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Introduction

Geometry of a homogeneous, isotropic spacetime determined by:

ds2 = −dt2 + a2(t)
(
dx2 + dy2 + dz2

)
.

Dynamics

continuity equation:

T µ
µ (t) := −ρ(t) + 3p(t) = −

(
1

H(t)
d
dt + 4

)
ρ(t)

Friedmann equation:

3H2(t) = 8πGρ(t)

equation of state:

−1 + v(t) = p(t)
ρ(t)
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Example: The classical Λ-CDM model (e.g. in Misner, Thorne, Wheeler

1973)

Spacetime is filled with dust (vdust = 1), radiation (vrad = 4/3) and dark

energy (vde = 0).

Use continuity equation to obtain the enegry density of each matter type:

ρA(t) = ρA0

(
a(t)

a0

)−3vA

.

Friedmann’s equation:

H2(t) = k1a
−4(t) + k2a

−3(t) + k3.
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For a massless, conformally coupled quantum field in FLRW spacetimes

(Barrow, Ottewill 1986 and Hack 2016):

ω(: Tµ
µ :) =

A

2880π2
�R +

B

2880π2
(RµνρσR

µνρσ − RµνR
µν)− r3R + r4,

where

A =

1− 2880π2(3r1 + r2) massless, conformally coupled Scalar field

−18− 2880π2(3r1 + r2) Maxwell field

and

B = 3×

1 massless, conformally coupled Scalar field

62 Maxwell field
.

ri are undetermined renormalisation constants.
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Plug ω(: Tµ
µ :) in the continuity equation to obtain ρscω (t). Then

Friedmann’s equation becomes

0 = ḦH − 1

2
Ḣ2 + 3ḢH2 +

1

6

B

A
H4 − 1

2

C

A
H2 +

1

6

D

A
+

cω
a4
,

where C = 360πG−1(1− 8πGr3) and D = −2880π2r4.

General solution can only be found for specific values of renormalisation

constants.

Special solutions:

H2
± =

3

2

C

B

(
1±

√
1− 4

9

BD

C 2

)
.

Qualitatively the behavior of all solutions can be studied using dynamical

systems theory.
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Frequently asked questions:

Are the Minkowski and deSitter equilibrium stable?

How “close“ are the solutions to the classical ones?

Use Ḣ and Ḧ to eliminate a in the classical Friedmann equation:

H2(t) = k1a
−4(t) + k2a

−3(t) + k3.

becomes

0 = ḦH + 7ḢH2 + 6H4 − 6k3H
2.
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Friedmann equation’s for classical and quantum matter can be put in the

same form:

0 = ḦH + 7ḢH2 + 6H4 − 6k3H
2, classical

0 = ḦH + 3ḢH2 +
1

6

B

A
H4 − 1

2

C

A
H2 +

1

6

D

A
− 1

2
Ḣ2, semiclassical

.

Substitute v(t) = − 2
3

Ḣ
H2 then:

0 = v ′v + H−1
(
c1v

2 + c2v + c3

)
+ c4H

−3 + c5H
−5,

where

{c1, c2, c3, c4, c5} =

{2,− 14
3 , 4,−

8
3k3, 0} classical

{ 3
2 ,−2, 1

9
B
A ,−

2
9
C
A ,−

2
27

D
A } semiclassical

.
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Dynamical Systems

The Friedmann equation as two dimensional dynamical system reads:

ż = f (z),

for z = (H, Ḣ)T and

f (H, Ḣ) =

(
Ḣ

(2− c1) Ḣ2

H + 3
2c2ḢH − 9

4c3H
3 − 9

4c4 − 9
4c5H

−1

)

How does the qualitative behavior of trajectories depend on the set of

data {H0, Ḣ0, c1, c2, c3, c4, c5}?
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R : (H, Ḣ) 7→ (−H, Ḣ) is a reversing symmetry of f , i.e.

dR(z)

dt
= −f (R(z)), z = (H, Ḣ).

