Bisognano-Wichmann property in asymptotically complete massless QFT

Wojciech Dybalski¹

joint work with Vincenzo Morinelli²

¹Technical University of Munich ²Univ. Rome Tor Vergata

Göttingen, 25.10.2019

The transformations:

- Parity: $P(t, \vec{x}) = (t, -\vec{x}),$
- 2 Time reversal: $T(t, \vec{x}) = (-t, \vec{x}),$
- Solution: C{particle} \mapsto {antiparticle},

are not necessarily symmetries of physical theories.

- O However, there is strong evidence that CPT is a symmetry.
- In mathematical QFT various CPT theorems are available. [Lüders 54, Pauli 55, Jost 57,... Guido-Longo 95].
- Bisognano-Wichmann (BW) property is an assumption in modern CPT theorems.

Outline

Relativistic Quantum Mechanics

- Poincaré group and its massless irreps U_s
- Modularity condition (MC)
- Proof of MC for $U_s \oplus U_{-s}$
- Algebraic QFT
 - Bisognano-Wichmann (BW) property
 - MC \Rightarrow BW at the single-particle level
 - Collision theory and full BW
- $\textbf{3} \quad \text{Conclusion: BW} \Rightarrow \text{CPT}$

Minkowski spacetime: (\mathbb{R}^4, η) with $\eta := \text{diag}(1, -1, -1, -1)$.

- Lorentz group: $\mathcal{L} := O(1,3) := \{ \Lambda \in GL(4,\mathbb{R}) | \Lambda \eta \Lambda^{T} = \eta \}$
- Proper ortochronous Lorentz group: L[↑]₊ connected component of unity in L.

$$\mathcal{L} = \mathcal{L}^{\uparrow}_{+} \cup T\mathcal{L}^{\uparrow}_{+} \cup P\mathcal{L}^{\uparrow}_{+} \cup TP\mathcal{L}^{\uparrow}_{+},$$

where $T(x^0, \vec{x}) = (-x^0, \vec{x})$ and $P(x^0, \vec{x}) = (x^0, -\vec{x})$.

• Covering group: $\widetilde{\mathcal{L}}^{\uparrow}_{+} = \mathrm{SL}(2,\mathbb{C}) = \{\lambda \in \mathrm{GL}(2,\mathbb{C}) \,|\, \det \lambda = 1\}$

Poincaré group

- Poincaré group: $\mathcal{P} := \mathbb{R}^4 \rtimes \mathcal{L}$.
- **2** Proper ortochronous Poincaré group: $\mathcal{P}^{\uparrow}_{+} := \mathbb{R}^4 \rtimes \mathcal{L}^{\uparrow}_{+}$.

Symmetries of a quantum theory

 $\textcircled{ } \mathcal{H} \text{ - complex Hilbert space of physical states. }$

2 For
$$\Psi \in \mathcal{H}$$
, $\|\Psi\| = 1$ define the ray $\hat{\Psi} := \{ e^{i\phi} \Psi | \phi \in \mathbb{R} \}.$

 $\ \, \mathfrak{\hat{H}} \text{ - set of rays with the ray product } [\hat{\Phi}|\hat{\Psi}] := |\langle \Phi, \Psi \rangle|^2.$

Definition

A symmetry of a quantum system is an invertible map $\hat{S} : \hat{\mathcal{H}} \to \hat{\mathcal{H}}$ s.t. $[\hat{S}\hat{\Phi}|\hat{S}\hat{\Psi}] = [\hat{\Phi}|\hat{\Psi}].$

Theorem (Wigner 31)

For any symmetry transformation $\hat{S} : \hat{\mathcal{H}} \to \hat{\mathcal{H}}$ we can find a unitary or anti-unitary operator $S : \mathcal{H} \to \mathcal{H}$ s.t. $\hat{S}\hat{\Psi} = \widehat{S\Psi}$. S is unique up to phase.

