From the construction of integrable QFTs to the classification of unitary R-matrices

Gandalf Lechner

partly joint with: Roberto Conti, Ulrich Pennig, Charley Scotford, Simon Wood July 05, 2019 In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.

- In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- Plan of this talk: Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.

- In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- Plan of this talk: Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.
- The models in the background are integrable models on two-dimensional Minkowski space, defined by their 2-body S-matrix ("S-matrix bootstrap").

- In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- Plan of this talk: Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.
- The models in the background are integrable models on two-dimensional Minkowski space, defined by their 2-body S-matrix ("S-matrix bootstrap").
- ► The mathematical structure of central interest is the Yang-Baxter equation (YBE) which is relevant to the factorisation of a 3 → 3 scattering process into 2 → 2 processes.

- In this conference, we have seen various different approaches to interacting QFT models and various different mathematical structures/methods to investigate these.
- Plan of this talk: Use ideas/methods from QFT to study a mathematical problem derived from certain interacting QFT models, but interesting in its own right.
- The models in the background are integrable models on two-dimensional Minkowski space, defined by their 2-body S-matrix ("S-matrix bootstrap").
- ► The mathematical structure of central interest is the Yang-Baxter equation (YBE) which is relevant to the factorisation of a 3 → 3 scattering process into 2 → 2 processes.
- The YBE is also of prominent interest in many other fields: statistical mechanics, subfactors, knot theory, quantum information, braid groups ...
- ▶ Will investigate it here with tools from algebraic QFT.

S-matrix is main input into S-matrix bootstrap: A continuous map $S : \mathbb{R} \to \mathcal{B}(V \otimes V)$ (with V a finite-dim. Hilbert space labelling particle species) such that

•
$$S(\theta)^* = S(\theta)^{-1} = S(-\theta)$$

• S satisfies the Yang-Baxter equation (with spectral parameter):

 $S_1(\theta)S_2(\theta + \theta')S_1(\theta') = S_2(\theta')S_1(\theta + \theta')S_2(\theta)$

with $S_1(\theta) \coloneqq S(\theta) \otimes id_V$ and $S_2(\theta) \coloneqq id_V \otimes S(\theta)$

• + further properties (analyticity, crossing, TCP symmetry, etc)

S-matrix is main input into S-matrix bootstrap: A continuous map $S : \mathbb{R} \to \mathcal{B}(V \otimes V)$ (with V a finite-dim. Hilbert space labelling particle species) such that

•
$$S(\theta)^* = S(\theta)^{-1} = S(-\theta)$$

• S satisfies the Yang-Baxter equation (with spectral parameter):

 $S_1(\theta)S_2(\theta + \theta')S_1(\theta') = S_2(\theta')S_1(\theta + \theta')S_2(\theta)$

with $S_1(\theta) \coloneqq S(\theta) \otimes id_V$ and $S_2(\theta) \coloneqq id_V \otimes S(\theta)$

- + further properties (analyticity, crossing, TCP symmetry, etc)
- Given any such S, one can construct a wedge-local QFT (cf. Max' talk) reproducing S as its 2-particle collision operator.

S-matrix is main input into S-matrix bootstrap: A continuous map $S : \mathbb{R} \to \mathcal{B}(V \otimes V)$ (with V a finite-dim. Hilbert space labelling particle species) such that

•
$$S(\theta)^* = S(\theta)^{-1} = S(-\theta)$$

• S satisfies the Yang-Baxter equation (with spectral parameter):

 $S_1(\theta)S_2(\theta + \theta')S_1(\theta') = S_2(\theta')S_1(\theta + \theta')S_2(\theta)$

with $S_1(\theta) \coloneqq S(\theta) \otimes id_V$ and $S_2(\theta) \coloneqq id_V \otimes S(\theta)$

- + further properties (analyticity, crossing, TCP symmetry, etc)
- Given any such S, one can construct a wedge-local QFT (cf. Max' talk) reproducing S as its 2-particle collision operator.
- To proceed to a local QFT, an additional "intertwiner property" of S is required (under control for scalar dim V = 1 theories and certain non-scalar ones).

