Periodic boundary conditions important!!

µ

λ λ λ λ λ λ

µ µ µ µ µ

=

λλ

µ µ µ µ µ µ

λ λ λ λ
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What this means is that T (λ) supplies, by algebra and calculus, a large
family of operators commuting with the Hamiltonian. So one can get
common eigenvectors.

One should observe that all that went into the arguments so far was the
pictures! If one can set up a framework where the pictures make sense
without referring specifically to tensor networks, the arguments will work
for CTM. This has been done, one such framework grew out of subfactors
and is known as "Planar algebras".A lot of the equations I will solve are
actually in this framework of planar algebras whose greatly increased
flexibility will have some advantages.
I would like to take as a lesson from these ideas that the fundamental
object here is the TRANSFER MATRIX rather than any particular
Hamiltonian derived from it. One of our ambitions in what follows will be
to construct transfer matrices (with continuously varying spectral
parameter) compatible with certain scale invariance properties. Since the
Hamiltonian is the infinitesimal generator of time translation we have the
mantra:
"The transfer matrix determines infinitesimal time translation."
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Scale invariant states

The following construction was originally motivated by a quest (so far
unsuccessful) to contstruct conformal field theory directly from a
subfactor. It can also be thought of as a reversal of the idea of block spin
renormalisation (Kadanoff/Wilson).

We want to construct a Hilbert space
associated with the circle by building it up from Hilbert spaces associated
with finitely many points.To this end we need a way of increasing the size
of a given finite set. We will do this using a linear isometry

R ∈ End(H,H⊗H)

(The adjoint R∗ would be the spin blocking operator.)
The isometry condition is :

*

=

R

R
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Equipped with this R we may now construct an increasing family of
Hilbert spaces Hn of dimension (dimH)2n by embedding ⊗2nH in ⊗2n+1H
via the following tensor network (planar tangle):

R

ξ

R R R

If we choose a unit vector Ω in H it defines a vector Ω in each ⊗2nH via
the above embedding. We will call it the vacuum vector.
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Definition
The Hilbert space HR defined as the direct limit of the above increasing
sequence of Hilbert spaces will be called the semicontinous limit of the
quantum spin chain.

Osborne, Vidal.

Note that the vacuum vector Ω ∈ HR should be thought of as below:

R

R R R R

Ω

R R

From now on we will tend to suppress R
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Theorem
Thompson’s groups F and T of homeomorphisms defined by local scaling
transformations act unitarily on the semicontinuous limit.

By local scaling
transformations....
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At this stage the semicontinous limit and the vaccum vector have nothing
to do with the placement of points on the line. The branches of the tree
defining Ω could swing freely. People in the block spin renormalisation
game encountered the same difficulty and Evenbly and Vidal invented the
MERA, which introduces unitary "disentanglers" to tie up the branches of
the tree like moss in Savannah
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They obtain good numerical agreement with CFT by optimizing the
disentanglers. We will stick with the tree, not expecting to get CFT any
more, but as soon as we thing about how motions on the line,
e.g.rotations, act then we are dealing with states of a quantum spin chain.

. We want to investigate properties of such states. Are such states
relevant for physics?They certainly exhibit SCALE INVARIANCE so
according to the yoga of Criticality/Phase transition, we might look for
them at a QUANTUM PHASE TRANSITION. Also if the detailed spin
manipulation required by quantum computers is achieved, the gates
available should be enough to put a system in such a state.
The first thing I want to investigate is how the ROTATION ρ 1

2n
by 1

2n acts
on states. In particular I want to calculate

< ρ 1
2n

(ξ), η >

Suppose that ξ and η are actually in some space ⊗2kH. The following
picture is 〈ρ 1

2k+n+1
ξ, η〉 which we illustrate here for k = 1 and n = 3.
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Now all the regions in the blue dotted circles can be isotoped to look like

so if we call x the element inside the box with 4 legs, the

picture becomes:
η

x xxx x x x xx xxx x x

ξ

xx

Vaughan Jones, Vanderbilt (Auckland, Berkeley, INI.)Some scale-invariant states of quantum spin chains and their properties.April 5, 2017 20 / 34



We recognise the transfer matrix T2n+k (x) !
Thus " The transfer matrix determines infinitesimal space translation". If
we are in one dimension and time=space then we have recovered our
previous mantra in a topsy turvy fashion!

Definition

We define the quadratic renormalisation map R(x) by xx
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We see the inner product formula becomes (if y = R(x)):

η

y y yy y y yy

ξ

Continuing in this way we see that

〈ρ 1
2k+n+1

ξ, η〉 = 〈T2k (Rn(x))ξ, η〉
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In order to proceed further we need to give a specific model, i.e. a specific
element R.

