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Classical Field Theory

• M spacetime

• E vector bundle

• E .
= Γ(M,E ) smooth sections

• S action

S ′′(φ) is linearized equation of motion
operator about ϕ ∈ E (off shell).

• ∆R
S retarded Green’s function

• ∆A
S (ϕ; x , y)

.
= ∆R

S (ϕ; y , x) advanced

• ∆S
.

= ∆R
S −∆A

S

• Peierls bracket of F ,G : E → C:

{F ,G}S(ϕ)
.

= 〈∆S [ϕ],F (1)(ϕ)⊗ G (1)(ϕ)〉

Quantization of Free Theory
S0 quadratic
=⇒ ∆R

S0
(ϕ; x , y) = ∆R

S0
(x , y) .

Denote m(F ,G )(ϕ)
.

= F (ϕ)G (ϕ)
A distribution K on M ×M defines

DK (F⊗G )(ϕ1, ϕ2)
.

= 〈K ,F (1)(ϕ1),G (1)(ϕ2)〉

and an exponential star product

F ?K G
.

= m ◦ e h̄DK (F ⊗ G ) .

If K (x , y)− K (y , x) = i∆S0(x , y), then
this is a quantization for S0.
Changing K by a smooth, symmetric
function gives an equivalent star product.
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Quantization Maps

A quantization map

Q : {Classical observables} → {Quantum observables}

is a “choice of operator ordering”.
It induces a star product by

Q(F ? G ) = Q(F )Q(G ) .

Equivalent star products come from different choices of Q.

Ordering K Product

Symmetric i
2 ∆S0 = i

2

(
∆R

S0
−∆A

S0

)
Moyal-Weyl

Normal ∆+
S0

= i
2 ∆S0 + H Wick

Time-ordered −i∆A
S0

?T

The product ?T will be the most useful here.
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Star Product by Graphs

A graph describes a multidifferential operator.

• The vertex j represents (a derivative of) the j ’th argument.

• = ∆A
S0

.

E.g., 1 2 = m, i.e., m(F ,G ) = F · G .

?T = 1 2 − i h̄ 1 2 +
(−i h̄)2

2
1 2 +

(−i h̄)3

6
1 2 + . . .

=
∑
γ

(−i h̄)e(γ)

|Aut γ|
γ

• e = # edges;
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Time-ordered Product

For x , y ∈ M,

x 6. y =⇒ ∆A
S0

(x , y) = 0 .

This implies that

suppF 6. suppG =⇒ F ?T G = F · G .

So, the trivial pointwise product is the
time-ordered product for ?T .
This simplifies calculations.

Møller Operator

Now consider the action S = S0 + λV .
The quantum Møller operator simplifies to

RT ,λV (F ) =
(
e iλV /h̄

)?T −1
?T

(
e iλV /h̄ · F

)
.

Its inverse is just

R−1
T ,λV (G ) = e−iλV /h̄ ·

(
e iλV /h̄ ?T G

)
.
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Møller by Graphs
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∑
γ

(−i h̄)−v(γ)λv(γ)

|Aut(γ)|
γ
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• the sum is over γ with only unlabelled
vertices and no edges.
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(−i h̄)e(γ)

|Aut γ|
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e iλV /h̄ · R−1
T ,λV (G ) = e iλV /h̄ ?T G

=
∑
γ

(−i h̄)e(γ)−v(γ)λv(γ)

|Aut(γ)|
γ(G )

sum over γ with edges from 1 to unlabelled
vertices.

R−1
T ,λV (G ) =

∑
γ

(−i h̄)e(γ)−v(γ)λv(γ)

|Aut(γ)|
γ(G )

sum over connected γ with
edges from 1 to unlabelled
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Interacting Product

The Møller operator intertwines the interacting and non-interacting products.

F ?T ,int G
.

= R−1
T ,λV (RT ,λVF ?T RT ,λVG )

?T ,int =
∑
γ

(−i h̄)e(γ)−v(γ)(−λ)v(γ)

|Aut(γ)|
γ

• γ has labelled vertices 1 and 2;

• every unlabelled vertex has at least one ingoing edge and one outgoing edge;

• the vertices can be ordered with 1 lowest, 2 highest, and edges pointing down.
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Resummation

These include arbitrary chains of bivalent vertices.

− λ + λ2 − . . . = ∆A
S

• This accounts for all bivalent vertices in ?T ,int.

• A valency r > 2 vertex represents λV (r) = S (r).

Now let:

• Unlabelled vertices represent derivatives of S ;

• = ∆A
S .
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Nonperturbative Expression

?T ,int =
∑
γ

(−i h̄)e(γ)−v(γ)(−1)v(γ)

|Aut(γ)|
γ

• γ has labelled vertices 1 and 2;

• every unlabelled vertex has at least one ingoing edge and one outgoing edge;

• unlabelled vertices have valency at least 3;

• the vertices can be ordered with 1 lowest, 2 highest, and edges pointing down.

This is a star product quantizing S .
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