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Gauge theory and higher structure
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Gauge theory and higher structure

Main idea: gauge fields naturally carry higher structures

“Ordinary” field theory Gauge theory

Φ

Φ′

Φ′′ A

A′

A′′

g

g
′

g′′

fields form a set gauge fields form a groupoid

ex BGcon(U) for U ∼= Rm:

{
Obj: A ∈ Ω1(U, g)

Mor: A
g−→ A / g := g−1Ag + g−1dg

Weaker notion than equality: equivalence

Technical challenge: constructions must respect weak equivalences
(model category theory or higher category theory)
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Gauge theory and higher structure

So gauge fields naturally carry higher structures...

...and these structures are important:

� Naive gauge orbit space (quotient) does not have all information
e.g. for BGcon it cannot distinguish between structure groups R and U(1)

� Constructing global fields from local fields:

BGcon(M) = holim
( ∏

i

BGcon(Ui)
//
//
∏
ij

BGcon(Uij) //
//

//

∏
ijk

BGcon(Uijk) · · ·
)

homotopy limit allows for gluing up to gauge transformations

� We’ll see: BV/BRST structures arise from taking a derived critical locus
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Chain complexes

Linear gauge theory can be described by chain complexes

def A chain complex is a sequence of vector spaces with a differential d

C• =
(
...

d←− Cn−1
d←− Cn

d←− Cn+1
d←− ...

)
such that d2 = 0

def The homology of a chain complex is

Hn(C•) = ker
(
Cn−1

d←− Cn
) /

im
(
Cn

d←− Cn+1

)
def A quasi-isomorphism of chain complexes is a map that induces an

isomorphism on homology

These are our weak equivalences
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Linear Yang-Mills
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Input data

Start with:

� A globally hyperbolic spacetime M

� The linear gauge field complex with structure group R

F(M) =
( (0)

Ω1(M)
(1)

Ω0(M)
doo

)
So gauge fields A ∈ Ω1(M), gauge transformations ε ∈ Ω0(M) :

A→ A+ dε

� An action

S(A) =
1

2

∫
M

dA ∧ ∗dA

yields equation of motion
δdA = 0
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The solution complex

def Solution complex Sol(M): implement the equation of motion

δvarS = 0

in a way that preserves equivalences: derived critical locus

Sol(M)

��

// F(M)

h
δvarS

��

F(M)
0
// T ∗F(M)

Proposition

A model for Sol(M) is given by:

Sol(M) =
( (−2)

Ω0(M)
(−1)

Ω1(M)
δoo

(0)

Ω1(M)
δdoo

(1)

Ω0(M)
doo

)
We recover BV/BRST fields: gauge fields A in degree 0

ghost fields c in degree 1

antifields A‡ and c‡ in degrees -1 and -2
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Linear observables

def Smooth dual complex :

L(M) =
( (−1)

Ω0
c(M)

(0)

Ω1
c(M)

−δ
oo

(1)

Ω1
c(M)

δdoo
(2)

Ω0
c(M)

−d
oo

)
with integration pairing: α ∈ L(M)k, β ∈ Sol(M)−k

〈α, β〉 =

∫
M

α ∧ ∗β

rmk Because
j : L(M) ↪→ Sol(M)[1]

one gets a canonical shifted Poisson structure on L(M) (BV: antibracket)

Υ : L(M)⊗ L(M)
id⊗j

// L(M)⊗Sol(M)[1]
〈 · , · 〉

// R[1]

rmk M is globally hyperbolic: also past compact (Lpc) and future compact (Lfc)
support
So j factors:

j : L(M) ↪→ Lpc/fc(M) ↪→ Sol(M)[1]
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Retarded/advanced trivializations

Proposition

Because M is globally hyperbolic, Lpc (and Lfc) allows for a contracting
homotopy:

Ω0
pc(M)

id

��

−G+

�
d

&&

Ω1
pc(M)

−δ
oo

id

��

G+

�

&&

Ω1
pc(M)

δdoo

id

��

−δG+

�

&&

Ω0
pc(M)

−d
oo

id

��

Ω0
pc(M) Ω1

pc(M)
−δ

oo Ω1
pc(M)

δd
oo Ω0

pc(M)
−d

oo

so idLpc/fc
= ∂G± and hence Υ = ∂(〈 · , · 〉 ◦ id⊗ G±)

G+
� is the retarded Green operator for the d’Alembertian � = δd + dδ

rmk We call G± retarded and advanced trivializations
They are to be thought of as chain complex analogues of retarded and
advanced Green operators
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Unshifted Poisson structures

Using the trivializations G±, natural inclusions and the integration pairing we get:

� a causal propagator

G = G+ − G− : L(M)→ Sol(M)

� an unshifted Poisson structure

L(M)⊗ L(M)

id⊗G
((

τ // R

L(M)⊗Sol(M)

〈 · , · 〉

88

rmk These structures are uniquely defined up to homotopy:

G± ' G± + ∂g±

τ ' τ + ∂ρ

rmk Following the same procedure for Klein-Gordon theory, we get the usual
Poisson structure
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Quantization
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Quantization

A Poisson structure allows us to canonically quantize:

CCR : PoChR −→ dg∗AlgC

(V, τ) 7−→ T⊗C V
/
ICCR(τ)

where ICCR(τ) is the ideal generated by canonical commutation relations

v ⊗ w − (−1)|v||w|w ⊗ v − iτ(v, w)1

Theorem
CCR preserves quasi-isomorphisms and homotopic Poisson structures:

CCR(V, τ + ∂ρ) ' CCR(V, τ)
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Quantization

cor Linear Yang-Mills theory admits a homotopically consistent quantization:[
Â(ϕ1), Â(ϕ2)

]
= i

∫
M

ϕ1 ∧ ∗G�ϕ2 1[
Â‡(α), ĉ(χ)

]
= −i

∫
M

α ∧ ∗G�dχ 1

for ϕi ∈ L(M)0, α ∈ L(M)1 and χ ∈ L(M)−1

thm The functor

A : Loc −→ dg∗AlgC

M 7−→ CCR(L(M), τ)

is a homotopy algebraic quantum field theory in the sense of
[Benini,Schenkel,Woike(2019)]
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Summary

� Gauge theory involves higher structures, that should be respected

� For linear Yang-Mills theory we use chain complexes and find familiar
BV/BRST structures

� On globally hyperbolic manifolds we produce an unshifted Poisson structure
using retarded and advanced trivializations of the shifted Poisson structure

� With this we can canonically quantize linear Yang-Mills theory in a way that
preserves equivalences, producing a first example of a homotopy AQFT
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