Yang-Baxter Representations of the Infinite Symmetric Group

Gandalf Lechner

joint work with Ulrich Pennig and Simon Wood

Yang-Baxter equation:

$$R_1R_2R_1 = R_2R_1R_2.$$

Definition (for purpose of this talk)

V: finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \operatorname{End}(V \otimes V)$ such that $R_1R_2R_1 = R_2R_1R_2$ and $R^2 = 1$.

3

Definition (for purpose of this talk)

V: finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \operatorname{End}(V \otimes V)$ such that $R_1R_2R_1 = R_2R_1R_2$ and $R^2 = 1$.

• $\mathcal{R}_0 := \text{set of all R-matrices (with any } V)$

Definition (for purpose of this talk)

V: finite-dim. Hilbert space. An **R-matrix** is a unitary $R \in \operatorname{End}(V \otimes V)$ such that $R_1R_2R_1 = R_2R_1R_2$ and $R^2 = 1$.

- $\mathcal{R}_0 := \text{set of all R-matrices (with any } V)$
- Any $R \in \mathcal{R}_0$ gives unitary rep. $\rho_R^{(n)}$ of S_n on $V^{\otimes n}$ via

$$\rho_R^{(n)}(\sigma_i) := R_i, \qquad i = 1, \dots, n-1$$

$$\rho_R : S_{\infty} \to \bigotimes_{n \ge 1} \text{End } V$$

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

 $R, S \in \mathcal{R}_0$ are called **equivalent**,

$$R \sim S$$
,

if for each n, the S_n -representations $\rho_R^{(n)} \cong \rho_S^{(n)}$ are equivalent.

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

 $R, S \in \mathcal{R}_0$ are called **equivalent**,

$$R \sim S$$
,

if for each n, the S_n -representations $\rho_R^{(n)} \cong \rho_S^{(n)}$ are equivalent.

Simple observations:

• $R \sim S \Longrightarrow \dim R = \dim S$, $\operatorname{Tr} R = \operatorname{Tr} S$.

Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition

 $R, S \in \mathcal{R}_0$ are called **equivalent**,

$$R \sim S$$
,

if for each n, the S_n -representations $\rho_R^{(n)} \cong \rho_S^{(n)}$ are equivalent.

Simple observations:

- $R \sim S \Longrightarrow \dim R = \dim S$, $\operatorname{Tr} R = \operatorname{Tr} S$.
- For each $A \in GL(V)$,

$$R \sim (A \otimes A)R(A^{-1} \otimes A^{-1})$$

 $R \sim FRF$

Question 1

Classify R-matrices up to equivalence: Find parameterization of \mathcal{R}_0/\sim and a representative in each equivalence class.

Question 1

Classify R-matrices up to equivalence: Find parameterization of \mathcal{R}_0/\sim and a representative in each equivalence class.

Question 2

Given $R, S \in \mathcal{R}_0$, how to efficiently decide whether $R \sim S$?

Question 1

Classify R-matrices up to equivalence: Find parameterization of \mathcal{R}_0/\sim and a representative in each equivalence class.

Question 2

Given $R, S \in \mathcal{R}_0$, how to efficiently decide whether $R \sim S$?

Question 3

Which reps ρ of S_{∞} are of the form $\rho \cong \rho_R$ for some $R \in \mathcal{R}_0$? ("Yang-Baxter representations")

Normalized trace on tensor products ($d = \dim V$):

$$\tau = \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \dots$$

For each R,

$$\chi_R := \tau \circ \rho_R : S_\infty \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} .

Normalized trace on tensor products ($d = \dim V$):

$$\tau = \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \dots$$

For each R,

$$\chi_R := \tau \circ \rho_R : S_\infty \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} .

 \bullet normalized character of $S_{\infty}=$ tracial state on $\mathbb{C}[S_{\infty}]$

6

Normalized trace on tensor products ($d = \dim V$):

$$\tau = \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \frac{\mathsf{Tr}_{\mathsf{V}}}{d} \otimes \dots$$

For each R,

$$\chi_R := \tau \circ \rho_R : S_\infty \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} .

