From the construction of integrable QFTs to the classification of unitary R-matrices

Gandalf Lechner

partly joint with: Roberto Conti, Ulrich Pennig, Charley Scotford, Simon Wood July 05, 2019

▶ In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.

- \triangleright In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- ▶ **Plan of this talk:** Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.
- \triangleright In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- ▶ **Plan of this talk:** Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.
- ▶ The models in the background are **integrable models** on two-dimensional Minkowski space, defined by their 2-body S-matrix ("S-matrix bootstrap").
- \triangleright In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- ▶ **Plan of this talk:** Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.
- ▶ The models in the background are **integrable models** on two-dimensional Minkowski space, defined by their 2-body S-matrix ("S-matrix bootstrap").
- \blacktriangleright The mathematical structure of central interest is the **Yang-Baxter equation (YBE)** which is relevant to the factorisation of a 3 \rightarrow 3 scattering process into 2 \rightarrow 2 processes.
- \triangleright In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- ▶ **Plan of this talk:** Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.
- ▶ The models in the background are **integrable models** on two-dimensional Minkowski space, defined by their 2-body S-matrix ("S-matrix bootstrap").
- \blacktriangleright The mathematical structure of central interest is the **Yang-Baxter equation (YBE)** which is relevant to the factorisation of a 3 \rightarrow 3 scattering process into 2 \rightarrow 2 processes.
- ▶ The YBE is also of prominent interest in many other fields: statistical mechanics, subfactors, knot theory, quantum information, braid groups ...
- ▶ Will investigate it here with **tools from algebraic QFT**.

S-matrix is main input into S-matrix bootstrap: A continuous map *S* ∶ R → B(*V* ⊗ *V*) (with *V* a finite-dim. Hilbert space labelling particle species) such that

•
$$
S(\theta)^* = S(\theta)^{-1} = S(-\theta)
$$

● *S* satisfies the **Yang-Baxter equation** (with spectral parameter):

$$
S_1(\theta)S_2(\theta+\theta')S_1(\theta')=S_2(\theta')S_1(\theta+\theta')S_2(\theta)
$$

with $S_1(\theta) := S(\theta) \otimes id_V$ and $S_2(\theta) := id_V \otimes S(\theta)$

● + further properties (analyticity, crossing, TCP symmetry, etc)

S-matrix is main input into S-matrix bootstrap: A continuous map *S* ∶ R → B(*V* ⊗ *V*) (with *V* a finite-dim. Hilbert space labelling particle species) such that

•
$$
S(\theta)^* = S(\theta)^{-1} = S(-\theta)
$$

● *S* satisfies the **Yang-Baxter equation** (with spectral parameter):

 $S_1(\theta)S_2(\theta + \theta')S_1(\theta') = S_2(\theta')S_1(\theta + \theta')S_2(\theta)$

with $S_1(\theta) := S(\theta) \otimes id_V$ and $S_2(\theta) := id_V \otimes S(\theta)$

- + further properties (analyticity, crossing, TCP symmetry, etc)
- ▶ Given any such *S*, one can construct a **wedge-local QFT** (cf. Max' talk) reproducing *S* as its 2-particle collision operator.

S-matrix is main input into S-matrix bootstrap: A continuous map *S* ∶ R → B(*V* ⊗ *V*) (with *V* a finite-dim. Hilbert space labelling particle species) such that

•
$$
S(\theta)^* = S(\theta)^{-1} = S(-\theta)
$$

● *S* satisfies the **Yang-Baxter equation** (with spectral parameter):

$$
S_1(\theta)S_2(\theta+\theta')S_1(\theta')=S_2(\theta')S_1(\theta+\theta')S_2(\theta)
$$

with $S_1(\theta) := S(\theta) \otimes id_V$ and $S_2(\theta) := id_V \otimes S(\theta)$

- + further properties (analyticity, crossing, TCP symmetry, etc)
- ▶ Given any such *S*, one can construct a **wedge-local QFT** (cf. Max' talk) reproducing *S* as its 2-particle collision operator.
- ▶ To proceed to a **local** QFT, an additional "intertwiner property" of *^S* is required (under control for scalar dim*^V* ⁼ 1 theories and certain non-scalar ones).