In the scalar case (dim V = 1) [Bostelmann-L-Morsella '11]:

▶ One can proceed to a short distance scaling limit if

$$S_{\pm} \coloneqq \lim_{\theta \to \pm \infty} S(\theta)$$

exist.

- One finds a massless chiral theory, possibly with a twist between the lightrays encoded in S(0).
- ► The chiral components are generated by fields localized on half lines. Obstructions to local observables arise from the operators S_±.

In the scalar case (dim V = 1) [Bostelmann-L-Morsella '11]:

▶ One can proceed to a short distance scaling limit if

$$\mathsf{S}_{\pm} \coloneqq \lim_{\theta \to \pm \infty} \mathsf{S}(\theta)$$

exist.

- ► One finds a massless chiral theory, possibly with a twist between the lightrays encoded in S(0).
- ► The chiral components are generated by fields localized on half lines. Obstructions to local observables arise from the operators S_±.

These structures generalize to the non-scalar setting [Scotford], but now the structure of the matrices $S(0), S_+, S_-$ can be more involved.

► Note: S(0), S_± are **R-matrices**, i.e. unitary solutions to the (constant) YBE

 $(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V) = (\mathrm{id}_V \otimes R)(R \otimes \mathrm{id}_V)(\mathrm{id}_V \otimes R)$

Moreover, S(0) is involutive: $S(0)^2 = 1$.

An operator-algebraic setting for R-matrices

► A brute force approach to the YBE is hopeless. In components, YBE is a coupled system of d⁶ cubic eqns for d⁴ variables.

An operator-algebraic setting for R-matrices

- ► A brute force approach to the YBE is hopeless. In components, YBE is a coupled system of d⁶ cubic eqns for d⁴ variables.
- ▶ Need to embed R-matrices into a richer mathematical context.
- Plan: Given any R, define an endomorphism λ_R on a von Neumann algebra *M* and consider the inclusion

 $\lambda_R(\mathcal{M}) \subset \mathcal{M}.$

In this way, we can use tools from operator algebras, **subfactors**, and **QFT** (superselection theory).

 $V \cong \mathbb{C}^d$: finite-dim. Hilbert space. Define two v.Neumann algebras: $\mathcal{N} := \operatorname{End} V \otimes \operatorname{End} V \otimes \dots$ (infinite tensor product) $\subset \mathcal{M} := \pi_{\omega}(\mathcal{O}_V)''$ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. **trace** $\tau = \frac{\mathsf{Tr}_V}{d} \otimes \frac{\mathsf{Tr}_V}{d} \otimes \frac{\mathsf{Tr}_V}{d} \otimes \dots$

 $V \cong \mathbb{C}^d$: finite-dim. Hilbert space. Define two v.Neumann algebras: $\mathcal{N} \coloneqq \operatorname{End} V \otimes \operatorname{End} V \otimes \dots$ (infinite tensor product) $\subset \mathcal{M} \coloneqq \pi_{\omega}(\mathcal{O}_V)''$ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. **trace** $\tau = \frac{\mathsf{Tr}_V}{d} \otimes \frac{\mathsf{Tr}_V}{d} \otimes \frac{\mathsf{Tr}_V}{d} \otimes \dots$

▶ Well-known fact: The unitary elements U of \mathcal{O}_V are in bijection with the endomorphisms λ_U of \mathcal{O}_V .

