Some scale-invariant states of quantum spin chains and their properties.

Vaughan Jones,
Vanderbilt
(Auckland, Berkeley, INI.)

April 5, 2017

Tensor networks

or better

NB : The inner product $<A, B>$ of two tensors is given by:

Quantum spin chains

A quantum spin chain is a linear arrangement of quantum things, each of which is called a "spin" and whose states are given by a finite dimensional Hilbert space \mathcal{H}.

Quantum spin chains

A quantum spin chain is a linear arrangement of quantum things, each of which is called a "spin" and whose states are given by a finite dimensional Hilbert space \mathcal{H}.
Thus the state space of the whole chain is

$$
\mathfrak{H}=\otimes^{N} \mathcal{H}
$$

(where there are N spins).

Quantum spin chains

A quantum spin chain is a linear arrangement of quantum things, each of which is called a "spin" and whose states are given by a finite dimensional Hilbert space \mathcal{H}.
Thus the state space of the whole chain is

$$
\mathfrak{H}=\otimes^{N} \mathcal{H}
$$

(where there are N spins).
The chain structure is given by an interaction between spins and their nearest neighbours. Possibly a Hamiltonian of the form

$$
H=\sum_{i=1}^{N-1} i d \otimes i d \otimes \ldots h_{i, i+1} \otimes i d \cdots \otimes i d
$$

Quantum spin chains

A quantum spin chain is a linear arrangement of quantum things, each of which is called a "spin" and whose states are given by a finite dimensional Hilbert space \mathcal{H}.
Thus the state space of the whole chain is

$$
\mathfrak{H}=\otimes^{N} \mathcal{H}
$$

(where there are N spins).
The chain structure is given by an interaction between spins and their nearest neighbours. Possibly a Hamiltonian of the form

$$
H=\sum_{i=1}^{N-1} i d \otimes i d \otimes \ldots h_{i, i+1} \otimes i d \cdots \otimes i d
$$

where $h: \mathcal{H} \otimes \mathcal{H} \rightarrow \mathcal{H} \otimes \mathcal{H}$ is a selfadjoint operator giving the interaction between two adjacent spins.

It is common to impose PERIODIC BOUNDARY CONDITIONS so that the last spin is connected to the first. The whole chain can then be thought of as sitting in an annulus. We may be a bit sloppy about this.

It is common to impose PERIODIC BOUNDARY CONDITIONS so that the last spin is connected to the first. The whole chain can then be thought of as sitting in an annulus. We may be a bit sloppy about this. In terms of tensor networks, the action of H on a vector ξ in \mathfrak{H} is given by the following:

Transfer Matrix

We here describe a beautiful way of generating Hamiltonians like the one above, due to the St. Petersburg school in the 1980's.

Transfer Matrix

We here describe a beautiful way of generating Hamiltonians like the one above, due to the St. Petersburg school in the 1980's.If $t(\lambda)$ is an element of $\operatorname{End}(\mathcal{H})$ depending on a (spectral) parameter λ, the corresponding transfer matrix is the operator:

Transfer Matrix

We here describe a beautiful way of generating Hamiltonians like the one above, due to the St. Petersburg school in the 1980's.If $t(\lambda)$ is an element of $\operatorname{End}(\mathcal{H})$ depending on a (spectral) parameter λ, the corresponding transfer matrix is the operator:
$T(\lambda)=$

(Where we have represented $t(\lambda)$ by just λ.)

Further suppose that $t(0)=$

then by calculus,

Further suppose that $t(0)=$

Further suppose that $t(0)=$
then by calculus, NB λ must be able to VARY-a single value is not much use.

Further suppose that $t(0)=$
then by calculus, NB λ must be able to VARY-a single value is not much use.

where $h=t^{\prime}(0)$.

So

So

$$
\begin{aligned}
& T(0)^{-1} T^{\prime}(0)= \\
& i \quad i+1
\end{aligned}
$$

and in case I went too quickly here's the intermediate step:

YBE

The matrices $t(\lambda)$ are said to satisfy the YBE if, for each λ and μ there is a σ such that

YBE

The matrices $t(\lambda)$ are said to satisfy the YBE if, for each λ and μ there is a σ such that

CTM

By a cute argument YBE implies

$$
T(\lambda) T(\mu)=T(\mu) T(\lambda)
$$

or pictorially

CTM

By a cute argument YBE implies

$$
T(\lambda) T(\mu)=T(\mu) T(\lambda)
$$

or pictorially
Periodic boundary conditions important!!

CTM

By a cute argument YBE implies

$$
T(\lambda) T(\mu)=T(\mu) T(\lambda)
$$

or pictorially
Periodic boundary conditions important!!

What this means is that $T(\lambda)$ supplies, by algebra and calculus, a large family of operators commuting with the Hamiltonian. So one can get common eigenvectors.