For smooth vector fields f this constrains the set of reversing trajectories:

trajectories are crossing H = 0 either exactly once or twice or are

equilibria lying on H = 0 (Vanderbauwhede, Fiedler 1992 and Lamb,

Roberts 1998)
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Reversing trajectories must cross (H0, Ḣ0) = (0,± 3
2

√
c5

2−c1
) =: P±.

if c5/(2− c1) < 0 then there are no reversing trajectories.

if c5/(2− c1) ≥ 0 there are infinitely many trajectories running

through P±.

if c5 = 0 then the Minkowski equilibrium exists and

P+ = P− = (0, 0).

Reversing Solutions are in general not uniquely determined by its inital

conditions.

Special choices how to continue solutions reaching H = 0: R-symmetric

but not smooth or smooth but not R-symmetric.
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Stability

Example

0 = ẍ + µẋ + νx

x

y

centre: µ = 0, ν > 0

x

y

unstable focus: µ < 0,

ν > 0

x

y

saddle: µ < 0, ν < 0
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Two concepts of stability:

Lyapunov stability: Do trajectories that are initially close to an

equilibrium point remain close for all future times?

Bifurcation: How does the qualitative behavior of trajectories change

when varying the values of involved parameters?
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For H > 0 and c1 6= 1 set x := Hc1−1. Then Friedmann’s equation

becomes a Liénard type differential equation

0 = ẍ + f (x)ẋ + g(x),

i.e. an equation of an oscillator with non-linear potential U(x) s.t.

dU

dx
= (c1 − 1)−1g(x) =

9

4

(
c3x

c1+1
c1−1 + c4x + c5x

c1−3
c1−1

)
,

and non-linear damping

f (x) = −3

2
c2x

1
c1−1 .

The stability of equilibrium points can be discussed by using the Energy

function V (x) = 1/2(c1 − 1)−1ẋ2 + U(x) as Lyapunov function.
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Definition

Two vectofields f and g are called topologically equivalent if there is a

homeomorphism mapping trajectories of f onto trajectories of g

preserving the sense of time.

A bifurcation appears when the topology of a dynamical system changes

under variation of its parameters.

Structural Stability: how do any ”small perturbations“ change the

”qualitative behavior“ of a dynamical system?

Theorem (Andronov, Pontryagin 1937)

f ∈ R2 is Structurally stable if and only if

there is a finite number of equilibrium points and closed trajectories

which are all hyperbolic.

there are no homo- or heteroclinic trajectories.
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Consider:

0 = ḦH + (c1 − 2)Ḣ2 − 3

2
c2ḢH2 +

9

4
c3H

4 +
9

4
c4H

2 +
9

4
c5.

Bifurcations:

c2 = 0: if c2 changes sign trajectories are reversed.

c3 = 0: c3 → +0 shifts deSitter equilibria to infinity and for c3 < 0

cease to exist.

c4 = c5 = 0: Minkowski equilibrium is non-hyperbolic.

c5 = 0: Minkowski equilibrium does not exist for c5 6= 0.

c5 = 4c2
4/c3: deSitter equilibrium is non-hyperbolic.

No bifurcation of c1 ∈ (1, 2] in regions where H 6= 0.
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Classical Λ-CDM model: {c1, c2, c3, c4, c5} = {2,− 14
3 , 4,−

8
3k3, 0}

Dynamical equation reduces to Liénard equation:

0 = ḦH + 7ḢH2 + 6H4 − 6k3H
2

k3 < 0, structurally

unstable

k3 = 0, structurally

unstable

k3 > 0, structurally

stable
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Semiclassical case {c1, c2, c3, c4, c5} = { 3
2 ,−2, 1

9
B
A ,−

2
9
C
A ,−

2
27

D
A }:

A = 0 is a bifurcation: A change of sign turns a saddle into a focus and

vice versa.
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1+ (A > 0, C > 0, 0 < D < 9
4
C2

B
) 1− (A < 0, C > 0, 0 < D < 9

4
C2

B
)
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I+ (A > 0, C > 0, D = 0) Λ-CDM model for k3 > 0
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Trace G µ
µ = 8πGω(: T µ

µ :) of Einsteins field equations determines

dynamics for any state → 3-D dynamical system of variable

z = (H, Ḣ, Ḧ)T .