In the scalar case (dim*^V* ⁼ 1) [Bostelmann-L-Morsella '11]:

▶ One can proceed to a short distance scaling limit if

$$
\mathsf{S}_{\pm} \coloneqq \lim_{\theta \to \pm \infty} \mathsf{S}(\theta)
$$

exist.

- \triangleright One finds a massless chiral theory, possibly with a twist between the lightrays encoded in *S*(0).
- \triangleright The chiral components are generated by fields localized on half lines. Obstructions to local observables arise from the operators S_{+} .

In the scalar case (dim*^V* ⁼ 1) [Bostelmann-L-Morsella '11]:

▶ One can proceed to a short distance scaling limit if

$$
\mathsf{S}_{\pm} \coloneqq \lim_{\theta \to \pm \infty} \mathsf{S}(\theta)
$$

exist.

- \triangleright One finds a massless chiral theory, possibly with a twist between the lightrays encoded in *S*(0).
- \triangleright The chiral components are generated by fields localized on half lines. Obstructions to local observables arise from the operators S_{+} .

These structures generalize to the non-scalar setting [Scotford], but now the structure of the matrices *S*(0)*, S*+*, S*[−] can be more involved.

 \triangleright Note: $S(0), S_{\pm}$ are **R-matrices**, i.e. unitary solutions to the (constant) YBE

 $(R \otimes id_V)(id_V \otimes R)(R \otimes id_V) = (id_V \otimes R)(R \otimes id_V)(id_V \otimes R)$

Moreover, *S*(0) is involutive: *S*(0) 2 $= 1.$ 4

An operator-algebraic setting for R-matrices

▶ A brute force approach to the YBE is hopeless. In components, YBE is a coupled system of d^6 cubic eqns for d^4 variables.

An operator-algebraic setting for R-matrices

- ▶ A brute force approach to the YBE is hopeless. In components, YBE is a coupled system of d^6 cubic eqns for d^4 variables.
- ▶ Need to embed R-matrices into a richer mathematical context.
- \triangleright **Plan:** Given any *R*, define an **endomorphism** λ_R on a von Neumann algebra M and consider the inclusion

 $\lambda_R(M) \subset M$.

In this way, we can use tools from operator algebras, **subfactors**, and **QFT** (superselection theory).

V ≅ \mathbb{C}^d : finite-dim. Hilbert space. Define two v.Neumann algebras: ^N ∶= End *^V* [⊗] End *^V* [⊗] *. . .* (infinite tensor product) $\subset \mathcal{M} := \pi_{\omega}(\mathcal{O}_V)^{\prime\prime}$ ′′ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. trace $\tau = \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes ...$

V ≅ \mathbb{C}^d : finite-dim. Hilbert space. Define two v.Neumann algebras: ^N ∶= End *^V* [⊗] End *^V* [⊗] *. . .* (infinite tensor product) $\subset M := \pi_{\omega}(\mathcal{O}_V)^{\prime\prime}$ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. trace $\tau = \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes ...$

 \triangleright Well-known fact: The unitary elements *U* of \mathcal{O}_V are in bijection with the endomorphisms λ_U of \mathcal{O}_V .

V ≅ \mathbb{C}^d : finite-dim. Hilbert space. Define two v.Neumann algebras: ^N ∶= End *^V* [⊗] End *^V* [⊗] *. . .* (infinite tensor product) $\subset M := \pi_{\omega}(\mathcal{O}_V)^{\prime\prime}$ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. trace $\tau = \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes ...$

 \triangleright Well-known fact: The unitary elements *U* of \mathcal{O}_V are in bijection with the endomorphisms λ_U of \mathcal{O}_V . On N, this endo. is given by

$$
\lambda_U(x) = \lim_{n \to \infty} U\varphi(U) \cdots \varphi^n(U) \cdot x \cdot \varphi^n(U^*) \cdots \varphi(U^*) U^*.
$$