What this means is that $T(\lambda)$ supplies, by algebra and calculus, a large family of operators commuting with the Hamiltonian. So one can get common eigenvectors.
One should observe that all that went into the arguments so far was the pictures! If one can set up a framework where the pictures make sense without referring specifically to tensor networks, the arguments will work for CTM.

What this means is that $T(\lambda)$ supplies, by algebra and calculus, a large family of operators commuting with the Hamiltonian. So one can get common eigenvectors.
One should observe that all that went into the arguments so far was the pictures! If one can set up a framework where the pictures make sense without referring specifically to tensor networks, the arguments will work for CTM. This has been done, one such framework grew out of subfactors and is known as "Planar algebras".

What this means is that $T(\lambda)$ supplies, by algebra and calculus, a large family of operators commuting with the Hamiltonian. So one can get common eigenvectors.
One should observe that all that went into the arguments so far was the pictures! If one can set up a framework where the pictures make sense without referring specifically to tensor networks, the arguments will work for CTM. This has been done, one such framework grew out of subfactors and is known as "Planar algebras".A lot of the equations I will solve are actually in this framework of planar algebras whose greatly increased flexibility will have some advantages.

What this means is that $T(\lambda)$ supplies, by algebra and calculus, a large family of operators commuting with the Hamiltonian. So one can get common eigenvectors.
One should observe that all that went into the arguments so far was the pictures! If one can set up a framework where the pictures make sense without referring specifically to tensor networks, the arguments will work for CTM. This has been done, one such framework grew out of subfactors and is known as "Planar algebras".A lot of the equations I will solve are actually in this framework of planar algebras whose greatly increased flexibility will have some advantages.
I would like to take as a lesson from these ideas that the fundamental object here is the TRANSFER MATRIX rather than any particular Hamiltonian derived from it.

What this means is that $T(\lambda)$ supplies, by algebra and calculus, a large family of operators commuting with the Hamiltonian. So one can get common eigenvectors.
One should observe that all that went into the arguments so far was the pictures! If one can set up a framework where the pictures make sense without referring specifically to tensor networks, the arguments will work for CTM. This has been done, one such framework grew out of subfactors and is known as "Planar algebras".A lot of the equations I will solve are actually in this framework of planar algebras whose greatly increased flexibility will have some advantages.
I would like to take as a lesson from these ideas that the fundamental object here is the TRANSFER MATRIX rather than any particular Hamiltonian derived from it. One of our ambitions in what follows will be to construct transfer matrices (with continuously varying spectral parameter) compatible with certain scale invariance properties. Since the Hamiltonian is the infinitesimal generator of time translation we have the mantra:

What this means is that $T(\lambda)$ supplies, by algebra and calculus, a large family of operators commuting with the Hamiltonian. So one can get common eigenvectors.
One should observe that all that went into the arguments so far was the pictures! If one can set up a framework where the pictures make sense without referring specifically to tensor networks, the arguments will work for CTM. This has been done, one such framework grew out of subfactors and is known as "Planar algebras".A lot of the equations I will solve are actually in this framework of planar algebras whose greatly increased flexibility will have some advantages.
I would like to take as a lesson from these ideas that the fundamental object here is the TRANSFER MATRIX rather than any particular Hamiltonian derived from it. One of our ambitions in what follows will be to construct transfer matrices (with continuously varying spectral parameter) compatible with certain scale invariance properties. Since the Hamiltonian is the infinitesimal generator of time translation we have the mantra:
"The transfer matrix determines infinitesimal time translation."

Scale invariant states

The following construction was originally motivated by a quest (so far unsuccessful) to contstruct conformal field theory directly from a subfactor. It can also be thought of as a reversal of the idea of block spin renormalisation (Kadanoff/Wilson).

Scale invariant states

The following construction was originally motivated by a quest (so far unsuccessful) to contstruct conformal field theory directly from a subfactor. It can also be thought of as a reversal of the idea of block spin renormalisation (Kadanoff/Wilson).We want to construct a Hilbert space associated with the circle by building it up from Hilbert spaces associated with finitely many points.

Scale invariant states

The following construction was originally motivated by a quest (so far unsuccessful) to contstruct conformal field theory directly from a subfactor. It can also be thought of as a reversal of the idea of block spin renormalisation (Kadanoff/Wilson).We want to construct a Hilbert space associated with the circle by building it up from Hilbert spaces associated with finitely many points. To this end we need a way of increasing the size of a given finite set.