Application:

9 $\mathcal{P}^{\uparrow}_{+}$ is a symmetry of our theory i.e., $\mathcal{P}^{\uparrow}_{+} \ni (a, \Lambda) \mapsto \hat{S}(a, \Lambda)$.

2 Thus we obtain a projective unitary representation *S* of $\mathcal{P}_{+}^{\uparrow}$

$$S(a_1,\Lambda_1)S(a_2,\Lambda_2)=\mathrm{e}^{i\varphi_{1,2}}S((a_1,\Lambda_1)(a_2,\Lambda_2)).$$

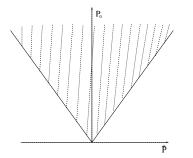
Sact: A projective unitary representation of P[↑]₊ corresponds to an ordinary unitary representation of the covering group

$$\widetilde{\mathcal{P}}^{\uparrow}_{+} \ni (a, \lambda) \mapsto U(a, \lambda) \in \mathcal{B}(\mathcal{H}).$$

Positivity of energy

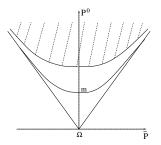
Consider a unitary representation $\widetilde{\mathcal{P}}^{\uparrow}_{+} \ni (a, \lambda) \mapsto U(a, \lambda) \in B(\mathcal{H}).$

- $P^{\mu} := i^{-1} \partial_{a_{\mu}} U(a, I)|_{a=0}$ energy momentum operators.
- 2 If $\operatorname{Sp} P \subset \overline{V}_+$ then we say that U has positive energy.



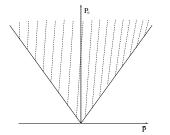
Distinguished states

- Def: Ω ∈ H is the vacuum state if U(a, λ)Ω = Ω for all (a, λ) ∈ P[↑]₊.
- O Def: H⁽¹⁾ ⊂ H is the subspace of single-particle states of mass m and spin s if U ↾ H⁽¹⁾ is a finite direct sum of irreducible representations [m, s]. E.g. for photons: [0, 1] ⊕ [0, -1].



Distinguished states

- Def: Ω ∈ H is the vacuum state if U(a, λ)Ω = Ω for all (a, λ) ∈ P[↑]₊.
- O Def: H⁽¹⁾ ⊂ H is the subspace of single-particle states of mass m and spin s if U ↾ H⁽¹⁾ is a finite direct sum of irreducible representations [m, s]. E.g. for photons: [0, 1] ⊕ [0, -1].



W. Dybalski (joint work with V. Morinelli) Bisognano-Wichmann property

Structure of [m=0,s] representations of $\widetilde{\mathcal{P}}_+^{\uparrow}=\mathbb{R}^4 times\widetilde{\mathcal{L}}_+^{\uparrow}$

- Fix a vector at the boundary of the lightcone, e.g. q = (1,1,0,0).
- **2** Fact: the stabilizer of q in $\widetilde{\mathcal{L}}^{\uparrow}_+$ is $\operatorname{Stab}_q = \widetilde{\operatorname{E}}(2)$.
- **③** Def. Stab_q ∋ (y, ϕ) \mapsto V_s(y, ϕ) = $e^{i\phi s}$, s ∈ ℤ/2, is a representation of finite spin s.
- Def. The [m = 0, s] representation of $\widetilde{\mathcal{P}}^{\uparrow}_+$ on $L^2(\partial V_+)$:

$$(U_{s}(a,\lambda)\psi)(p) = e^{ipa}V_{s}(b_{p}\lambda b_{\Lambda(\lambda)^{-1}p})\psi(\Lambda(\lambda)^{-1}p),$$

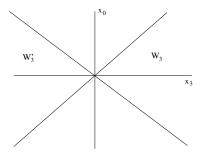
where $\Lambda: \widetilde{\mathcal{L}}^{\uparrow}_+ \to \mathcal{L}^{\uparrow}_+$ is the covering map and $\Lambda(b_p)q = p$.