V ≅ \mathbb{C}^d : finite-dim. Hilbert space. Define two v.Neumann algebras: ^N ∶= End *^V* [⊗] End *^V* [⊗] *. . .* (infinite tensor product) $\subset M := \pi_{\omega}(\mathcal{O}_V)^{\prime\prime}$ ′′ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. trace $\tau = \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes \frac{\text{Tr}_{V}}{d} \otimes ...$

 \triangleright Well-known fact: The unitary elements *U* of \mathcal{O}_V are in bijection with the endomorphisms λ_U of \mathcal{O}_V . On N, this endo. is given by

$$
\lambda_U(x) = \lim_{n \to \infty} U\varphi(U) \cdots \varphi^n(U) \cdot x \cdot \varphi^n(U^*) \cdots \varphi(U^*) U^*.
$$

- ▶ In particular, any R-matrix *^R* [∈] End *^V* [⊗] End *^V* [⊂] ^O*^V* defines a **"Yang-Baxter endomorphism"** λ_R of M (preserving N).
- ▶ Choosing *^U* ⁼ *^F* [∈] End *^V* [⊗] End *^V* as the **flip** gives the **canonical endomorphism** $\varphi := \lambda_F$. On N it acts as a shift,

$$
\varphi(x)=\mathrm{id}_V\otimes x.
$$

Proposition

Let *^R* [∈] End *^V*⊗End *^V* be unitary. Then *^R* [∈] ^R iff [Conti/Hong/Szym.'12]

 $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}.$

In this case, $\pi_R(b_n) \coloneqq \varphi^{n-1}(R)$ represents the braid group B_∞ in \mathcal{N} ,

 $b_n b_{n\pm 1} b_n = b_{n\pm 1} b_n b_{n\pm 1}, \qquad b_n b_m = b_m b_n, \quad |n-m| \ge 2.$ $X = X \cup Y = \cup Y$

and λ_R **coincides with** φ on the von Neumann algebra $\mathcal{L}_R \subset \mathcal{N}$ generated by the representation.

Proposition

Let *^R* [∈] End *^V*⊗End *^V* be unitary. Then *^R* [∈] ^R iff [Conti/Hong/Szym.'12]

 $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}.$

In this case, $\pi_R(b_n) \coloneqq \varphi^{n-1}(R)$ represents the braid group B_∞ in \mathcal{N} ,

 $b_n b_{n\pm 1} b_n = b_{n\pm 1} b_n b_{n\pm 1}, \qquad b_n b_m = b_m b_n, \quad |n-m| \ge 2.$ \bigotimes = \bigotimes \bigotimes = \bigcup \bigotimes = \bigcup \bigotimes

and λ_R **coincides with** φ on the von Neumann algebra $\mathcal{L}_R \subset \mathcal{N}$ generated by the representation.

This structure is strongly reminiscent of **braid group statistics in 2d QFT** [Fredenhagen-Rehren-Schroer '89, Longo '91], generalizing permutation group statistics [DHR '71], and braided subfactors.

${\mathcal M}$

$λ$ *R*(*M*) ⊂ *M*

$λ$ *R*(*M*) ⊂ *M* ∪ ${\mathcal N}$

$$
\lambda_R(M) \subset M
$$

$$
\cup
$$

$$
\lambda_R(N) \subset N
$$

 $\lambda_R(M) \subset M$ *λ*_R(N) ⊂ N $\lambda_R(\mathcal{L}_R) \subset \mathcal{L}_R$

 $\lambda_R(M) \subset M$ *λ*_R(N) ⊂ N $\varphi(\mathcal{L}_R) \subset \mathcal{L}_R$

$$
\dots \subset \lambda_R^2(\mathcal{M}) \subset \lambda_R(\mathcal{M}) \subset \mathcal{M}
$$

$$
\dots \subset \lambda_R^2(\mathcal{N}) \subset \lambda_R(\mathcal{N}) \subset \mathcal{N}
$$

$$
\dots \subset \varphi^2(\mathcal{L}_R) \subset \varphi(\mathcal{L}_R) \subset \mathcal{L}_R
$$