Scale invariant states

The following construction was originally motivated by a quest (so far unsuccessful) to contstruct conformal field theory directly from a subfactor. It can also be thought of as a reversal of the idea of block spin renormalisation (Kadanoff/Wilson).We want to construct a Hilbert space associated with the circle by building it up from Hilbert spaces associated with finitely many points. To this end we need a way of increasing the size of a given finite set. We will do this using a linear isometry

$$
R \in \operatorname{End}(\mathcal{H}, \mathcal{H} \otimes \mathcal{H})
$$

Scale invariant states

The following construction was originally motivated by a quest (so far unsuccessful) to contstruct conformal field theory directly from a subfactor. It can also be thought of as a reversal of the idea of block spin renormalisation (Kadanoff/Wilson).We want to construct a Hilbert space associated with the circle by building it up from Hilbert spaces associated with finitely many points. To this end we need a way of increasing the size of a given finite set. We will do this using a linear isometry

$$
R \in \operatorname{End}(\mathcal{H}, \mathcal{H} \otimes \mathcal{H})
$$

(The adjoint R^{*} would be the spin blocking operator.)
The isometry condition is :

Equipped with this R we may now construct an increasing family of Hilbert spaces \mathfrak{H}_{n} of dimension $(\operatorname{dim\mathcal {H}})^{2^{n}}$ by embedding $\otimes^{2^{n}} \mathcal{H}$ in $\otimes^{2^{n+1}} \mathcal{H}$ via the following tensor network (planar tangle):

If we choose a unit vector Ω in \mathcal{H} it defines a vector Ω in each $\otimes^{2^{n}} \mathcal{H}$ via the above embedding. We will call it the vacuum vector.

Definition
 The Hilbert space \mathfrak{H}_{R} defined as the direct limit of the above increasing sequence of Hilbert spaces will be called the semicontinous limit of the quantum spin chain.

Definition

The Hilbert space \mathfrak{H}_{R} defined as the direct limit of the above increasing sequence of Hilbert spaces will be called the semicontinous limit of the quantum spin chain. Osborne, Vidal.

Abstract

Definition The Hilbert space \mathfrak{H}_{R} defined as the direct limit of the above increasing sequence of Hilbert spaces will be called the semicontinous limit of the quantum spin chain. Osborne, Vidal.

Note that the vacuum vector $\Omega \in \mathfrak{H}_{R}$ should be thought of as below:

Definition

The Hilbert space \mathfrak{H}_{R} defined as the direct limit of the above increasing sequence of Hilbert spaces will be called the semicontinous limit of the quantum spin chain. Osborne, Vidal.

Note that the vacuum vector $\Omega \in \mathfrak{H}_{R}$ should be thought of as below:

Definition

The Hilbert space \mathfrak{H}_{R} defined as the direct limit of the above increasing sequence of Hilbert spaces will be called the semicontinous limit of the quantum spin chain. Osborne, Vidal.

Note that the vacuum vector $\Omega \in \mathfrak{H}_{R}$ should be thought of as below:

From now on we will tend to suppress R

Theorem
 Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit.

Theorem

Thompson's groups F and T of homeomorphisms defined by local scaling transformations act unitarily on the semicontinuous limit. By local scaling transformations....

At this stage the semicontinous limit and the vaccum vector have nothing to do with the placement of points on the line. The branches of the tree defining Ω could swing freely. People in the block spin renormalisation game encountered the same difficulty and Evenbly and Vidal invented the MERA, which introduces unitary "disentanglers" to tie up the branches of the tree like moss in Savannah

At this stage the semicontinous limit and the vaccum vector have nothing to do with the placement of points on the line. The branches of the tree defining Ω could swing freely. People in the block spin renormalisation game encountered the same difficulty and Evenbly and Vidal invented the MERA, which introduces unitary "disentanglers" to tie up the branches of the tree like moss in Savannah

They obtain good numerical agreement with CFT by optimizing the disentanglers. We will stick with the tree, not expecting to get CFT any more, but as soon as we thing about how motions on the line, e.g.rotations, act then we are dealing with states of a quantum spin chain.

They obtain good numerical agreement with CFT by optimizing the disentanglers. We will stick with the tree, not expecting to get CFT any more, but as soon as we thing about how motions on the line, e.g.rotations, act then we are dealing with states of a quantum spin chain. . We want to investigate properties of such states. Are such states relevant for physics?

They obtain good numerical agreement with CFT by optimizing the disentanglers. We will stick with the tree, not expecting to get CFT any more, but as soon as we thing about how motions on the line, e.g.rotations, act then we are dealing with states of a quantum spin chain. . We want to investigate properties of such states. Are such states relevant for physics?They certainly exhibit SCALE INVARIANCE so according to the yoga of Criticality/Phase transition, we might look for them at a QUANTUM PHASE TRANSITION.

They obtain good numerical agreement with CFT by optimizing the disentanglers. We will stick with the tree, not expecting to get CFT any more, but as soon as we thing about how motions on the line, e.g.rotations, act then we are dealing with states of a quantum spin chain. . We want to investigate properties of such states. Are such states relevant for physics?They certainly exhibit SCALE INVARIANCE so according to the yoga of Criticality/Phase transition, we might look for them at a QUANTUM PHASE TRANSITION. Also if the detailed spin manipulation required by quantum computers is achieved, the gates available should be enough to put a system in such a state.

