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Yang-Baxter equation:

RiR2Ry = RoyR1Rs.
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The Yang-Baxter equation and the infinite symmetric group

Definition (for purpose of this talk)
V : finite-dim. Hilbert space. An R-matrix is a unitary
R € End(V® V) such that RiR;Ry = RyRiR, and R? = 1.

e Ry := set of all R-matrices (with any V)
e Any R € Rq gives unitary rep. pf?”) of S, on VM via

p,gn)(a,-) o= [Rs. I=1...,n—1
PR :Soo %®Endv

n>1
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Motivated from QFT constructions [Alazzawi-GL 2016]:

Definition
R,S € Ry are called equivalent,

RS

if for each n, the Sy-representations p{" = p{" are
equivalent.
Simple observations:
e R~S=—dmR=dimS, TrR=TrS.
e Foreach A € GL(V),
R~ (A®ARAT @A™
R ~ FRF



Question 1
Classify R-matrices up to equivalence: Find parameterization
of Ro/~ and a representative in each equivalence class.



Question 1
Classify R-matrices up to equivalence: Find parameterization
of Ry/~ and a representative in each equivalence class.

Question 2
Given R, S € Ry, how to efficiently decide whether R ~ S?



Question 1
Classify R-matrices up to equivalence: Find parameterization
of Ry/~ and a representative in each equivalence class.

Question 2
Given R, S € Ry, how to efficiently decide whether R ~ S?

Question 3
Which reps p of S are of the form p = pr for some R € Ro?
(“Yang-Baxter representations”)
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Yang-Baxter characters of S,

Normalized trace on tensor products (d = dim V):

_Tr\/ Try Try
= & d & d Q...

For each R,
XR:=TOPR:Se, — C

is a (normalized) character of S..

e normalized character of So, = tracial state on C[Sx]
e Onn-cycle ¢y iy ip = ... ip — iy, get

xr(Cn) = d™" Tryen(Ry - Rn_1).

e xg “factorizes”: For o,0’ € Sy with disjoint supports,

xr(oa’) = xr(o) - xr(d'). 6
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Theorem [Thoma '64]

(1) A character x of S is extremal if and only if it factorizes.
(2) T := all real sequences {«;};, {B;}; such that
® 0;>0i1120,5 261120
o > i(ai+p) <
Extremal characters are in 1:1 correspondence with T via

x(en) =) of +(=1"") 8, n>2

e EFach R defines a point (a, 8) € T via
S Al + (=Y B =d 7" Tryen(Ry -+ Ro_a).
/ /

e Which Thoma parameters are realized by Yang-Baxter
characters?
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e YB representations pg are “small”: S,-rep pg’) has only
dimension d".

e Consequence: pg is not faithful as a representation of the
group algebra.

Theorem [Wassermann '81]
An extremal trace of C*S is faithful if and only if (1) or (2):

(M) i+ 8) < 1.

(2) Infinitely many Thoma parameters are non-zero.

e Thus: Thoma parameters (a, 3) of a YB character satisfy
> ilai + Bi) =1, and only finitely many are non-zero.
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Yang-Baxter subfactors

Notation:

& ::®End v

n>1
Mg = pr(Ssc)" = {Ri : I€EN}Y' C €
e As g is extremal, My is a factor (Il; unless R = £1).
Subgroup
S7 ={0€Sx : 0(1) =1} C Sxo
generates another subfactor

Nr:=pr(52)" ={R; : i >2}" C Mg.

e NN Mgr=Cifandonlyif R € {1, £F}
[Gohm-Kostler 2010, Yamashita 2012]
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Compare the subfactors
Nr C Mg, NL N Mg C Mg
to tensor product subfactors
1T®ENdV®EndV®...C & EndV=EndV®1®1...C€&.
In both cases, have 7-preserving conditional expectations:
e EndV C &: Cond. exp. E = partial trace
E:&— EndV, E=Iidgqv@®TR7TX...

e NV,N Mpgr C Mg: Cond. exp. Eg= limit of averaging over

larger and larger subgroups of SZ..

EndV «£Z ¢

N;ZHMR<E—RMR 1
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Proposition
E(R1) = Er(R1).

With arguments from [Gohm-Kostler 2010], one then gets

Theorem
Let ¢, € S be an n-cycle, n > 2. Then

Xr(cn) = T(E(R)"™)
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Proposition
E(R1) = Er(R1).