Simple consequence of $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}$:

Lemma

 λ_R *is an automorphism (surjective) if and only if R = c ⋅ 1.*

Simple consequence of $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}$:

Lemma

 λ_R *is an automorphism (surjective) if and only if R = c ⋅ 1.*

Thus, for non-trivial *R*

- \triangleright the inclusion $\lambda_R(\mathcal{M}) \subset \mathcal{M}$ is non-trivial.
- $▶$ It could still have trivial relative commutant $\lambda_R(M)' \cap M$ (then *λ^R* is called **irreducible**).

Simple consequence of $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}$:

Lemma

 λ_R *is an automorphism (surjective) if and only if R = c ⋅ 1.*

Thus, for non-trivial *R*

- \triangleright the inclusion $\lambda_R(M) \subset M$ is non-trivial.
- $▶$ It could still have trivial relative commutant $\lambda_R(M)' \cap M$ (then *λ^R* is called **irreducible**).
- ▶ *λ^R* is not invertible, but has a **left inverse** *ϕR*, related to the **conditional expectation** *E^R*

 E_R : $M \rightarrow \lambda_R(M)$ "projection onto subalgebra" $\phi_R := \lambda_R^{-1} \circ E_R : \mathcal{M} \to \mathcal{M}$

Questions:

- ▶ Find all unitary R-matrices (up to an equivalence relation).
- ▶ Describe all irreducible endomorphisms.
- ▶ Decompose YB endomorphisms into irreducible ones.
- ▶ Properties of YB endomorphisms: Index, ergodicity, ...

Questions:

- ▶ Find all unitary R-matrices (up to an equivalence relation).
- ▶ Describe all irreducible endomorphisms.
- ▶ Decompose YB endomorphisms into irreducible ones.
- ▶ Properties of YB endomorphisms: Index, ergodicity, ...

All of these are hard problems in general, but partial answers exist.

 \triangleright For (ir) reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End}\,V : R^*(x \otimes 1)R = 1 \otimes x\}$

 \triangleright For (ir) reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End}\,V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** *^R* ⁼ *^R* ∗ :

1. Pick a projection *^p* [∈] *^λ^R*(M) ′ ∩M, i.e. *^R*(*^p* [⊗] ¹)*^R* ⁼ ¹ [⊗] *^p* and $R(1 \otimes p)R = p \otimes 1$.

 \triangleright For (ir) reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End}\,V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** *^R* ⁼ *^R* ∗ :

- 1. Pick a projection *^p* [∈] *^λ^R*(M) ′ ∩M, i.e. *^R*(*^p* [⊗] ¹)*^R* ⁼ ¹ [⊗] *^p* and $R(1 \otimes p)R = p \otimes 1$.
- 2. Have restrictions R_p, R_p^{\perp} of *R* to p *V* ⊗ p *V* and p^{\perp} *V* ⊗ p^{\perp} *V*.

 \triangleright For (ir) reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End}\,V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** *^R* ⁼ *^R* ∗ :

- 1. Pick a projection *^p* [∈] *^λ^R*(M) ′ ∩M, i.e. *^R*(*^p* [⊗] ¹)*^R* ⁼ ¹ [⊗] *^p* and $R(1 \otimes p)R = p \otimes 1$.
- 2. Have restrictions R_p, R_p^{\perp} of *R* to p *V* ⊗ p *V* and p^{\perp} *V* ⊗ p^{\perp} *V*.
- 3. Find