 $V \cong \mathbb{C}^d$: finite-dim. Hilbert space. Define two v.Neumann algebras: $\mathcal{N} \coloneqq \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots$ (infinite tensor product) $\subset \mathcal{M} \coloneqq \pi_{\omega}(\mathcal{O}_V)''$ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. **trace** $\tau = \frac{\mathrm{Tr}_V}{d} \otimes \frac{\mathrm{Tr}_V}{d} \otimes \frac{\mathrm{Tr}_V}{d} \otimes \dots$

▶ Well-known fact: The unitary elements U of O_V are in bijection with the endomorphisms λ_U of O_V. On N, this endo. is given by

$$\lambda_U(\mathbf{x}) = \lim_{n \to \infty} U\varphi(U) \cdots \varphi^n(U) \cdot \mathbf{x} \cdot \varphi^n(U^*) \cdots \varphi(U^*) U^*.$$

 $V \cong \mathbb{C}^d$: finite-dim. Hilbert space. Define two v.Neumann algebras: $\mathcal{N} \coloneqq \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots$ (infinite tensor product) $\subset \mathcal{M} \coloneqq \pi_{\omega}(\mathcal{O}_V)''$ (generated by Cuntz algebra)

 \mathcal{N} is weakly closed w.r.t. **trace** $\tau = \frac{\mathsf{Tr}_V}{d} \otimes \frac{\mathsf{Tr}_V}{d} \otimes \frac{\mathsf{Tr}_V}{d} \otimes \dots$

Well-known fact: The unitary elements U of O_V are in bijection with the endomorphisms λ_U of O_V. On N, this endo. is given by

$$\lambda_U(\mathbf{x}) = \lim_{n \to \infty} U\varphi(U) \cdots \varphi^n(U) \cdot \mathbf{x} \cdot \varphi^n(U^*) \cdots \varphi(U^*) U^*.$$

- ► In particular, any R-matrix $R \in \text{End } V \otimes \text{End } V \subset \mathcal{O}_V$ defines a **"Yang-Baxter endomorphism"** λ_R of \mathcal{M} (preserving \mathcal{N}).
- Choosing U = F ∈ End V ⊗ End V as the flip gives the canonical endomorphism φ := λ_F. On N it acts as a shift,

$$\varphi(x) = \mathrm{id}_V \otimes x.$$

Proposition

Let $R \in \text{End } V \otimes \text{End } V$ be unitary. Then $R \in \mathcal{R}$ iff [Conti/Hong/Szym.'12]

 $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}.$

In this case, $\pi_R(b_n) \coloneqq \varphi^{n-1}(R)$ represents the braid group B_∞ in \mathcal{N} ,

 $b_{n}b_{n\pm1}b_{n} = b_{n\pm1}b_{n}b_{n\pm1}, \qquad b_{n}b_{m} = b_{m}b_{n}, \quad |n-m| \ge 2.$

and λ_R coincides with φ on the von Neumann algebra $\mathcal{L}_R \subset \mathcal{N}$ generated by the representation.

Proposition

Let $R \in \text{End } V \otimes \text{End } V$ be unitary. Then $R \in \mathcal{R}$ iff [Conti/Hong/Szym.'12]

 $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}.$

In this case, $\pi_R(b_n) \coloneqq \varphi^{n-1}(R)$ represents the braid group B_∞ in \mathcal{N} ,

 $b_{n}b_{n\pm1}b_{n} = b_{n\pm1}b_{n}b_{n\pm1}, \qquad b_{n}b_{m} = b_{m}b_{n}, \quad |n-m| \ge 2.$

and λ_R coincides with φ on the von Neumann algebra $\mathcal{L}_R \subset \mathcal{N}$ generated by the representation.

This structure is strongly reminiscent of **braid group statistics in 2d QFT** [Fredenhagen-Rehren-Schroer '89, Longo '91], generalizing permutation group statistics [DHR '71], and braided subfactors.