- normalized character of S_{∞} = tracial state on $\mathbb{C}[S_{\infty}]$
- On *n*-cycle $c_n: i_1 \mapsto i_2 \mapsto \ldots \mapsto i_n \mapsto i_1$, get

$$\chi_R(c_n)=d^{-n}\operatorname{Tr}_{V^{\otimes n}}(R_1\cdots R_{n-1}).$$

Normalized trace on tensor products ($d = \dim V$):

$$\tau = \frac{\operatorname{Ir}_V}{d} \otimes \frac{\operatorname{Ir}_V}{d} \otimes \frac{\operatorname{Ir}_V}{d} \otimes \dots$$

For each R,

$$\chi_R := \tau \circ \rho_R : S_\infty \longrightarrow \mathbb{C}$$

is a (normalized) character of S_{∞} .

- normalized character of $S_{\infty} = \text{tracial state on } \mathbb{C}[S_{\infty}]$
- On *n*-cycle $c_n: i_1 \mapsto i_2 \mapsto \ldots \mapsto i_n \mapsto i_1$, get

$$\chi_R(c_n)=d^{-n}\operatorname{Tr}_{V^{\otimes n}}(R_1\cdots R_{n-1}).$$

• χ_R "factorizes": For $\sigma, \sigma' \in S_\infty$ with disjoint supports,

$$\chi_R(\sigma\sigma') = \chi_R(\sigma) \cdot \chi_R(\sigma')$$
.

Theorem [Thoma '64]

- (1) A character χ of S_{∞} is extremal if and only if it factorizes.
- (2) $\mathbb{T} := \text{all real sequences } \{\alpha_i\}_i, \{\beta_i\}_i \text{ such that }$
 - $\alpha_i \ge \alpha_{i+1} \ge 0$, $\beta_i \ge \beta_{i+1} \ge 0$
 - $\sum_{i}(\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1:1 correspondence with ${\mathbb T}$ via

$$\chi(c_n) = \sum_i \alpha_i^n + (-1)^{n+1} \sum_i \beta_i^n, \qquad n \ge 2.$$

7

Theorem [Thoma '64]

- (1) A character χ of S_{∞} is extremal if and only if it factorizes.
- (2) $\mathbb{T} := \text{all real sequences } \{\alpha_i\}_i, \{\beta_i\}_i \text{ such that }$
 - $\alpha_i \ge \alpha_{i+1} \ge 0$, $\beta_i \ge \beta_{i+1} \ge 0$
 - $\sum_{i}(\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1:1 correspondence with ${\mathbb T}$ via

$$\chi(c_n) = \sum_i \alpha_i^n + (-1)^{n+1} \sum_i \beta_i^n, \qquad n \ge 2.$$

• Each R defines a point $(\alpha, \beta) \in \mathbb{T}$ via

$$\sum_{i} \alpha_{i}^{n} + (-1)^{n+1} \sum_{i} \beta_{i}^{n} = d^{-n} \operatorname{Tr}_{V \otimes n} (R_{1} \cdots R_{n-1}).$$

Theorem [Thoma '64]

- (1) A character χ of S_{∞} is extremal if and only if it factorizes.
- (2) $\mathbb{T} := \text{all real sequences } \{\alpha_i\}_i, \{\beta_i\}_i \text{ such that }$
 - $\alpha_i \ge \alpha_{i+1} \ge 0$, $\beta_i \ge \beta_{i+1} \ge 0$
 - $\sum_{i} (\alpha_i + \beta_i) \leq 1$

Extremal characters are in 1:1 correspondence with ${\mathbb T}$ via

$$\chi(c_n) = \sum_i \alpha_i^n + (-1)^{n+1} \sum_i \beta_i^n, \qquad n \ge 2.$$

• Each R defines a point $(\alpha, \beta) \in \mathbb{T}$ via

$$\sum_{i} \alpha_{i}^{n} + (-1)^{n+1} \sum_{i} \beta_{i}^{n} = d^{-n} \operatorname{Tr}_{V \otimes n} (R_{1} \cdots R_{n-1}).$$

 Which Thoma parameters are realized by Yang-Baxter characters?

- YB representations ρ_R are "small": S_n -rep $\rho_R^{(n)}$ has only dimension d^n .
- Consequence: ρ_R is **not** faithful as a representation of the group algebra.