Semiclassical (Vacuum) Friedmann equation determines an invariant

manifold (trajectories having inital data on an invariant manifold will

remain there for all times).

For special choices of A and D two invariant manifolds Σ± determined by

0 = Ḧ +

(
4H − k±

2

)
Ḣ +

3

2
H3 − k±

4
H2 − 3

8
k2
±H +

k3
±

16
,

for k± = ±
√

27
5

C
B . For symmetry reasons the smooth continuation at

H = 0 is not allowed. Symmetric continuation:

S :=

Σ+ if H > 0

Σ− if H < 0
, T :=

Σ− if H > 0

Σ+ if H < 0
,
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Classical Λ-CDM model and semiclassical model fulfill same type of DGL.

The semiclassical model is capable to reproduce most qualitative features

of the Λ-CDM model (and other models).

C acts as cosmological constant and D acts as ”second cosmological

constant”.

Higher order derivatives stemming from renormalisation pose no a priori

problem concerning the qualitative behavior of solutions compared to

classical ones (Wald 1977).

There is a problem concerning smoothness/uniqueness of reversing

solutions (Azuma, Wada 1985).

Qualitative analysis can be used to argue in favour of or against certain

values of the renormalisation constants.
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1+
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I+
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II+
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III+
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Definition

A set M is called positively invariant if for all z0 ∈M the positive

semitrajectory γ+(z0) ⊂M.

An equilibrium ξ is called (Lyapunov) stable if for each neighborhood U

of ξ there is a neighborhood V ⊂ U of ξ which is positively invariant.

Test Lyapunov stability by

Linearisation: ż = Jf (ξ)z . Local solutions are

z(t) = ξ +
∑

i civie
λi t . Hence the sign of the eigenvalues λi of the

Jacobian determines the stability.

Lyapunov function: V : G ⊂ Rn → R such that

(i) V (ξ) < V (z0) for all z0 ∈ G\{ξ}
(ii) V̇ (z(t)) = 〈∇V , f 〉 ≤ 0 for all z0 ∈ G\{ξ}

Then ξ is asymptotically stable.
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How do ”small perturbations“ change the ”qualitative behavior“ of a

dynamical system?

”small perturbations“

Two vectorfields f and g are called C k -close if ‖f − g‖k ≤ ε for some

ε > 0 in the C k -norm

‖f ‖k := sup
x∈G

{
k∑

r=0

‖Dr f (x)‖

}

”same qualitative behavior“

Two vectorfields f and g are said to be topologically equivalent if there is

a homeomorphism mapping trajectories of f onto trajectories of g

preserving the sense of time.

Mathias Hänsel Semiclassical vs. Classical Cosmology



Introduction
Dynamical Systems

Summary

Structural stability

A dynamical system is called structurally stable if any sufficiently

C 1-close vectorfield g is topologically equivalent to f .

In two dimensions we have (Andronov/Pontryagin):

Theorem

f is Structurally stable if and only if

there is a finite number of equilibrium points and closed trajectories

which are all hyperbolic.

there are no homo- or heteroclinic trajectories.

If the vectorfield depends on parameters µ ∈ Rm then µ = µ0 is a

bifurcation value if f (x , µ0) is structurally unstable.
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There are other classical matter models that lead to similar dynamical

equations, e.g.:

1 The generalised Chaplygin gas (equation of state p = −Aρ−α):

0 = ḦH + 2αḢ2 + 3(1 + α)ḢH2.

2 Certain f (R)-theories (when f (R) = −2Λ + R − 1
6αR

2):

0 = ḦH − 1

2
Ḣ2 + 3ḢH2 − α−1H2 +

Λ

α
.

3 Imperfect fluid:

0 = ḦH + ζḢ2 + ηḢH2 + λ4H
4.

0 = ḦH + ζḢ2 + ηḢH2 + λ4H
4 + λ2H

2 + λ0.

seems to be a quiet general cosmological model.
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