They obtain good numerical agreement with CFT by optimizing the disentanglers. We will stick with the tree, not expecting to get CFT any more, but as soon as we thing about how motions on the line, e.g.rotations, act then we are dealing with states of a quantum spin chain.
. We want to investigate properties of such states. Are such states relevant for physics?They certainly exhibit SCALE INVARIANCE so according to the yoga of Criticality/Phase transition, we might look for them at a QUANTUM PHASE TRANSITION. Also if the detailed spin manipulation required by quantum computers is achieved, the gates available should be enough to put a system in such a state. The first thing I want to investigate is how the ROTATION $\rho_{\frac{1}{2^{n}}}$ by $\frac{1}{2^{n}}$ acts on states. In particular I want to calculate

$$
<\rho_{\frac{1}{2^{n}}}(\xi), \eta>
$$

They obtain good numerical agreement with CFT by optimizing the disentanglers. We will stick with the tree, not expecting to get CFT any more, but as soon as we thing about how motions on the line, e.g.rotations, act then we are dealing with states of a quantum spin chain.
. We want to investigate properties of such states. Are such states relevant for physics?They certainly exhibit SCALE INVARIANCE so according to the yoga of Criticality/Phase transition, we might look for them at a QUANTUM PHASE TRANSITION. Also if the detailed spin manipulation required by quantum computers is achieved, the gates available should be enough to put a system in such a state.
The first thing I want to investigate is how the ROTATION $\rho_{\frac{1}{2^{n}}}$ by $\frac{1}{2^{n}}$ acts on states. In particular I want to calculate

$$
<\rho_{\frac{1}{2^{n}}}(\xi), \eta>
$$

Suppose that ξ and η are actually in some space $\otimes^{2^{k}} \mathcal{H}$. The following picture is $\left\langle\rho_{\frac{1}{2^{k+n+1}}} \xi, \eta\right\rangle$ which we illustrate here for $k=1$ and $n=3$.

They obtain good numerical agreement with CFT by optimizing the disentanglers. We will stick with the tree, not expecting to get CFT any more, but as soon as we thing about how motions on the line, e.g.rotations, act then we are dealing with states of a quantum spin chain.
. We want to investigate properties of such states. Are such states relevant for physics?They certainly exhibit SCALE INVARIANCE so according to the yoga of Criticality/Phase transition, we might look for them at a QUANTUM PHASE TRANSITION. Also if the detailed spin manipulation required by quantum computers is achieved, the gates available should be enough to put a system in such a state.
The first thing I want to investigate is how the ROTATION $\rho_{\frac{1}{2^{n}}}$ by $\frac{1}{2^{n}}$ acts on states. In particular I want to calculate

$$
<\rho_{\frac{1}{2^{n}}}(\xi), \eta>
$$

Suppose that ξ and η are actually in some space $\otimes^{2^{k}} \mathcal{H}$. The following picture is $\left\langle\rho_{\frac{1}{2^{k+n+1}}} \xi, \eta\right\rangle$ which we illustrate here for $k=1$ and $n=3$.

Now all the regions in the blue dotted circles can be isotoped to look like

so if we call x the element inside the box with 4 legs, the
picture becomes:

We recognise the transfer matrix $T_{2^{n+k}}(x)$!
Thus " The transfer matrix determines infinitesimal space translation". If we are in one dimension and time=space then we have recovered our previous mantra in a topsy turvy fashion!

We recognise the transfer matrix $T_{2^{n+k}}(x)$!
Thus " The transfer matrix determines infinitesimal space translation". If we are in one dimension and time=space then we have recovered our previous mantra in a topsy turvy fashion!

Definition

We define the quadratic renormalisation map $\mathcal{R}(x)$ by

We see the inner product formula becomes (if $y=\mathcal{R}(x)$):
η

We see the inner product formula becomes (if $y=\mathcal{R}(x)$):
η

Continuing in this way we see that

$$
\left\langle\rho_{\frac{1}{2^{k+n+1}}} \xi, \eta\right\rangle=\left\langle T_{2^{k}}\left(\mathcal{R}^{n}(x)\right) \xi, \eta\right\rangle
$$

In order to proceed further we need to give a specific model, i.e. a specific element R.

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R.

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R. If you are still not happy with planar algebras you may stick with tensor networks with $\operatorname{dim}(\mathcal{H})=3$ and suppose all tensors are fixed by the action of $S O(3)$.

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R. If you are still not happy with planar algebras you may stick with tensor networks with $\operatorname{dim}(\mathcal{H})=3$ and suppose all tensors are fixed by the action of $S O(3)$. There is then a unique choice of R up to phase.

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R. If you are still not happy with planar algebras you may stick with tensor networks with $\operatorname{dim}(\mathcal{H})=3$ and suppose all tensors are fixed by the action of $S O(3)$. There is then a unique choice of R up to phase. Planar algebras (or in this case just quantum groups) allow you to deform this and add new parameter.

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R. If you are still not happy with planar algebras you may stick with tensor networks with $\operatorname{dim}(\mathcal{H})=3$ and suppose all tensors are fixed by the action of $S O(3)$. There is then a unique choice of R up to phase. Planar algebras (or in this case just quantum groups) allow you to deform this and add new parameter. In this case R is rotationally invariant so we may suppress it with impunity and just use a trivalent vertex.