 $R \sim R_p \oplus R_p^{\perp} := R_p \oplus R_p^{\perp} \oplus F$ $\mathsf{on}(\mathsf{p} \mathsf{V} \otimes \mathsf{p} \mathsf{V}) \oplus (\mathsf{p}^{\perp} \mathsf{V} \otimes \mathsf{p}^{\perp} \mathsf{V}) \oplus (\mathsf{p} \mathsf{V} \otimes \mathsf{p}^{\perp} \mathsf{V}) \oplus (\mathsf{p}^{\perp} \mathsf{V} \otimes \mathsf{p} \mathsf{V})$

 \triangleright For (ir) reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End}\,V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** *^R* ⁼ *^R* ∗ :

- 1. Pick a projection *^p* [∈] *^λ^R*(M) ′ ∩M, i.e. *^R*(*^p* [⊗] ¹)*^R* ⁼ ¹ [⊗] *^p* and $R(1 \otimes p)R = p \otimes 1$.
- 2. Have restrictions R_p, R_p^{\perp} of *R* to p *V* ⊗ p *V* and p^{\perp} *V* ⊗ p^{\perp} *V*.

3. Find

 $R \sim R_p \oplus R_p^{\perp} := R_p \oplus R_p^{\perp} \oplus F$ $\mathsf{on}(\mathsf{p} \mathsf{V} \otimes \mathsf{p} \mathsf{V}) \oplus (\mathsf{p}^{\perp} \mathsf{V} \otimes \mathsf{p}^{\perp} \mathsf{V}) \oplus (\mathsf{p} \mathsf{V} \otimes \mathsf{p}^{\perp} \mathsf{V}) \oplus (\mathsf{p}^{\perp} \mathsf{V} \otimes \mathsf{p} \mathsf{V})$

4. Repeat until *Rp,R* ⊥ *^p* are irreducible.

Here [∼] means an **equivalence relation** on ^R defined by the "intertwiner property".

11

Definition

Two R-matrices *^R, ^S* are **equivalent**, *^R* [∼] *^S*, iff *^π^R*∣*^Bⁿ* [≅] *^π^S*∣*^Bⁿ* for all *n*.

Definition

Two R-matrices *^R, ^S* are **equivalent**, *^R* [∼] *^S*, iff *^π^R*∣*^Bⁿ* [≅] *^π^S*∣*^Bⁿ* for all *n*.

With more work, get:

Theorem

Equivalence classes of involutive R-matrices are in 1:1 correspondence with R-matrices of **normal form**,

$$
N = \frac{m}{\prod_{i=1}^{m} \varepsilon_i} \text{ id}_{d_i}
$$

with signs $\{\varepsilon_1, \ldots, \varepsilon_m\} \in \{\pm 1\}$ and dimensions $d_1, \ldots, d_m \in \mathbb{N}$.

- ▶ Analogies to DHR analysis of permutation group statistics.
- ▶ "Intertwiner problem" solved for finite-dimensional (purely algebraic) case. Also solved for scalar (pure analytic) case. General mixed case still open.

Definition

Two R-matrices *^R, ^S* are **equivalent**, *^R* [∼] *^S*, iff *^π^R*∣*^Bⁿ* [≅] *^π^S*∣*^Bⁿ* for all *n*.

With more work, get:

Theorem

Equivalence classes of involutive R-matrices are in 1:1 correspondence with R-matrices of **normal form**,

$$
N = \frac{m}{\prod_{i=1}^{m} \varepsilon_i} \text{ id}_{d_i}
$$

with signs $\{\varepsilon_1, \ldots, \varepsilon_m\} \in \{\pm 1\}$ and dimensions $d_1, \ldots, d_m \in \mathbb{N}$.

