Homotopical linear quantum Yang-Mills

Simen Bruinsma

School of Mathematical Sciences, University of Nottingham

44th LQP Workshop "Foundations and Constructive Aspects of QFT", 25-10-2019

Based on joint work with Marco Benini and Alexander Schenkel [Commun. Math. Phys. (2019)] 1. Gauge theory and higher structure

2. Linear Yang-Mills

3. Quantization

Gauge theory and higher structure

Gauge theory and higher structure

Main idea: gauge fields naturally carry higher structures

Weaker notion than equality: equivalence

Technical challenge: constructions must respect weak equivalences (model category theory or higher category theory)

Simen Bruinsma

Gauge theory and higher structure

So gauge fields naturally carry higher structures... ...and these structures are important:

- \diamond Naive gauge orbit space (quotient) does not have all information e.g. for $\mathbf{B}G^{\mathrm{con}}$ it cannot distinguish between structure groups \mathbb{R} and U(1)
- Constructing global fields from local fields:

$$\mathbf{B}G^{\mathrm{con}}(M) = \operatorname{holim}\left(\prod_{i} \mathbf{B}G^{\mathrm{con}}(U_{i}) \rightrightarrows \prod_{ij} \mathbf{B}G^{\mathrm{con}}(U_{ij}) \rightrightarrows \prod_{ijk} \mathbf{B}G^{\mathrm{con}}(U_{ijk}) \cdots\right)$$

homotopy limit allows for gluing up to gauge transformations

◊ We'll see: BV/BRST structures arise from taking a derived critical locus

Linear gauge theory can be described by chain complexes

def A chain complex is a sequence of vector spaces with a differential d

$$C_{\bullet} = \left(\dots \xleftarrow{d} C_{n-1} \xleftarrow{d} C_n \xleftarrow{d} C_{n+1} \xleftarrow{d} \dots \right)$$

such that $d^2 = 0$

def The homology of a chain complex is

$$H_n(C_{\bullet}) = \ker \left(C_{n-1} \xleftarrow{d} C_n \right) / \operatorname{im} \left(C_n \xleftarrow{d} C_{n+1} \right)$$

def A quasi-isomorphism of chain complexes is a map that induces an isomorphism on homology

These are our weak equivalences

Linear Yang-Mills

Input data

Start with:

- $\diamond\,$ A globally hyperbolic spacetime M
- $\diamond\,$ The linear gauge field complex with structure group $\mathbb R$

$$\mathfrak{F}(M) = \left(\begin{array}{c} \Omega^{1}(M) \xleftarrow{\mathrm{d}} \Omega^{0}(M) \end{array} \right)$$

So gauge fields $A\in \Omega^1(M),$ gauge transformations $\epsilon\in \Omega^0(M)$:

$$A \to A + \mathrm{d}\epsilon$$

An action

$$S(A) = \frac{1}{2} \int_M \mathrm{d} A \wedge \ast \mathrm{d} A$$

yields equation of motion

$$\delta dA = 0$$

The solution complex

def Solution complex $\mathfrak{Sol}(M)$: implement the equation of motion

 $\delta_{\rm var}S=0$

in a way that preserves equivalences: derived critical locus

$$\begin{split} \mathfrak{Sol}(M) & - \to \mathfrak{F}(M) \\ & \downarrow & & \downarrow \\ \mathfrak{F}(M) \xrightarrow{h} & & \downarrow \\ \mathfrak{F}(M) \xrightarrow{0} T^* \mathfrak{F}(M) \end{split}$$

Proposition

A model for $\mathfrak{Sol}(M)$ is given by:

$$\mathfrak{Sol}(M) = \left(\begin{array}{c} \Omega^{(-2)} \\ \Omega^{0}(M) \\ \xleftarrow{\delta} \\ \Omega^{1}(M) \\ \xleftarrow{\delta d} \\ \Omega^{1}(M) \\ \xleftarrow{\delta d} \\ \Omega^{1}(M) \\ \xleftarrow{d} \\ \Omega^{0}(M) \end{array} \right)$$

We recover BV/BRST fields:

gauge fields A in degree 0 ghost fields c in degree 1

antifields A^{\ddagger} and c^{\ddagger} in degrees -1 and -2

Homotopical linear quantum Yang-Mills

Linear observables

def Smooth dual complex :

with integration pairing: $\alpha \in \mathcal{L}(M)_k$, $\beta \in \mathfrak{Sol}(M)_{-k}$

$$\langle \alpha,\beta\rangle = \int_M \alpha\wedge *\beta$$

rmk Because

$$j: \mathcal{L}(M) \hookrightarrow \mathfrak{Sol}(M)[1]$$

one gets a canonical shifted Poisson structure on $\mathcal{L}(M)$ (BV: antibracket)

$$\Upsilon: \mathcal{L}(M) \otimes \mathcal{L}(M) \xrightarrow{\mathrm{id} \otimes j} \mathcal{L}(M) \otimes \mathfrak{Sol}(M)[1] \xrightarrow{\langle \cdot \, , \, \cdot \, \rangle} \mathbb{R}[1]$$

rmk M is globally hyperbolic: also past compact (\mathcal{L}_{pc}) and future compact (\mathcal{L}_{fc}) support So j factors:

$$j:\mathcal{L}(M) \hookrightarrow \mathcal{L}_{\mathrm{pc/fc}}(M) \hookrightarrow \mathfrak{Sol}(M)[1]$$