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R. If you are still not happy with planar algebras you may stick with tensor networks with $\operatorname{dim}(\mathcal{H})=3$ and suppose all tensors are fixed by the action of $S O(3)$. There is then a unique choice of R up to phase. Planar algebras (or in this case just quantum groups) allow you to deform this and add new parameter. In this case R is rotationally invariant so we may suppress it with impunity and just use a trivalent vertex. See a very interesting paper by Morrison Peters and Snyder on categories generated by a trivalent vertex. We begin by calculating \mathcal{R} explicitly. For this we use the basis $\left\{\frac{1}{1}, \gamma, \gamma\right\}$ of Q_{4} (tensors with 4 legs)

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R. If you are still not happy with planar algebras you may stick with tensor networks with $\operatorname{dim}(\mathcal{H})=3$ and suppose all tensors are fixed by the action of $S O(3)$. There is then a unique choice of R up to phase. Planar algebras (or in this case just quantum groups) allow you to deform this and add new parameter. In this case R is rotationally invariant so we may suppress it with impunity and just use a trivalent vertex. See a very interesting paper by Morrison Peters and Snyder on categories generated by a trivalent vertex. We begin by calculating \mathcal{R} explicitly. For this we use the basis $\left\{\frac{1}{4}, \gamma, \gamma\right\}$ of Q_{4} (tensors with 4 legs) and write an arbitrary element of Q_{4} as

$$
\left.a=p \frac{1}{1}+q\right)^{\lambda}+r .
$$

The following is a complete set of relations to do all calculations:

In order to proceed further we need to give a specific model, i.e. a specific element R. Here we take advantage of planar algebras where there are examples where there is NO CHOICE in the element R. If you are still not happy with planar algebras you may stick with tensor networks with $\operatorname{dim}(\mathcal{H})=3$ and suppose all tensors are fixed by the action of $S O(3)$. There is then a unique choice of R up to phase. Planar algebras (or in this case just quantum groups) allow you to deform this and add new parameter. In this case R is rotationally invariant so we may suppress it with impunity and just use a trivalent vertex. See a very interesting paper by Morrison Peters and Snyder on categories generated by a trivalent vertex. We begin by calculating \mathcal{R} explicitly. For this we use the basis $\left\{\frac{1}{1}, \gamma, \gamma\right\}$ of Q_{4} (tensors with 4 legs) and write an arbitrary element of Q_{4} as

$$
\left.a=p \frac{1}{1}+q\right)^{\lambda}+r .
$$

The following is a complete set of relations to do all calculations:

$$
P=0,\rangle\left\langle-Y=\frac{d-2}{d-1}(\asymp-)(\text {), and of course unitarity, }\right.
$$

With these relations it is not hard to show that:

$$
\begin{aligned}
& \mathcal{R}(a)=\left\{\frac{d^{2}-5 d+7}{(d-1)^{2}} p^{2}+2 p q+2 \frac{d-2}{d-1} p r+q^{2}+r^{2}\right\} \\
& \left\{\frac{1}{(d-1)^{3}} p^{2}+\frac{1}{d-1}\left(2 p q+q^{2}\right)\right\} \\
& +\left\{\frac{d^{2}-3 d+3}{(d-1)^{3}} p^{2}+\frac{1}{d-1}\left(2 p q+q^{2}\right)\right\}
\end{aligned}
$$

With these relations it is not hard to show that:
$\mathcal{R}(a)=\left\{\frac{d^{2}-5 d+7}{(d-1)^{2}} p^{2}+2 p q+2 \frac{d-2}{d-1} p r+q^{2}+r^{2}\right\}+$
$\left\{\frac{1}{(d-1)^{3}} p^{2}+\frac{1}{d-1}\left(2 p q+q^{2}\right)\right\}$
$+\left\{\frac{d^{2}-3 d+3}{(d-1)^{3}} p^{2}+\frac{1}{d-1}\left(2 p q+q^{2}\right)\right\}$
Note that d in the above is the quantum dimension which can be $4 \cos ^{2} \pi / n-1$ for $n=6,7,8, \cdots$ and $d=3$ is the case of $S O(3)$-invariant tensors.

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$
b) For $d>2$ in the allowed range, $\lim _{n \rightarrow \infty} \mathcal{R}^{n}(x)=0$.

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$
b) For $d>2$ in the allowed range, $\lim _{n \rightarrow \infty} \mathcal{R}^{n}(x)=0$.

I have been unable to determine exactly how fast $\mathcal{R}^{n}(x)$ tends to zero but it is at least as fast as $2^{-2^{n}}$.

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$
b) For $d>2$ in the allowed range, $\lim _{n \rightarrow \infty} \mathcal{R}^{n}(x)=0$.