- ▶ Analogies to DHR analysis of permutation group statistics.
- ▶ "Intertwiner problem" solved for finite-dimensional (purely algebraic) case. Also solved for scalar (pure analytic) case. General mixed case still open.
- ▶ In QFT models with constant *S*-matrix, get decomposition into tensor products of free scalar Bose/Fermi theories [Scotford

 $\phi_R(R)$ ∈ End *V.*

Interesting facts:

 $\phi_R(R) = \phi_F(FRF) =$ (partial trace of the matrix *R*)

 \blacktriangleright If $\phi_R(R) = c \cdot 1$, then *R* is called **Markov.**

 $\phi_R(R)$ ∈ End *V.*

Interesting facts:

- $\blacktriangleright \phi_R(R)$ can be computed explicitly as a partial trace of *R*, namely $\phi_R(R) = \phi_F(FRF) = ($ partial trace of the matrix *R*)
- \blacktriangleright If $\phi_R(R) = c \cdot 1$, then *R* is called **Markov.**
- \blacktriangleright $\phi_R(R)$ lies in the relative commutant of $\lambda_R(M) \subset M$.

 $\phi_R(R)$ ∈ End *V.*

Interesting facts:

- ▶ *ϕ^R*(*R*) can be computed explicitly as a partial trace of *R*, namely $\phi_R(R) = \phi_F(FRF) =$ (partial trace of the matrix *R*)
- \blacktriangleright If $\phi_R(R) = c \cdot 1$, then *R* is called **Markov.**
- \blacktriangleright $\phi_R(R)$ lies in the relative commutant of $\lambda_R(M) \subset M$.
- $▶$ Thus: λ_R irreducible \Longrightarrow *R* Markov.

 $\phi_R(R)$ ∈ End *V.*

Interesting facts:

▶ *ϕ^R*(*R*) can be computed explicitly as a partial trace of *R*, namely $\phi_R(R) = \phi_F(FRF) = ($ partial trace of the matrix *R*)

- \blacktriangleright If $\phi_R(R) = c \cdot 1$, then *R* is called **Markov.**
- \blacktriangleright $\phi_R(R)$ lies in the relative commutant of $\lambda_R(M) \subset M$.
- \triangleright Thus: λ _{*R*} irreducible ⇒ *R* Markov.

Have straightforward sufficient condition for the Markov property:

Proposition

If *R* has no pair of opposite eigenvalues *q*, −*q*, then (M) holds. ¹³

R-matrices with two eigenvalues

Consider R-matrices with two eigenvalues, say −1 and *q*.

▶ In this case, *R* must necessarily be **selfadjoint** or **unitary**. Positivity of the braid group character *τ^R* defined by *R* requires

[Wenzl 1988, Fredenhagen/Rehren/Schroer 1989, Ocneanu 1985]

R-matrices with two eigenvalues

Consider R-matrices with two eigenvalues, say −1 and *q*.

▶ In this case, *R* must necessarily be **selfadjoint** or **unitary**. Positivity of the braid group character *τ^R* defined by *R* requires

[Wenzl 1988, Fredenhagen/Rehren/Schroer 1989, Ocneanu 1985]

- \triangleright The case $q = 1$ is the case of involutive *R*, discussed before.
- Can be extended to $q > 0$ by deformation procedure. 14

R-matrices with two eigenvalues −1 **and** *q* ≠ ±1

- ▶ **All such R-matrices have the Markov property.** (No pair of opposite eigenvalues.)
- \blacktriangleright A Markov trace is uniquely fixed by the value $\tau_R(e_1)$ (with $\pi_R(e_1)$ = eigen projection of *R*) [Jones '87].

R-matrices with two eigenvalues −1 **and** *q* ≠ ±1

- ▶ **All such R-matrices have the Markov property.** (No pair of opposite eigenvalues.)
- \blacktriangleright A Markov trace is uniquely fixed by the value $\tau_R(e_1)$ (with $\pi_R(e_1)$ = eigen projection of *R*) [Jones '87].
- ▶ The possible Markov traces are known [Wenzl 1988], [Fredenhagen/Rehren/Schroer 1989]

$$
\tau_R(e_1)=\frac{\sin\frac{\pi(k-1)}{\ell}}{2\cos\frac{\pi}{\ell}\sin\frac{\pi k}{\ell}},\qquad k\in\{1,\ldots,\ell-1\},\ \ q=e^{\pm i\pi/\ell}.
$$