- YB representations ρ_R are "small": S_n -rep $\rho_R^{(n)}$ has only dimension d^n .
- Consequence: ρ_R is **not** faithful as a representation of the group algebra.

Theorem [Wassermann '81]

An extremal trace of C^*S_{∞} is faithful if and only if (1) or (2):

- (1) $\sum_{i} (\alpha_i + \beta_i) < 1$.
- (2) Infinitely many Thoma parameters are non-zero.

- YB representations ρ_R are "small": S_n -rep $\rho_R^{(n)}$ has only dimension d^n .
- Consequence: ρ_R is **not** faithful as a representation of the group algebra.

Theorem [Wassermann '81]

An extremal trace of C^*S_{∞} is faithful if and only if (1) or (2):

- (1) $\sum_{i} (\alpha_i + \beta_i) < 1$.
- (2) Infinitely many Thoma parameters are non-zero.
 - Thus: Thoma parameters (α, β) of a YB character satisfy $\sum_{i}(\alpha_{i}+\beta_{i})=1$, and only finitely many are non-zero.

Yang-Baxter subfactors

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \geq 1}} \operatorname{End} V^{\tau}$$

$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \geq 1}} \operatorname{End} V^{\tau}$$

$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R=\pm 1$).

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \geq 1}} \operatorname{End} V^{\tau}$$

$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R=\pm 1$).

Subgroup

$$S_{\infty}^{>} := \{ \sigma \in S_{\infty} : \sigma(1) = 1 \} \subset S_{\infty}$$

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \geq 1}} \operatorname{End} V^{\tau}$$

$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R=\pm 1$).

Subgroup

$$S_{\infty}^{>} := \{ \sigma \in S_{\infty} : \sigma(1) = 1 \} \subset S_{\infty}$$

generates another subfactor

$$\mathcal{N}_R := \rho_R(S_\infty^>)'' = \{R_i : i \ge 2\}'' \subset \mathcal{M}_R.$$

Yang-Baxter subfactors

Notation:

$$\mathcal{E} := \overline{\bigotimes_{n \geq 1}} \operatorname{End} V^{\tau}$$

$$\mathcal{M}_{R} := \rho_{R}(S_{\infty})'' = \{R_{i} : i \in \mathbb{N}\}'' \subset \mathcal{E}$$

• As χ_R is extremal, \mathcal{M}_R is a factor (II₁ unless $R=\pm 1$).

Subgroup

$$S_{\infty}^{>} := \{ \sigma \in S_{\infty} : \sigma(1) = 1 \} \subset S_{\infty}$$

generates another subfactor

$$\mathcal{N}_R := \rho_R(S_\infty^>)'' = \{R_i : i \ge 2\}'' \subset \mathcal{M}_R.$$

• $\mathcal{N}'_R \cap \mathcal{M}_R = \mathbb{C}$ if and only if $R \in \{\pm 1, \pm F\}$ [Gohm-Köstler 2010, Yamashita 2012]

$$\mathcal{N}_R \subset \mathcal{M}_R, \qquad \mathcal{N}_R' \cap \mathcal{M}_R \subset \mathcal{M}_R$$

to tensor product subfactors

$$1 \otimes \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots \subset \mathcal{E}$$

$$\operatorname{End} V = \operatorname{End} V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}.$$

$$\mathcal{N}_R \subset \mathcal{M}_R$$
, $\mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$

to tensor product subfactors

$$1 \otimes \text{End } V \otimes \text{End } V \otimes \ldots \subset \mathcal{E}$$
 End $V = \text{End } V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}$.

In both cases, have τ -preserving conditional expectations:

• End $V \subset \mathcal{E}$: Cond. exp. E =partial trace

$$E: \mathcal{E} \longrightarrow \operatorname{End} V, \quad E = \operatorname{id}_{\operatorname{End} V} \otimes \tau \otimes \tau \otimes \dots$$

$$\mathcal{N}_R \subset \mathcal{M}_R, \qquad \mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$$

to tensor product subfactors

$$1 \otimes \operatorname{End} V \otimes \operatorname{End} V \otimes \ldots \subset \mathcal{E} \qquad \operatorname{End} V = \operatorname{End} V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}.$$

In both cases, have au-preserving conditional expectations:

• End $V \subset \mathcal{E}$: Cond. exp. E =partial trace

$$E: \mathcal{E} \longrightarrow \operatorname{End} V, \quad E = \operatorname{id}_{\operatorname{End} V} \otimes \tau \otimes \tau \otimes \dots$$

• $\mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$: Cond. exp. E_R = limit of averaging over larger and larger subgroups of $S^>_\infty$.

$$\mathcal{N}_R \subset \mathcal{M}_R, \qquad \mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$$

to tensor product subfactors

$$1 \otimes \text{End } V \otimes \text{End } V \otimes \ldots \subset \mathcal{E}$$
 End $V = \text{End } V \otimes 1 \otimes 1 \ldots \subset \mathcal{E}$.

In both cases, have τ -preserving conditional expectations:

• End $V \subset \mathcal{E}$: Cond. exp. E =partial trace

$$E: \mathcal{E} \longrightarrow \operatorname{End} V, \quad E = \operatorname{id}_{\operatorname{End} V} \otimes \tau \otimes \tau \otimes \dots$$

• $\mathcal{N}'_R \cap \mathcal{M}_R \subset \mathcal{M}_R$: Cond. exp. E_R = limit of averaging over larger and larger subgroups of $S^>_\infty$.

$$\operatorname{End} V \longleftarrow^{E} \mathcal{E}$$

$$\uparrow$$

$$\mathcal{N}'_{R} \cap \mathcal{M}_{R} \xleftarrow{E_{R}} \mathcal{M}_{R}$$

Proposition

$$E(R_1)=E_R(R_1).$$

Proposition

$$E(R_1)=E_R(R_1).$$

With arguments from [Gohm-Köstler 2010], one then gets

Theorem

Let $c_n \in S_{\infty}$ be an n-cycle, $n \geq 2$. Then

$$\chi_R(c_n) = \tau(E(R_1)^{n-1})$$

Proposition

$$E(R_1)=E_R(R_1).$$

With arguments from [Gohm-Köstler 2010], one then gets

Theorem

Let $c_n \in S_{\infty}$ be an n-cycle, $n \geq 2$. Then

$$\chi_R(c_n) = \tau(E(R_1)^{n-1})$$

Theorem: Characterization of \sim

Define the "usual partial trace" of R as

$$\operatorname{ptr} R := (\operatorname{id}_{\operatorname{End} V} \otimes \operatorname{Tr}_V)(R).$$

$$\Rightarrow \chi_R(c_n) = d^{-n} \operatorname{Tr}_V(\operatorname{ptr}(R)^{n-1}).$$

 $R \sim S$ if and only if ptr $R \cong ptrS$.

partial trace in d = 2:

partial trace in d = 2:

$$\begin{pmatrix}
 a & b & a' & b' \\
 c & d & c' & d' \\
 \hline
 a'' & b'' & a''' & b''' \\
 c'' & d'' & c''' & d'''
\end{pmatrix}$$

partial trace in d = 2:

$$\begin{pmatrix}
a & b & a' & b' \\
c & d & c' & d' \\
\hline
a'' & b'' & a''' & b''' \\
c'' & d'' & c''' & d'''
\end{pmatrix}
\longmapsto
\begin{pmatrix}
a+d & a'+d' \\
a''+d'' & a'''+d'''
\end{pmatrix}$$

partial trace in d=2:

$$\begin{pmatrix}
a & b & a' & b' \\
c & d & c' & d' \\
\hline
a'' & b'' & a''' & b''' \\
c'' & d'' & c''' & d'''
\end{pmatrix}
\longmapsto
\begin{pmatrix}
a + d & a' + d' \\
a'' + d'' & a''' + d'''
\end{pmatrix}$$

spectrum of partial trace of R determines equivalence class [R].

spectral characterizations also appear in [Okounkov 99]

Write

$$\chi_R(c_n) = d^{-n} \operatorname{Tr}_V(\operatorname{ptr}(R)^{n-1})$$

in Thoma parameters (α, β) of R and eigenvalues t_i of ptr R:

$$\sum_{i} \alpha_{i}^{n} + (-1)^{n+1} \sum_{i} \beta_{i}^{n} = d^{-n} \sum_{j} t_{j}^{n-1}.$$

This implies:

Write

$$\chi_R(c_n) = d^{-n} \operatorname{Tr}_V(\operatorname{ptr}(R)^{n-1})$$

in Thoma parameters (α, β) of R and eigenvalues t_i of ptr R:

$$\sum_{i} \alpha_{i}^{n} + (-1)^{n+1} \sum_{i} \beta_{i}^{n} = d^{-n} \sum_{j} t_{j}^{n-1}.$$

This implies:

Corollary

The Thoma parameters of a YB character are rational.