I have been unable to determine exactly how fast $\mathcal{R}^{n}(x)$ tends to zero but it is at least as fast as $2^{-2^{n}}$.
In any case we see that $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero as $n \rightarrow \infty$ in case b) but NOT in case a)

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$
b) For $d>2$ in the allowed range, $\lim _{n \rightarrow \infty} \mathcal{R}^{n}(x)=0$.

I have been unable to determine exactly how fast $\mathcal{R}^{n}(x)$ tends to zero but it is at least as fast as $2^{-2^{n}}$.
In any case we see that $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero as $n \rightarrow \infty$ in case b) but NOT in case a)
It is hard to know what to make of these results but they certainly show different QUALITATIVE behaviours of these states.

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$
b) For $d>2$ in the allowed range, $\lim _{n \rightarrow \infty} \mathcal{R}^{n}(x)=0$.

I have been unable to determine exactly how fast $\mathcal{R}^{n}(x)$ tends to zero but it is at least as fast as $2^{-2^{n}}$.
In any case we see that $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero as $n \rightarrow \infty$ in case b) but NOT in case a)
It is hard to know what to make of these results but they certainly show different QUALITATIVE behaviours of these states. Should case b) be interpreted as some kind of spatial exponential white noise?

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$
b) For $d>2$ in the allowed range, $\lim _{n \rightarrow \infty} \mathcal{R}^{n}(x)=0$.

I have been unable to determine exactly how fast $\mathcal{R}^{n}(x)$ tends to zero but it is at least as fast as $2^{-2^{n}}$.
In any case we see that $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero as $n \rightarrow \infty$ in case b) but NOT in case a)
It is hard to know what to make of these results but they certainly show different QUALITATIVE behaviours of these states. Should case b) be interpreted as some kind of spatial exponential white noise?Or as some kind of exponential resonance as the spins line up?

We see that rotation is determined by ITERATING the above quadratic transfromation of \mathbb{R}^{3}.
Some calculations show that
a) If $d=2, \mathcal{R}^{n}(x)= \begin{cases}x & \text { if } n \text { is even } \\ x^{*} & \text { if } n \text { is odd }\end{cases}$
b) For $d>2$ in the allowed range, $\lim _{n \rightarrow \infty} \mathcal{R}^{n}(x)=0$.

I have been unable to determine exactly how fast $\mathcal{R}^{n}(x)$ tends to zero but it is at least as fast as $2^{-2^{n}}$.
In any case we see that $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero as $n \rightarrow \infty$ in case b) but NOT in case a)
It is hard to know what to make of these results but they certainly show different QUALITATIVE behaviours of these states. Should case b) be interpreted as some kind of spatial exponential white noise?Or as some kind of exponential resonance as the spins line up?

In either case it is a very structured white noise as we may renormalise by the rate at which $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero to obtain Two quadratic forms on the semicontinous limit to which the renormalised $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ converge.

In either case it is a very structured white noise as we may renormalise by the rate at which $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero to obtain Two quadratic forms on the semicontinous limit to which the renormalised $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ converge.
Indeed, define

$$
[\xi, \eta]_{n}=\frac{<\rho_{\frac{1}{2^{n}}}(\xi), \eta>}{<\rho_{\frac{1}{2^{n}}}(\Omega), \Omega>}
$$

Theorem

There are two quadratic forms on $\mathfrak{H}_{R}, Q_{ \pm}$such that

$$
\lim _{n \rightarrow \infty}[\xi, \eta]_{2 n}=Q_{+}(\xi, \eta)
$$

and

$$
\lim _{n \rightarrow \infty}[\xi, \eta]_{2 n+1}=Q_{-}(\xi, \eta)
$$

In either case it is a very structured white noise as we may renormalise by the rate at which $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ tends to zero to obtain Two quadratic forms on the semicontinous limit to which the renormalised $<\rho_{\frac{1}{2^{n}}}(\xi), \eta>$ converge.
Indeed, define

$$
[\xi, \eta]_{n}=\frac{<\rho_{\frac{1}{2^{n}}}(\xi), \eta>}{<\rho_{\frac{1}{2^{n}}}(\Omega), \Omega>}
$$