R-matrices with two eigenvalues −1 **and** *q* ≠ ±1

- ▶ **All such R-matrices have the Markov property.** (No pair of opposite eigenvalues.)
- \blacktriangleright A Markov trace is uniquely fixed by the value $\tau_R(e_1)$ (with $\pi_R(e_1)$ = eigen projection of *R*) [Jones '87].
- ▶ The possible Markov traces are known [Wenzl 1988], [Fredenhagen/Rehren/Schroer 1989]

$$
\tau_R(e_1)=\frac{\sin\frac{\pi(k-1)}{\ell}}{2\cos\frac{\pi}{\ell}\sin\frac{\pi k}{\ell}},\qquad k\in\{1,\ldots,\ell-1\},\ \ q=e^{\pm i\pi/\ell}.
$$

Theorem

- ▶ Equivalence classes characterised by *d*, *q*, and its multiplicity.
- ▶ Unitary R-matrices with eigenvalues [−]1 and *^q* [≠] [±]1 exist if and only if $q = \pm i$ or $q = e^{\pm i\pi/3}$.
- ► If *q* = $\pm i$, then $\tau_R(e_1) = \frac{1}{2}$. If *q* = $e^{\pm i\pi/3}$, then $\tau_R(e_1) \in \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\}.$

An almost complete Theorem

The following families (1),(2a),(2b) (and maybe (3)) of equivalence classes of R-matrices occur:

(1) $q = \pm i, d_R \in 2\mathbb{N}, \tau_R(e_1) = \frac{1}{2},$

$$
R \sim \frac{-1 \pm i}{2} \left(\begin{array}{rrr} 1 & & & -1 \\ & 1 & -1 & \\ & 1 & 1 & \\ 1 & & & 1 \end{array} \right) \boxtimes 1_R
$$

(2a) $q = e^{\pm i\pi/3}$, $d_R \in 3\mathbb{N}$, $\tau_R(e_1) = \frac{1}{3}$, with $R \sim (-P + e^{\pm i\pi/3}(1 - P)) \boxtimes 1_k$,

$$
P = \frac{1}{3} \begin{pmatrix} 1 & \overline{q}^2 & 1 \\ 1 & \overline{q}^2 & \overline{q}^2 \\ 1 & 1 & 1 & 1 \\ q^2 & 1 & 1 & 1 \\ q^2 & 1 & 1 & q^2 \\ 1 & 1 & 1 & 1 \\ 1 & q^2 & 1 & 1 \end{pmatrix}
$$

An almost complete Theorem

(...)

(2b) As (2a), but with $P \leftrightarrow (1 - P)$.

(3) There might be another class with $q = e^{\pm i\pi/3}$, $\tau_R(e_1) = \frac{1}{2}$. Then necessarily $d_R \in \{4, 6, 8, ...\}$ and index= 4 (not Temperley-Lieb).

Cases (1),(2a),(2b) are irreducible, with index 2 and 3, respectively.

An almost complete Theorem

(...)

(2b) As (2a), but with $P \leftrightarrow (1 - P)$.

(3) There might be another class with $q = e^{\pm i\pi/3}$, $\tau_R(e_1) = \frac{1}{2}$. Then necessarily $d_R \in \{4, 6, 8, ...\}$ and index= 4 (not Temperley-Lieb).

Cases (1),(2a),(2b) are irreducible, with index 2 and 3, respectively.

A more general analysis of R and its endomorphisms is work in progress with R. Conti.

Let's finish with some **advertisment**

Job announcement

Within the **GAPT** research group at Cardiff University, we have an open permanent position:

Lecturer in Pure Mathematics or Mathematical Physics (Research & Teaching)

It is open to applications from various fields, including

- ▶ **Mathematical Quantum Field Theory**
- ▶ **Operator Algebras**
- ▶ *. . .*

Will be announced **next week**. For details, see

- ▶ www.cardiff.ac.uk/mathematics/about-us/job-vacancies
- ▶ www.lqp2.org/jobs

and please share with anybody who might be interested.