Here we take advantage of planar algebras where there are
examples where there is NO CHOICE in the element R. If you are still not
happy with planar algebras you may stick with tensor networks with
dim(H) = 3 and suppose all tensors are fixed by the action of SO(3).
There is then a unique choice of R up to phase. Planar algebras (or in this
case just quantum groups) allow you to deform this and add new
parameter.In this case R is rotationally invariant so we may suppress it with
impunity and just use a trivalent vertex. See a very interesting paper by
Morrison Peters and Snyder on categories generated by a trivalent vertex.
We begin by calculating R explicitly. For this we use the basis
{ , , } of Q4 (tensors with 4 legs) and write an arbitrary
element of Q4 as

a = p + q + r .

The following is a complete set of relations to do all calculations:

= 0, = d−2
d−1( ) , and of course unitarity, .
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With these relations it is not hard to show that:

R(a) = {d
2 − 5d + 7
(d − 1)2 p2 + 2pq + 2

d − 2
d − 1

pr + q2 + r2} −

{ 1
(d − 1)3 p

2 +
1

d − 1
(2pq + q2)}

+{d
2 − 3d + 3
(d − 1)3 p2 +

1
d − 1

(2pq + q2)} .

Note that d in the above is the quantum dimension which can be
4cos2π/n − 1 for n = 6, 7, 8, · · · and d = 3 is the case of SO(3)-invariant
tensors.
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We see that rotation is determined by ITERATING the above quadratic
transfromation of R3.

Some calculations show that

a) If d = 2, Rn(x) =

{
x if n is even
x∗ if n is odd

b) For d > 2 in the allowed range, limn→∞Rn(x) = 0.
I have been unable to determine exactly how fast Rn(x) tends to zero but
it is at least as fast as 2−2n .
In any case we see that < ρ 1

2n
(ξ), η > tends to zero as n→∞ in case b)

but NOT in case a)
It is hard to know what to make of these results but they certainly show
different QUALITATIVE behaviours of these states. Should case b) be
interpreted as some kind of spatial exponential white noise?Or as some
kind of exponential resonance as the spins line up?
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In either case it is a very structured white noise as we may renormalise by
the rate at which < ρ 1

2n
(ξ), η > tends to zero to obtain Two quadratic

forms on the semicontinous limit to which the renormalised < ρ 1
2n

(ξ), η >
converge.

Indeed, define

[ξ, η]n =
< ρ 1

2n
(ξ), η >

< ρ 1
2n

(Ω),Ω >

Theorem
There are two quadratic forms on HR , Q± such that

limn→∞[ξ, η]2n = Q+(ξ, η)

and
limn→∞[ξ, η]2n+1 = Q−(ξ, η)

These two quadratic forms should no doubt be called topsy turvy
momenta....
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Q± are obtained by examining R on projective space where it becomes a
pair of RATIONAL functions of two real variables.

The two quadratic
forms correspond to an attractive orbit of period 2 under R. These two
periodic points can be lifted uniquely as fixed points λ± for R2 and using
them as the spectral parameter for T one obtains well defined quadratic
forms whose domains are all vectors in the finite dimensional
approximations to the semicontinuous limit.
Here is a picture of the interesting points in R2 for the projectivised
renormalisation.
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Points will generally tend under iteration of R2 to either q+ or q−:
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Scale invariant fractal behaviour can be observed by dividing the plane
according to which of these two a point converges.
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This raises the question of whether there is a scale-invariant transfer
matrix defined on the semicontinuous limit with continuously varying
spectral parameter.

It is clear from the calculations we have done that the
quadratic form defined by T (λ) on ⊗2nH will extend to T (µ) on ⊗2n+1H
provided R(µ) = λ.
Thus the value of a T on the semicontinuous limit will be determined by
BACK ITERATING the dynamical system R. In this particular case there
is no guarantee that a given point in R2 is in the image of R. But if we
solve for R(x) = q− there is of course the solution q+ but also another
solution depending on a sign. Choosing that other sign gives a method of
backiterating R which converges rapidly to the repelling fixed point! Thus
there is a neighbourhood of q− which can be indefnitintely back-iterated
and whose backiterates converge to the repelling fixed point.Thus we do
get a transfer matrix, in the sense of quadratic forms, with continuously
varying spectral parameter.
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Rational functions of one complex variable

We have been investigating the SO(3) invariant tensor example and come
up with a transformation of real projective space.

But the most intensively
studied dynamical systems are the rational functions on CP1. In fact there
are scale invariant models for which we end up with rational functions on
CP1 on the nose! . In fact they arise in a physically natural way if we
want each spin of a spin chain to be present at subsequent finer scales.
Thus we will take an R with 4 legs and embedd the tensor powers of H
one into the next according to the pattern:
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Then we may use ordinary Temperley Lieb (SU(2) invariant tensors) and
choose R to be any element with 4 legs satisfying RR∗ = 1.

The
renormalisation transformation is then a quadratic from a 2-dimensional
space to itself. Now of course the choice of R is not unique at all and
various choices suggest themselves. If we choose the braid (crossing) for R
we obtain the following transformation: (for δ = 2cosπ/8):

(−1 + i) + z − (1− 2i)
√
2z + ((−1 + i) +

√
2)z2

1− i
√
2 + (−2i +

√
2)z

And here is a picture of its Julia set.
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