Theorem

There are two quadratic forms on $\mathfrak{H}_{R}, Q_{ \pm}$such that

$$
\lim _{n \rightarrow \infty}[\xi, \eta]_{2 n}=Q_{+}(\xi, \eta)
$$

and

$$
\lim _{n \rightarrow \infty}[\xi, \eta]_{2 n+1}=Q_{-}(\xi, \eta)
$$

These two quadratic forms should no doubt be called topsy turvy momenta....
$Q_{ \pm}$are obtained by examining \mathcal{R} on projective space where it becomes a pair of RATIONAL functions of two real variables.
$Q_{ \pm}$are obtained by examining \mathcal{R} on projective space where it becomes a pair of RATIONAL functions of two real variables. The two quadratic forms correspond to an attractive orbit of period 2 under \mathcal{R}.
$Q_{ \pm}$are obtained by examining \mathcal{R} on projective space where it becomes a pair of RATIONAL functions of two real variables. The two quadratic forms correspond to an attractive orbit of period 2 under \mathcal{R}. These two periodic points can be lifted uniquely as fixed points $\lambda_{ \pm}$for \mathcal{R}^{2} and using them as the spectral parameter for T one obtains well defined quadratic forms whose domains are all vectors in the finite dimensional approximations to the semicontinuous limit.
$Q_{ \pm}$are obtained by examining \mathcal{R} on projective space where it becomes a pair of RATIONAL functions of two real variables. The two quadratic forms correspond to an attractive orbit of period 2 under \mathcal{R}. These two periodic points can be lifted uniquely as fixed points $\lambda_{ \pm}$for \mathcal{R}^{2} and using them as the spectral parameter for T one obtains well defined quadratic forms whose domains are all vectors in the finite dimensional approximations to the semicontinuous limit. Here is a picture of the interesting points in \mathbb{R}^{2} for the projectivised renormalisation.

Points will generally tend under iteration of \mathcal{R}^{2} to either q_{+}or q_{-}:

Points will generally tend under iteration of \mathcal{R}^{2} to either q_{+}or q_{-}:

Scale invariant fractal behaviour can be observed by dividing the plane according to which of these two a point converges.

This raises the question of whether there is a scale-invariant transfer matrix defined on the semicontinuous limit with continuously varying spectral parameter.

This raises the question of whether there is a scale-invariant transfer matrix defined on the semicontinuous limit with continuously varying spectral parameter.lt is clear from the calculations we have done that the quadratic form defined by $T(\lambda)$ on $\otimes^{2^{n}} \mathcal{H}$ will extend to $T(\mu)$ on $\otimes^{2^{n+1}} \mathcal{H}$ provided $\mathcal{R}(\mu)=\lambda$.

This raises the question of whether there is a scale-invariant transfer matrix defined on the semicontinuous limit with continuously varying spectral parameter.lt is clear from the calculations we have done that the quadratic form defined by $T(\lambda)$ on $\otimes^{2^{n}} \mathcal{H}$ will extend to $T(\mu)$ on $\otimes^{2^{n+1}} \mathcal{H}$ provided $\mathcal{R}(\mu)=\lambda$.
Thus the value of a T on the semicontinuous limit will be determined by BACK ITERATING the dynamical system \mathcal{R}.

This raises the question of whether there is a scale-invariant transfer matrix defined on the semicontinuous limit with continuously varying spectral parameter.lt is clear from the calculations we have done that the quadratic form defined by $T(\lambda)$ on $\otimes^{2^{n}} \mathcal{H}$ will extend to $T(\mu)$ on $\otimes^{2^{n+1}} \mathcal{H}$ provided $\mathcal{R}(\mu)=\lambda$.
Thus the value of a T on the semicontinuous limit will be determined by BACK ITERATING the dynamical system \mathcal{R}. In this particular case there is no guarantee that a given point in \mathbb{R}^{2} is in the image of \mathbb{R}.

This raises the question of whether there is a scale-invariant transfer matrix defined on the semicontinuous limit with continuously varying spectral parameter.lt is clear from the calculations we have done that the quadratic form defined by $T(\lambda)$ on $\otimes^{2^{n}} \mathcal{H}$ will extend to $T(\mu)$ on $\otimes^{2^{n+1}} \mathcal{H}$ provided $\mathcal{R}(\mu)=\lambda$.
Thus the value of a T on the semicontinuous limit will be determined by BACK ITERATING the dynamical system \mathcal{R}. In this particular case there is no guarantee that a given point in \mathbb{R}^{2} is in the image of \mathbb{R}. But if we solve for $\mathcal{R}(x)=q$ - there is of course the solution $q+$ but also another solution depending on a sign. Choosing that other sign gives a method of backiterating \mathcal{R} which converges rapidly to the repelling fixed point!

This raises the question of whether there is a scale-invariant transfer matrix defined on the semicontinuous limit with continuously varying spectral parameter.lt is clear from the calculations we have done that the quadratic form defined by $T(\lambda)$ on $\otimes^{2^{n}} \mathcal{H}$ will extend to $T(\mu)$ on $\otimes^{2^{n+1}} \mathcal{H}$ provided $\mathcal{R}(\mu)=\lambda$.
Thus the value of a T on the semicontinuous limit will be determined by BACK ITERATING the dynamical system \mathcal{R}. In this particular case there is no guarantee that a given point in \mathbb{R}^{2} is in the image of \mathbb{R}. But if we solve for $\mathcal{R}(x)=q_{-}$there is of course the solution $q+$ but also another solution depending on a sign. Choosing that other sign gives a method of backiterating \mathcal{R} which converges rapidly to the repelling fixed point! Thus there is a neighbourhood of q_{-}which can be indefnitintely back-iterated and whose backiterates converge to the repelling fixed point.