\mathcal{M}

$\lambda_R(\mathcal{M}) \subset \mathcal{M}$

$\lambda_R(\mathcal{M}) \subset \mathcal{M}$ \cup \mathcal{N}

$$\lambda_{R}(\mathcal{M}) \subset \mathcal{M}$$
$$\cup$$
$$\lambda_{R}(\mathcal{N}) \subset \mathcal{N}$$

 $\lambda_{R}(\mathcal{M}) \subset \mathcal{M}$ \cup $\lambda_{R}(\mathcal{N}) \subset \mathcal{N}$ \cup $\lambda_{R}(\mathcal{L}_{R}) \subset \mathcal{L}_{R}$

 $\lambda_{R}(\mathcal{M}) \subset \mathcal{M}$ \cup $\lambda_{R}(\mathcal{N}) \subset \mathcal{N}$ \cup $\varphi(\mathcal{L}_{R}) \subset \mathcal{L}_{R}$

$$\ldots \subset \lambda_R^2(\mathcal{M}) \subset \lambda_R(\mathcal{M}) \subset \mathcal{M}$$

$$\cup$$

$$\ldots \subset \lambda_R^2(\mathcal{N}) \subset \lambda_R(\mathcal{N}) \subset \mathcal{N}$$

$$\cup$$

$$\ldots \subset \varphi^2(\mathcal{L}_R) \subset \varphi(\mathcal{L}_R) \subset \mathcal{L}_R$$

Simple consequence of $R \in \lambda_R^2(\mathcal{M})' \cap \mathcal{M}$:

Lemma

 λ_R is an automorphism (surjective) if and only if $R = c \cdot 1$.

Simple consequence of $R \in \lambda^2_R(\mathcal{M})' \cap \mathcal{M}$:

Lemma

 λ_R is an automorphism (surjective) if and only if $R = c \cdot 1$.

Thus, for non-trivial R

- ▶ the inclusion $\lambda_R(\mathcal{M}) \subset \mathcal{M}$ is non-trivial.
- ▶ It could still have trivial relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M}$ (then λ_R is called **irreducible**).

Simple consequence of $R \in \lambda^2_R(\mathcal{M})' \cap \mathcal{M}$:

Lemma

 λ_R is an automorphism (surjective) if and only if $R = c \cdot 1$.

Thus, for non-trivial R

- ▶ the inclusion $\lambda_R(\mathcal{M}) \subset \mathcal{M}$ is non-trivial.
- ▶ It could still have trivial relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M}$ (then λ_R is called **irreducible**).
- λ_R is not invertible, but has a left inverse φ_R, related to the conditional expectation E_R

 $E_R : \mathcal{M} \to \lambda_R(\mathcal{M})$ "projection onto subalgebra" $\phi_R := \lambda_R^{-1} \circ E_R : \mathcal{M} \to \mathcal{M}$

Questions:

- ▶ Find all unitary R-matrices (up to an equivalence relation).
- ▶ Describe all irreducible endomorphisms.
- ▶ Decompose YB endomorphisms into irreducible ones.
- ▶ Properties of YB endomorphisms: Index, ergodicity, ...

Questions:

- ▶ Find all unitary R-matrices (up to an equivalence relation).
- Describe all irreducible endomorphisms.
- ▶ Decompose YB endomorphisms into irreducible ones.
- ▶ Properties of YB endomorphisms: Index, ergodicity, ...

All of these are hard problems in general, but partial answers exist.

► For (ir)reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End } V : R^*(x \otimes 1)R = 1 \otimes x\}$

► For (ir)reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End } V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** $R = R^*$:

1. Pick a projection $p \in \lambda_R(\mathcal{M})' \cap \mathcal{M}$, i.e. $R(p \otimes 1)R = 1 \otimes p$ and $R(1 \otimes p)R = p \otimes 1$.

► For (ir)reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End } V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** $R = R^*$:

- 1. Pick a projection $p \in \lambda_R(\mathcal{M})' \cap \mathcal{M}$, i.e. $R(p \otimes 1)R = 1 \otimes p$ and $R(1 \otimes p)R = p \otimes 1$.
- 2. Have restrictions R_p , R_p^{\perp} of R to $pV \otimes pV$ and $p^{\perp}V \otimes p^{\perp}V$.