Normal form R-matrices

So far:

- (1) $R \sim S$ if and only if ptr $R \cong ptr S$.
- (2) Thoma parameters of YB characters lie in $\mathbb{T}_{YB}\subset\mathbb{T}$, defined by:
 - Only finitely many α_i , β_i are non-zero
 - $\sum_{i}(\alpha_i + \beta_i) = 1$
 - $\alpha_i, \beta_i \in \mathbb{Q}$

Normal form R-matrices

So far:

- (1) $R \sim S$ if and only if ptr $R \cong ptr S$.
- (2) Thoma parameters of YB characters lie in $\mathbb{T}_{YB}\subset\mathbb{T}$, defined by:
 - Only finitely many α_i , β_i are non-zero
 - $\sum_{i}(\alpha_i + \beta_i) = 1$
 - $\alpha_i, \beta_i \in \mathbb{Q}$

Now:

• Given $(\alpha, \beta) \in \mathbb{T}_{YB}$, construct R with these parameters.

Normal form R-matrices

So far:

- (1) $R \sim S$ if and only if ptr $R \cong ptr S$.
- (2) Thoma parameters of YB characters lie in $\mathbb{T}_{YB}\subset\mathbb{T}$, defined by:
 - Only finitely many α_i, β_i are non-zero
 - $\sum_{i}(\alpha_i + \beta_i) = 1$
 - $\alpha_i, \beta_i \in \mathbb{Q}$

Now:

- Given $(\alpha, \beta) \in \mathbb{T}_{YB}$, construct R with these parameters.
- Plan: Build R-matrix from simple blocks by "direct sum"

Setting: V, W Hilbert spaces, $X \in \text{End}(V \otimes V)$, $Y \in \text{End}(W \otimes W)$. Define

$$X \boxplus Y \in End((V \oplus W) \otimes (V \oplus W))$$

Setting: V, W Hilbert spaces, $X \in \text{End}(V \otimes V)$, $Y \in \text{End}(W \otimes W)$. Define

$$X \boxplus Y \in End((V \oplus W) \otimes (V \oplus W))$$

as

$$X \boxplus Y = X \oplus Y \oplus F$$
 on $(V \oplus W) \otimes (V \oplus W) = (V \otimes V) \oplus (W \otimes W) \oplus ((V \otimes W) \oplus (W \otimes V)).$

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Setting: V, W Hilbert spaces, $X \in \text{End}(V \otimes V)$, $Y \in \text{End}(W \otimes W)$. Define

$$X \boxplus Y \in End((V \oplus W) \otimes (V \oplus W))$$

as

$$X \boxplus Y = X \oplus Y \oplus F \quad \text{on}$$

$$(V \oplus W) \otimes (V \oplus W) = (V \otimes V) \oplus (W \otimes W) \oplus ((V \otimes W) \oplus (W \otimes V)).$$

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Proposition

- \boxplus is commutative and associative.
- \boxplus preserves the YBE: $R, S \in \mathcal{R}_0 \Rightarrow R \boxplus S \in \mathcal{R}_0$.
- $ptr(R \boxplus S) = ptr R \oplus ptr S$.