This raises the question of whether there is a scale-invariant transfer matrix defined on the semicontinuous limit with continuously varying spectral parameter.lt is clear from the calculations we have done that the quadratic form defined by $T(\lambda)$ on $\otimes^{2^{n}} \mathcal{H}$ will extend to $T(\mu)$ on $\otimes^{2^{n+1}} \mathcal{H}$ provided $\mathcal{R}(\mu)=\lambda$.
Thus the value of a T on the semicontinuous limit will be determined by BACK ITERATING the dynamical system \mathcal{R}. In this particular case there is no guarantee that a given point in \mathbb{R}^{2} is in the image of \mathbb{R}. But if we solve for $\mathcal{R}(x)=q_{-}$there is of course the solution $q+$ but also another solution depending on a sign. Choosing that other sign gives a method of backiterating \mathcal{R} which converges rapidly to the repelling fixed point! Thus there is a neighbourhood of q_{-}which can be indefnitintely back-iterated and whose backiterates converge to the repelling fixed point. Thus we do get a transfer matrix, in the sense of quadratic forms, with continuously varying spectral parameter.

Rational functions of one complex variable

We have been investigating the $S O(3)$ invariant tensor example and come up with a transformation of real projective space.

Rational functions of one complex variable

We have been investigating the $S O(3)$ invariant tensor example and come up with a transformation of real projective space.But the most intensively studied dynamical systems are the rational functions on $\mathbb{C} P^{1}$.

Rational functions of one complex variable

We have been investigating the $S O(3)$ invariant tensor example and come up with a transformation of real projective space.But the most intensively studied dynamical systems are the rational functions on $\mathbb{C} P^{1}$. In fact there are scale invariant models for which we end up with rational functions on $\mathbb{C} P^{1}$ on the nose!

Rational functions of one complex variable

We have been investigating the $S O(3)$ invariant tensor example and come up with a transformation of real projective space.But the most intensively studied dynamical systems are the rational functions on $\mathbb{C} P^{1}$. In fact there are scale invariant models for which we end up with rational functions on $\mathbb{C} P^{1}$ on the nose!. In fact they arise in a physically natural way if we want each spin of a spin chain to be present at subsequent finer scales.

Rational functions of one complex variable

We have been investigating the $S O(3)$ invariant tensor example and come up with a transformation of real projective space.But the most intensively studied dynamical systems are the rational functions on $\mathbb{C} P^{1}$. In fact there are scale invariant models for which we end up with rational functions on $\mathbb{C} P^{1}$ on the nose!. In fact they arise in a physically natural way if we want each spin of a spin chain to be present at subsequent finer scales. Thus we will take an R with 4 legs and embedd the tensor powers of \mathcal{H} one into the next according to the pattern:

Then we may use ordinary Temperley Lieb (SU(2) invariant tensors) and choose R to be any element with 4 legs satisfying $R R^{*}=1$.

Then we may use ordinary Temperley Lieb (SU(2) invariant tensors) and choose R to be any element with 4 legs satisfying $R R^{*}=1$. The renormalisation transformation is then a quadratic from a 2-dimensional space to itself.

Then we may use ordinary Temperley Lieb (SU(2) invariant tensors) and choose R to be any element with 4 legs satisfying $R R^{*}=1$. The renormalisation transformation is then a quadratic from a 2-dimensional space to itself. Now of course the choice of R is not unique at all and various choices suggest themselves.

Then we may use ordinary Temperley Lieb (SU(2) invariant tensors) and choose R to be any element with 4 legs satisfying $R R^{*}=1$. The renormalisation transformation is then a quadratic from a 2-dimensional space to itself. Now of course the choice of R is not unique at all and various choices suggest themselves. If we choose the braid (crossing) for R we obtain the following transformation: (for $\delta=2 \cos \pi / 8$):

Then we may use ordinary Temperley Lieb (SU(2) invariant tensors) and choose R to be any element with 4 legs satisfying $R R^{*}=1$. The renormalisation transformation is then a quadratic from a 2-dimensional space to itself. Now of course the choice of R is not unique at all and various choices suggest themselves. If we choose the braid (crossing) for R we obtain the following transformation: (for $\delta=2 \cos \pi / 8$):

$$
\frac{(-1+i)+z-(1-2 i) \sqrt{2} z+((-1+i)+\sqrt{2}) z^{2}}{1-i \sqrt{2}+(-2 i+\sqrt{2}) z}
$$

Then we may use ordinary Temperley Lieb (SU(2) invariant tensors) and choose R to be any element with 4 legs satisfying $R R^{*}=1$. The renormalisation transformation is then a quadratic from a 2-dimensional space to itself. Now of course the choice of R is not unique at all and various choices suggest themselves. If we choose the braid (crossing) for R we obtain the following transformation: (for $\delta=2 \cos \pi / 8$):

$$
\frac{(-1+i)+z-(1-2 i) \sqrt{2} z+((-1+i)+\sqrt{2}) z^{2}}{1-i \sqrt{2}+(-2 i+\sqrt{2}) z}
$$

And here is a picture of its Julia set.