► For (ir)reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End } V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** $R = R^*$:

- 1. Pick a projection $p \in \lambda_R(\mathcal{M})' \cap \mathcal{M}$, i.e. $R(p \otimes 1)R = 1 \otimes p$ and $R(1 \otimes p)R = p \otimes 1$.
- 2. Have restrictions R_p , R_p^{\perp} of R to $pV \otimes pV$ and $p^{\perp}V \otimes p^{\perp}V$.
- 3. Find

$$\begin{split} R \sim R_p & \boxplus R_p^{\perp} \coloneqq R_p \oplus R_p^{\perp} \oplus F \\ & \text{on}(pV \otimes pV) \ \oplus \ (p^{\perp}V \otimes p^{\perp}V) \ \oplus \ (pV \otimes p^{\perp}V) \oplus (p^{\perp}V \otimes pV) \end{split}$$

Irreducibility and reduction

► For (ir)reducibility, one computes the first relative commutant $\lambda_R(\mathcal{M})' \cap \mathcal{M} = \{x \in \text{End } V : R^*(x \otimes 1)R = 1 \otimes x\}$

This gives a reduction scheme for reducible **involutive** $R = R^*$:

- 1. Pick a projection $p \in \lambda_R(\mathcal{M})' \cap \mathcal{M}$, i.e. $R(p \otimes 1)R = 1 \otimes p$ and $R(1 \otimes p)R = p \otimes 1$.
- 2. Have restrictions R_p , R_p^{\perp} of R to $pV \otimes pV$ and $p^{\perp}V \otimes p^{\perp}V$.

3. Find

$$\begin{split} R \sim R_p & \boxplus R_p^{\perp} \coloneqq R_p \oplus R_p^{\perp} \oplus F \\ & \text{on}(pV \otimes pV) \oplus (p^{\perp}V \otimes p^{\perp}V) \oplus (pV \otimes p^{\perp}V) \oplus (p^{\perp}V \otimes pV) \end{split}$$

4. Repeat until R_p, R_p^{\perp} are irreducible.

Here \sim means an **equivalence relation** on \mathcal{R} defined by the "intertwiner property".

11

Definition

Two R-matrices R, S are **equivalent**, $R \sim S$, iff $\pi_R|_{B_n} \cong \pi_S|_{B_n}$ for all n.

Definition

Two R-matrices R, S are **equivalent**, $R \sim S$, iff $\pi_R|_{B_n} \cong \pi_S|_{B_n}$ for all n.

With more work, get:

Theorem

Equivalence classes of involutive R-matrices are in 1:1 correspondence with R-matrices of **normal form**,

$$N = \bigoplus_{i=1}^{m} \varepsilon_i \operatorname{id}_{d_i}$$

with signs $\{\varepsilon_1, \ldots, \varepsilon_m\} \in \{\pm 1\}$ and dimensions $d_1, \ldots, d_m \in \mathbb{N}$.

- ► Analogies to DHR analysis of permutation group statistics.
- "Intertwiner problem" solved for finite-dimensional (purely algebraic) case. Also solved for scalar (pure analytic) case. General mixed case still open.

Definition

Two R-matrices R, S are **equivalent**, $R \sim S$, iff $\pi_R|_{B_n} \cong \pi_S|_{B_n}$ for all n.

With more work, get:

Theorem

Equivalence classes of involutive R-matrices are in 1:1 correspondence with R-matrices of **normal form**,

$$N = \bigoplus_{i=1}^{m} \varepsilon_i \operatorname{id}_{d_i}$$

with signs $\{\varepsilon_1, \ldots, \varepsilon_m\} \in \{\pm 1\}$ and dimensions $d_1, \ldots, d_m \in \mathbb{N}$.

- ► Analogies to DHR analysis of permutation group statistics.
- "Intertwiner problem" solved for finite-dimensional (purely algebraic) case. Also solved for scalar (pure analytic) case. General mixed case still open.
- ► In QFT models with constant S-matrix, get decomposition into tensor products of free scalar Bose/Fermi theories [Scotford

 $\phi_R(R) \in \text{End } V.$

Interesting facts:

• If $\phi_R(R) = c \cdot 1$, then *R* is called **Markov**.