Proposition

so ic

Because M is globally hyperbolic, \mathcal{L}_{pc} (and \mathcal{L}_{fc}) allows for a contracting homotopy:

$$\begin{split} \Omega^{0}_{\mathrm{pc}}(M) & \longleftarrow^{-\delta} \Omega^{1}_{\mathrm{pc}}(M) \xleftarrow{\delta \mathrm{d}} \Omega^{1}_{\mathrm{pc}}(M) \xleftarrow{-\mathrm{d}} \Omega^{0}_{\mathrm{pc}}(M) \\ & \underset{\mathrm{id}}{\overset{\mathrm{id}}{\longrightarrow}} \overset{-G_{\square}^{+}\mathrm{d}}{\overset{\mathrm{id}}{\longrightarrow}} \overset{\mathrm{d}}{\longrightarrow} \overset{-\delta G_{\square}^{+}}{\overset{\mathrm{id}}{\longrightarrow}} \underset{\mathcal{A}}{\overset{\mathrm{id}}{\longrightarrow}} \overset{-\delta G_{\square}^{+}}{\overset{\mathrm{id}}{\longrightarrow}} \underset{\mathcal{A}}{\overset{\mathrm{id}}{\longrightarrow}} \Omega^{0}_{\mathrm{pc}}(M) \\ & \Omega^{0}_{\mathrm{pc}}(M) \xleftarrow{-\delta} \Omega^{1}_{\mathrm{pc}}(M) \xleftarrow{\delta \mathrm{d}} \Omega^{1}_{\mathrm{pc}}(M) \xleftarrow{-\mathrm{d}} \Omega^{0}_{\mathrm{pc}}(M) \\ & \mathcal{L}_{\mathrm{pc/fc}} = \partial \mathcal{G}^{\pm} \text{ and hence } \Upsilon = \partial (\langle \cdot , \cdot \rangle \circ \mathrm{id} \otimes \mathcal{G}^{\pm}) \end{split}$$

 G^+_{\Box} is the retarded Green operator for the d'Alembertian $\Box=\delta d+d\delta$

rmk We call \mathcal{G}^{\pm} retarded and advanced trivializations They are to be thought of as chain complex analogues of retarded and advanced Green operators

Simen Bruinsma

Unshifted Poisson structures

Using the trivializations \mathcal{G}^{\pm} , natural inclusions and the integration pairing we get: \diamond a causal propagator

$$\mathcal{G} = \mathcal{G}^+ - \mathcal{G}^- : \mathcal{L}(M) \to \mathfrak{Sol}(M)$$

an unshifted Poisson structure

rmk These structures are uniquely defined up to homotopy:

$$\mathcal{G}^{\pm} \simeq \mathcal{G}^{\pm} + \partial g^{\pm}$$

 $\tau \simeq \tau + \partial
ho$

rmk Following the same procedure for Klein-Gordon theory, we get the usual Poisson structure

Simen Bruinsma

Quantization

A Poisson structure allows us to canonically quantize:

$$\begin{split} \mathfrak{CCR} : \mathbf{PoCh}_{\mathbb{R}} &\longrightarrow \mathbf{dg}^* \mathbf{Alg}_{\mathbb{C}} \\ (V, \tau) &\longmapsto T_{\mathbb{C}}^{\otimes} V \big/ \mathcal{I}_{\mathrm{CCR}(\tau)} \end{split}$$

where $\mathcal{I}_{CCR(\tau)}$ is the ideal generated by canonical commutation relations

$$v\otimes w-(-1)^{|v||w|}w\otimes v-i\tau(v,w)\mathbb{1}$$

Theorem

CCR preserves quasi-isomorphisms and homotopic Poisson structures:

$$\mathfrak{CCR}(V,\tau+\partial\rho)\simeq\mathfrak{CCR}(V,\tau)$$

Quantization

cor Linear Yang-Mills theory admits a homotopically consistent quantization:

$$\begin{split} \left[\widehat{A}(\varphi_1), \widehat{A}(\varphi_2) \right] &= -i \int_M \varphi_1 \wedge *G_{\Box} \varphi_2 \ \mathbb{1} \\ \left[\widehat{A}^{\ddagger}(\alpha), \widehat{c}(\chi) \right] &= -i \int_M \alpha \wedge *G_{\Box} \mathrm{d}\chi \ \mathbb{1} \end{split}$$

for
$$\varphi_i \in \mathcal{L}(M)_0$$
, $lpha \in \mathcal{L}(M)_1$ and $\chi \in \mathcal{L}(M)_{-1}$

thm The functor

$$\begin{split} \mathfrak{A} \, : \, \mathbf{Loc} &\longrightarrow \mathbf{dg}^* \mathbf{Alg}_{\mathbb{C}} \\ & M \longmapsto \mathfrak{CCR}(\mathcal{L}(M), \tau) \end{split}$$

is a homotopy algebraic quantum field theory in the sense of [Benini,Schenkel,Woike(2019)]

- ◊ Gauge theory involves higher structures, that should be respected
- ◊ For linear Yang-Mills theory we use chain complexes and find familiar BV/BRST structures
- On globally hyperbolic manifolds we produce an unshifted Poisson structure using retarded and advanced trivializations of the shifted Poisson structure
- With this we can canonically quantize linear Yang-Mills theory in a way that preserves equivalences, producing a first example of a homotopy AQFT