With arguments from [Gohm-Kdstler 2010], one then gets
Theorem
Let ¢, € S be an n-cycle, n > 2. Then

xr(cn) = T(E(R)"™")
Theorem: Characterization of ~

Define the “usual partial trace” of R as

ptrR := (idgngv @ Trv)(R).
= xr(cn) = d=" Try(ptr(R)" ).

R ~ Sif and only if ptrR = ptrS.

12



partial trace in d = 2:
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partial trace in d = 2:

a b|d Vb
c d|cd d
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partial trace in d = 2:

a blad b

c dl ¢ o ( a+d
a’ b’ | a" p" a’ +d’
codrl o g

a +d
a/// _'_ d///

)
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partial trace in d = 2:

a b | a b

c d | cd d a+d a +d
a// b// al// b//l — a// + d// a//l _|_ d/l/
CI/ d/l C/l/ d/l/

spectrum of partial trace of R determines equivalence class [R].

spectral characterizations also appear in [Okounkov 99]
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Write
xr(cn) = d™"Try(ptr(R)"™ )

in Thoma parameters (a, 8) of R and eigenvalues t; of ptrR:

Za{’ + (=)™ Zﬁ{’ =d" th”” :
i I J

This implies:

Corollary
The Thoma parameters of a YB character are rational.

14
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(1) R~ Sifand only if ptrR = ptrS.
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Normal form R-matrices

So far:

(1) R~ Sifand only if ptrR = ptrS.
(2) Thoma parameters of YB characters lie in Tyg C T,

defined by:
e Only finitely many «j, 8; are non-zero
° Zf(a,' + By) =H
L4 ai7ﬂi S Q
Now:

e Given («, 8) € Ty, construct R with these parameters.

e Plan: Build R-matrix from simple blocks by “direct sum”

15
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Setting: V, W Hilbert spaces, X € End(V® V), Y € End(W @ W).
Define

XEY € End((Ve W) & (Ve W))
as

XBY=X®Y®F on

(Vewe(VeW)=(VeV)e(WeW)a (Ve W)a (W V)).

[Lyubashenko 87, Gurevich 91, Hietarinta 93]

Proposition

e M is commutative and associative.
e M preserves the YBE: R,S € Rp = RHS € Ry.
e ptr(RES) = ptrR @ ptrS.
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Letd,...,df,d7,...,dy € N. Normal form R-matrix (with
dimensions d*,d™) is defined as

N =g B... 8 1 B (=) B... 8 (-1,).

m

Theorem

e letd:=d +...+d} +d;y +...+dp. Then xy has
Thoma parameters

dt 9
T =

Q=

e Yang-Baxter characters are in 1:1 correspondence with Tyg.
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These are integers (= |eigenvalues of ptrR|), and sum to d.

Theorem
Ro/~ isin 11 correspondence with Y x Y via

[R] — (a, b)
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Ro/NgYXY

It is convenient to rescale the Thoma parameters by the
dimension:

a; .= d(,Y,'7 b,’ = dﬁ,
These are integers (= |eigenvalues of ptrR|), and sum to d.

Theorem
Ro/~ isin 11 correspondence with Y x Y via

[R] — (a, b)

e Example 2:

“DHR example” 18



Describe the multiplicities of the irreps of S, in p
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Describe the multiplicities of the irreps of S, in p,(i,”).
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e B(R):= (1+ # non-zero ’s) x (1+ # non-zero 3's)

e For example: B(R) :@for a=08=(31)
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Describe the multiplicities of the irreps of S, in p,(i,”).

Roe ™
I F B _r® o=
P F PR g o
EEJEEEQF@EEHQEEHEHEEE

e B(R):= (1+ # non-zero a’s) x (1+ # non-zero B's)

e For example: B(R) :@for a=08=(31)
e Multiplicity of diagram Y is zero iff B(R) C V.
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e B(R):= (1+ # non-zero a’s) x (1+ # non-zero B's)

e For example: B(R) :@for a=08=(31)
e Multiplicity of diagram Y is zero iff B(R) C V.
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Outlook

The following generalizations are on our agenda:

e Introduce a spectral parameter — QFT!

e Drop the assumption R = 1 — braid groups!

20