Structure of [m=0,s] representations of $\widetilde{\mathcal{P}}_+^{\uparrow}=\mathbb{R}^4 times\widetilde{\mathcal{L}}_+^{\uparrow}$

- Fix a vector at the boundary of the lightcone, e.g. q = (1,1,0,0).
- **2** Fact: the stabilizer of q in $\widetilde{\mathcal{L}}^{\uparrow}_{+}$ is $\operatorname{Stab}_{q} = \widetilde{\operatorname{E}}(2)$.
- **③** Def. Stab_q ∋ $(y, \phi) \mapsto V_s(y, \phi) = e^{i\phi s}$, $s \in \mathbb{Z}/2$, is a representation of finite spin *s*.
- Def. The [m = 0, s] representation of $\widetilde{\mathcal{P}}^{\uparrow}_+$ on $L^2(\partial V_+)$:

$$U_s = \operatorname{Ind}_{\mathbb{R}^4 imes \operatorname{Stab}_q}^{\widetilde{\mathcal{P}}^{\uparrow}_+}(q \cdot V_s)$$

First, we introduce a wedge $W_3 = \{ x \in \mathbb{R}^4 : |x_0| < x_3 \}$ in Minkowski spacetime and the opposite wedge W'_3



• Def: G_3^0 is the subgroup of $\lambda \in \widetilde{\mathcal{L}}_+^{\uparrow}$ s.t. $\Lambda(\lambda)W_3 = W_3$.

2 Def:
$$G_3 = \langle G_3^0, \mathbb{R}^4 \rangle$$
.

• Def: $r_1(\pi) \in \widetilde{\mathcal{L}}_+^{\uparrow}$ is the rotation around the 1st axis. In particular, $\Lambda(r_1(\pi))W_3 = W'_3$.

• Def:
$$\hat{G}_3 = \langle G_3, r_1(\pi) \rangle$$
.

- Def: A \hat{G}_3 -representation \hat{U} satisfies the modularity condition (MC) if $\hat{U}(r_1(\pi)) \in \hat{U}(G_3)''$. [Morinelli 18]
- $\textcircled{O} As we will discuss later, MC \Rightarrow BW \Rightarrow CPT$

- O Def: A Ĝ₃-representation Û satisfies the modularity condition (MC) if Û(r₁(π)) ∈ Û(G₃)".
- Solution Fact [Morinelli 18]: If \hat{U} satisfies MC then $\hat{U} \otimes 1_{\mathcal{K}}$ satisfies MC.
- Fact [Morinelli 18]: $U_s|_{\hat{G}_3}$, $s \in \mathbb{Z}/2$, satisfy MC.

Theorem (Morinelli-W.D. 19)

Representations $(U_s \oplus U_{-s})|_{\hat{G}_3}$, $s \in \mathbb{Z}$, satisfy MC.

- O Def: A Ĝ₃-representation Û satisfies the modularity condition (MC) if Û(r₁(π)) ∈ Û(G₃)".
- Sect [Morinelli 18]: If \hat{U} satisfies MC then $\hat{U} \otimes 1_{\mathcal{K}}$ satisfies MC.
- Fact [Morinelli 18]: $U_s|_{\hat{G}_3}$, $s \in \mathbb{Z}/2$, satisfy MC.

Theorem (Morinelli-W.D. 19)

Representations $(U_s \oplus U_{-s})|_{\hat{G}_3}$, $s \in \mathbb{Z}$, satisfy MC.