 $\phi_R(R) \in \text{End } V.$

Interesting facts:

- ► $\phi_R(R)$ can be computed explicitly as a partial trace of *R*, namely $\phi_R(R) = \phi_F(FRF) = (\text{partial trace of the matrix } R)$
- If $\phi_R(R) = c \cdot 1$, then R is called **Markov**.
- $\phi_R(R)$ lies in the relative commutant of $\lambda_R(\mathcal{M}) \subset \mathcal{M}$.

 $\phi_R(R) \in \text{End } V.$

Interesting facts:

- ► $\phi_R(R)$ can be computed explicitly as a partial trace of *R*, namely $\phi_R(R) = \phi_F(FRF) = (\text{partial trace of the matrix } R)$
- If $\phi_R(R) = c \cdot 1$, then R is called **Markov**.
- $\phi_R(R)$ lies in the relative commutant of $\lambda_R(\mathcal{M}) \subset \mathcal{M}$.
- Thus: λ_R irreducible \implies R Markov.

 $\phi_R(R) \in \text{End } V.$

Interesting facts:

- ► $\phi_R(R)$ can be computed explicitly as a partial trace of *R*, namely $\phi_R(R) = \phi_F(FRF) = (\text{partial trace of the matrix } R)$
- If $\phi_R(R) = c \cdot 1$, then R is called **Markov**.
- $\phi_R(R)$ lies in the relative commutant of $\lambda_R(\mathcal{M}) \subset \mathcal{M}$.
- Thus: λ_R irreducible \Longrightarrow R Markov.

Have straightforward sufficient condition for the Markov property:

Proposition

If R has no pair of opposite eigenvalues q, -q, then (M) holds.

R-matrices with two eigenvalues

Consider R-matrices with two eigenvalues, say -1 and q.

In this case, *R* must necessarily be **selfadjoint** or **unitary**.
 Positivity of the braid group character *τ_R* defined by *R* requires

[Wenzl 1988, Fredenhagen/Rehren/Schroer 1989, Ocneanu 1985]

R-matrices with two eigenvalues

Consider R-matrices with two eigenvalues, say -1 and q.

In this case, *R* must necessarily be **selfadjoint** or **unitary**.
 Positivity of the braid group character *τ_R* defined by *R* requires

[Wenzl 1988, Fredenhagen/Rehren/Schroer 1989, Ocneanu 1985]

- The case q = 1 is the case of involutive *R*, discussed before.
- Can be extended to q > 0 by deformation procedure.

R-matrices with two eigenvalues -1 and $q \neq \pm 1$

- All such R-matrices have the Markov property. (No pair of opposite eigenvalues.)
- A Markov trace is uniquely fixed by the value $\tau_R(e_1)$ (with $\pi_R(e_1)$ = eigen projection of R) [Jones '87].

R-matrices with two eigenvalues -1 and $q \neq \pm 1$

- All such R-matrices have the Markov property. (No pair of opposite eigenvalues.)
- A Markov trace is uniquely fixed by the value $\tau_R(e_1)$ (with $\pi_R(e_1)$ = eigen projection of R) [Jones '87].
- The possible Markov traces are known [Wenzl 1988], [Fredenhagen/Rehren/Schroer 1989]

$$\tau_{R}(e_{1})=\frac{\frac{\sin\frac{\pi(k-1)}{\ell}}{2\cos\frac{\pi}{\ell}\sin\frac{\pi k}{\ell}}, \qquad k\in\{1,\ldots,\ell-1\}, \ q=e^{\pm i\pi/\ell}.$$