Let $d_1^+, \ldots, d_n^+, d_1^-, \ldots, d_m^- \in \mathbb{N}$. Normal form R-matrix (with dimensions d^+, d^-) is defined as

$$N := 1_{d_1^+} \boxplus \ldots \boxplus 1_{d_n^+} \boxplus (-1_{d_n^-}) \boxplus \ldots \boxplus (-1_{d_m^-}).$$

Let $d_1^+, \ldots, d_n^+, d_1^-, \ldots, d_m^- \in \mathbb{N}$. Normal form R-matrix (with dimensions d^+, d^-) is defined as

$$N:=1_{d_1^+}\boxplus\ldots\boxplus 1_{d_n^+}\boxplus (-1_{d_1^-})\boxplus\ldots\boxplus (-1_{d_m^-}).$$

Theorem

• Let $d := d_1^+ + \ldots + d_n^+ + d_1^- + \ldots + d_m^-$. Then χ_N has Thoma parameters

$$\alpha_i = \frac{d_i^+}{d}, \qquad \beta_j = \frac{d_j^-}{d}.$$

 \bullet Yang-Baxter characters are in 1:1 correspondence with $\mathbb{T}_{\mathrm{YB}}.$

$|\mathcal{R}_0/\!\!\sim\,\cong\mathbb{Y} imes\mathbb{Y}^{-1}$

It is convenient to rescale the Thoma parameters by the dimension:

$$a_i := d\alpha_i, \qquad b_i := d\beta_i.$$

These are integers (= |eigenvalues of ptr R|), and sum to d.

$|\mathcal{R}_0/\sim \cong \mathbb{Y} imes \mathbb{Y}$

It is convenient to rescale the Thoma parameters by the dimension:

$$a_i := d\alpha_i, \qquad b_i := d\beta_i.$$

These are integers (= |eigenvalues of ptr R|), and sum to d.

Theorem

 $\mathcal{R}_0/\!\!\sim$ is in 1:1 correspondence with $\mathbb{Y}\times\mathbb{Y}$ via

$$[R] \mapsto (a,b)$$

$\mathcal{R}_0/{\sim}\cong\mathbb{Y}\times\mathbb{Y}$

It is convenient to rescale the Thoma parameters by the dimension:

$$a_i := d\alpha_i, \qquad b_i := d\beta_i.$$

These are integers (= |eigenvalues of ptr R|), and sum to d.

Theorem

 $\mathcal{R}_0/\!\!\sim$ is in 1:1 correspondence with $\mathbb{Y}\times\mathbb{Y}$ via

$$[R] \mapsto (a, b)$$

• Example 1:

$$(\square,\square): d=8, \alpha=\left(\frac{3}{8},\frac{1}{8}\right), \beta=\left(\frac{1}{4},\frac{1}{4}\right).$$

$\mathcal{R}_0/{\sim}\cong\mathbb{Y}\times\mathbb{Y}$

It is convenient to rescale the Thoma parameters by the dimension:

$$a_i := d\alpha_i, \qquad b_i := d\beta_i.$$

These are integers (= |eigenvalues of ptr R|), and sum to d.

Theorem

 $\mathcal{R}_0/\!\!\sim$ is in 1:1 correspondence with $\mathbb{Y}\times\mathbb{Y}$ via

$$[R] \mapsto (a,b)$$

• Example 2:

$$\left(\begin{array}{c} \square \\ \square \end{array}, \begin{array}{c} \square \end{array} \right)$$
: $d=7, \alpha_1=...=\alpha_5=\beta_1=\beta_2=\frac{1}{7}.$

"DHR example"

- B(R):= (1 + # non-zero α 's) × (1 + # non-zero β 's)
- For example: $B(R) = \frac{1}{2}$ for $\alpha = 0$, $\beta = (\frac{2}{3}, \frac{1}{3})$

- B(R):= $(1 + \# \text{ non-zero } \alpha'\text{s}) \times (1 + \# \text{ non-zero } \beta'\text{s})$
- For example: $B(R) = \Box$ for $\alpha = 0$, $\beta = (\frac{2}{3}, \frac{1}{3})$
- Multiplicity of diagram Y is zero iff $B(R) \subset Y$.

- B(R):= $(1 + \# \text{ non-zero } \alpha' \text{s}) \times (1 + \# \text{ non-zero } \beta' \text{s})$
- For example: $B(R) = \frac{1}{2}$ for $\alpha = 0$, $\beta = (\frac{2}{3}, \frac{1}{3})$
- Multiplicity of diagram Y is zero iff $B(R) \subset Y$.

Outlook

The following generalizations are on our agenda:

- Introduce a spectral parameter → QFT!
- Drop the assumption $R^2 = 1 \longrightarrow \text{braid groups!}$