Idea of proof:

1 We show
$$U_s|_{\hat{G}_3} \simeq U_{-s}|_{\hat{G}_3}$$
.

 $\ \ \, \hbox{Ombox{${\circ}$}$ Then $(U_s\oplus U_{-s})|_{\hat{G}_3}\simeq U_s|_{\hat{G}_3}\otimes 1_{\mathbb{C}^2}$, hence it satisfies MC.} }$

Recall that U_s is an induced representation:

$$U_s = \operatorname{Ind}_{\mathbb{R}^4 imes Stab_q}^{\widetilde{\mathcal{P}}^+_+} (q \cdot V_s), ext{ where } \operatorname{Stab}_q = \widetilde{E}(2), ext{ } V_s(y, \phi) = e^{i\phi s}.$$

We apply the Mackey subgroup theorem:

- Let $H_1, H_2 \subset G$ be (suitable) closed subgroups.
- 2 Let ρ be a representation of H_1 .
- **3** Then $(\operatorname{Ind}_{H_1}^G \rho)|_{H_2} \simeq \int_{H_1 \setminus G/H_2}^{\oplus} \operatorname{Ind}_{H_g}^{H_2}(\rho \circ \operatorname{Ad} g) \, d\nu([g]),$ where $H_g := H_2 \cap (g^{-1}H_1g).$

Application: $U_s|_{\hat{G}_3} \simeq \int_{\mathbb{R}^+}^{\oplus} \operatorname{Ind}_{\mathbb{R}^4 \rtimes \langle r_1(\pi) \rangle}^{\hat{G}_3} (rq \cdot V_s) dr \simeq U_{-s}|_{\hat{G}_3}.$

Relativistic Quantum Mechanics

Definition

A relativistic quantum mechanical theory is given by:

 $\textcircled{ } \mathcal{H} - \mathsf{Hilbert space}.$

2
$$\widetilde{\mathcal{P}}^{\uparrow}_+
i (a, \lambda) \mapsto U(a, \lambda) \in B(\mathcal{H})$$
 - a positive energy unitary rep.

3 $B(\mathcal{H})$ - possible observables.

 ${\cal H}$ may contain a vacuum state Ω and/or subspaces of single-particle states ${\cal H}^{(1)}.$

Relativistic (algebraic) QFT

Definition

A relativistic QFT is a relativistic QM (U, \mathcal{H}) with a net

$$\mathbb{R}^4 \supset \mathcal{O} \mapsto \mathcal{A}(\mathcal{O}) \subset B(\mathcal{H})$$

of algebras of observables $\mathcal{A}(\mathcal{O})$ localized in open bounded regions of spacetime \mathcal{O} , which satisfies:

- $\label{eq:constraint} {\tt I} {\tt (Isotony)} \qquad \mathcal{O}_1 \subset \mathcal{O}_2 \ \Rightarrow \ \mathcal{A}(\mathcal{O}_1) \subset \mathcal{A}(\mathcal{O}_2),$
- $\textbf{ (Locality)} \qquad \mathcal{O}_1 \sim \mathcal{O}_2 \ \Rightarrow \ [\mathcal{A}(\mathcal{O}_1), \mathcal{A}(\mathcal{O}_2)] = \{0\},$

(Covariance) U(a, λ)A(O)U(a, λ)* = A(Λ(λ)O + a).
 Furthermore, there is a vacuum vector Ω, cyclic for A := U_{O⊂ℝ⁴} A(O).

Bisognano-Wichmann property

- $W_3 = \{ x \in \mathbb{R}^4 : |x_0| < x_3 \}$ a wedge.
- **2** $\mathcal{A}(W_3)$ is the von Neumann algebra of this wedge.
- **③** Tomita-Takesaki theory: $SA\Omega := A^*\Omega$ for $A \in \mathcal{A}(W_3)$.
- Polar decomposition: $S = J\Delta^{1/2}$.
- **(**) Modular evolution $\mathbb{R} \ni t \mapsto \Delta^{it} = e^{i \log(\Delta)t}$.
- Def: An algebraic QFT (A, U, Ω) has a Bisognano-Wichmann (BW) property if

$$U(\lambda_t) = \Delta^{-it},$$

where $\lambda_t \in \widetilde{\mathcal{L}}_+^{\uparrow}$ is a family of boosts in the direction of the wedge.

Theorem (Morinelli-W.D. 19)

For algebraic QFT which

- describe massless Wigner particles with spins (s, -s), $s \in \mathbb{Z}$,
- are asymptotically complete,

the Bisognano-Wichmann property holds.