R-matrices with two eigenvalues -1 and $q \neq \pm 1$

- All such R-matrices have the Markov property. (No pair of opposite eigenvalues.)
- A Markov trace is uniquely fixed by the value $\tau_R(e_1)$ (with $\pi_R(e_1)$ = eigen projection of R) [Jones '87].
- The possible Markov traces are known [Wenzl 1988], [Fredenhagen/Rehren/Schroer 1989]

$$\tau_R(e_1) = \frac{\sin \frac{\pi(k-1)}{\ell}}{2\cos \frac{\pi}{\ell}\sin \frac{\pi k}{\ell}}, \qquad k \in \{1,\ldots,\ell-1\}, \ q = e^{\pm i\pi/\ell}.$$

Theorem

- ▶ Equivalence classes characterised by *d*, *q*, and its multiplicity.
- ► Unitary R-matrices with eigenvalues -1 and $q \neq \pm 1$ exist if and only if $q = \pm i$ or $q = e^{\pm i\pi/3}$.

▶ If
$$q = \pm i$$
, then $\tau_R(e_1) = \frac{1}{2}$. If $q = e^{\pm i\pi/3}$, then $\tau_R(e_1) \in \{\frac{1}{3}, \frac{1}{2}, \frac{2}{3}\}$.

An almost complete Theorem

The following families (1),(2a),(2b) (and maybe (3)) of equivalence classes of R-matrices occur:

(1) $q = \pm i, d_R \in 2\mathbb{N}, \tau_R(e_1) = \frac{1}{2}$,

$$R \sim \frac{-1 \pm i}{2} \begin{pmatrix} 1 & & -1 \\ & 1 & -1 & \\ & 1 & 1 & \\ 1 & & & 1 \end{pmatrix} \boxtimes \mathbf{1}_k$$

(2a) $q = e^{\pm i\pi/3}$, $d_R \in 3\mathbb{N}$, $\tau_R(e_1) = \frac{1}{3}$, with $R \sim (-P + e^{\pm i\pi/3}(1-P)) \boxtimes 1_k$,

$$P = \frac{1}{3} \begin{pmatrix} 1 & & & \bar{q}^2 & 1 & \\ & 1 & \bar{q}^2 & & & \bar{q}^2 \\ & & 1 & 1 & 1 & & \\ & q^2 & 1 & & & 1 \\ & & 1 & 1 & 1 & & \\ & q^2 & & & 1 & q^2 & \\ & & 1 & 1 & 1 & & \\ 1 & & & \bar{q}^2 & 1 & & \\ & q^2 & 1 & & & 1 \end{pmatrix}$$

An almost complete Theorem

(...)

(2b) As (2a), but with $P \leftrightarrow (1 - P)$.

(3) There might be another class with $q = e^{\pm i\pi/3}$, $\tau_R(e_1) = \frac{1}{2}$. Then necessarily $d_R \in \{4, 6, 8, ...\}$ and index= 4 (not Temperley-Lieb).

Cases (1),(2a),(2b) are irreducible, with index 2 and 3, respectively.

An almost complete Theorem

(...)

(2b) As (2a), but with $P \leftrightarrow (1 - P)$.

(3) There might be another class with $q = e^{\pm i\pi/3}$, $\tau_R(e_1) = \frac{1}{2}$. Then necessarily $d_R \in \{4, 6, 8, ...\}$ and index= 4 (not Temperley-Lieb).

Cases (1),(2a),(2b) are irreducible, with index 2 and 3, respectively.

A more general analysis of ${\mathcal R}$ and its endomorphisms is work in progress with R. Conti.

Let's finish with some **advertisment**

Within the **GAPT** research group at Cardiff University, we have an open permanent position:

Lecturer in Pure Mathematics or Mathematical Physics (Research & Teaching)

It is open to applications from various fields, including

- Mathematical Quantum Field Theory
- Operator Algebras
- ► ...

Will be announced **next week**. For details, see

- www.cardiff.ac.uk/mathematics/about-us/job-vacancies
- www.lqp2.org/jobs

and please share with anybody who might be interested.