Collision theory and asymptotic completeness

- Def. An algebraic QFT describes Wigner particles of mass m = 0 and spins (s, -s) if there is a subspace H⁽¹⁾ ⊂ H s.t. U|_{H⁽¹⁾} = U_s ⊕ U_{-s}.
- **2** Def. For $A \in \mathcal{A}(\mathcal{O})$, outgoing asymptotic fields are given by:

$$A_t := -2 t \int d\omega(\mathbf{n}) \partial_0 A(t, t \mathbf{n}), \quad \overline{A}_t := \frac{1}{\ln t} \int_t^{t+\ln t} dt' A_{t'}$$
$$A^{\text{out}} := \lim_{t \to \infty} \overline{A}_t. \quad \text{Fact: } A^{\text{out}} \Omega \in \mathcal{H}^{(1)}.$$

- Fact: (A^{out}, U, Ω) satisfies all the standard properties, with a possible exception of cyclicity of the vacuum. [Buchholz 77]
- O Def. If cyclicity of the vacuum holds, we say that (A, U, Ω) is asymptotically complete.

Asymptotic creation/annihilation operators

• Def: Let $\eta \in S(\mathbb{R}^4)$ be s.t. $\operatorname{supp} \widetilde{\eta} \cap \overline{V}_+ = \emptyset$. Then the asymptotic annihilation operators are given by

$$A^{\mathrm{out}-} := \int d^4x A^{\mathrm{out}}(x) \eta(x),$$

- The asymptotic creation operators are given by $A^{\text{out}+} = (A^{\text{out}-})^*$.
- Scattering states:

$$\Psi^{\rm out} := A_1^{\rm out+} \dots A_n^{\rm out+} \Omega.$$

Asymptotic completeness: Scattering states span H.

Theorem (Morinelli-W.D. 19)

For algebraic QFT which

- **(**) describe massless Wigner particles with spins (s, -s), $s \in \mathbb{Z}$,
- are asymptotically complete,

the Bisognano-Wichmann property holds.

Proof (idea): Set
$$Z_t = \Delta^{it} U(\lambda_t)$$
.

9 By MC, we know that
$$Z_t A^{\text{out}+} \Omega = A^{\text{out}+} \Omega$$
.

Por 2-particle states we write

$$Z_t A_1^{\text{out}+} A_2^{\text{out}+} \Omega = (Z_t A_1^{\text{out}+} Z_t^*) A_2^{\text{out}+} \Omega$$
$$= [(Z_t A_1^{\text{out}+} Z_t^*), A_2^{\text{out}+}] \Omega + A_2^{\text{out}+} A_1^{\text{out}+} \Omega$$

 \odot The commutator is zero by explicit computation. \Box

Theorem (Lüders 54, Pauli 55, Jost 57,...Guido-Longo 95)

In algebraic QFT satisfying the Bisognano-Wichmann property there exists an anti-unitary operator θ on \mathcal{H} which has the expected properties of the CPT operator, i.e.,

3
$$\theta \rho(\cdot) \theta^* = \overline{\rho}(\cdot)$$
 for DHR morphisms ρ .

Recall:

0 BW property:
$$\Delta^{-it} = U(\lambda_t)$$
,

2 $S = J\Delta^{1/2}$ is defined by $SA\Omega = A^*\Omega$, $A \in \mathcal{A}(W_3)$,

One checks that $\theta := JU(r_3(\pi))^{-1}$ has the required properties.

Conclusions

- The Bisognano-Wichmann property enters as an assumption in modern CPT theorems.
- We proved the Bisognano-Wichmann property for asymptotically complete theories of massless particles with spins (s, -s), s ∈ Z. (The massive case settled by [Mund 01]).
- **③** Future direction: generalization to fermions, i.e. $s \in \mathbb{Z}/2$.
- V. Morinelli, W.D. *The Bisognano-Wichmann property for asymptotically complete massless QFT*. arXiv:1909.12809.