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Quantization Maps
A quantization map

Q : {Classical observables} — {Quantum observables}

is a “choice of operator ordering”.
It induces a star product by

Q(F xG) = Q(F)Q(G) .

Equivalent star products come from different choices of O.

Ordering K Product
Symmetric  5Ag = 5 (A?O — A?O) Moyal-Weyl
Normal AL =40+ H Wick

Time-ordered —iAg *r

The product *- will be the most useful here.
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Star Product by Graphs

A graph describes a multidifferential operator.

® The vertex j represents (a derivative of) the j'th argument.

k=12 — [ 1----<----- 2 + > 1\\{_/ 2 4 5 15::::::—_2 +
(- ,'r,)e(v)
T2 Auty]
® o = # edges;

® the sum is over  with vertices 1 and 2 and edges from 2 to 1.
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Time-ordered Product Moller Operator

For x,y € M, Now consider the action S = Sp + A\V.
The quantum Mgller operator simplifies to

Ry v (F) = (eiAV/ﬁ>*T_1*T <ei/\V/ﬁ _ ,_—) _

Its inverse is just

xLy = Aéo(x,y)zo.
This implies that

suppF LsuppG = Fx,G=F -G . . .
pp F £ supp T R7L,(G) = e PV/P. (e/AV/ﬁ o G) .
So, the trivial pointwise product is the
time-ordered product for x.

This simplifies calculations.
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_iR)E )=V \v()
Rle(G)—Z( ) (6)

A
. S 3 7 "9
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. [ 4 v »
vertices. K



Interacting Product

The Mgller operator intertwines the interacting and non-interacting products.

Fborim G = R;}AV(RT,WF*T RravG)



Interacting Product

The Mgller operator intertwines the interacting and non-interacting products.
- p-1
Fxrim G =R\ (RTAVFE %7 Rr v G)

B (—ih)e M=V (= X))
B e I

v




Interacting Product

The Mgller operator intertwines the interacting and non-interacting products.
- p-1
Fxrim G =R\ (RTAVFE %7 Rr v G)

B (—ih)e M=V (= X))
B e I

v

® ~ has labelled vertices 1 and 2;



Interacting Product

The Mgller operator intertwines the interacting and non-interacting products.

Fborim G = R;}AV(RT,WF*T RravG)

Z (—ih)e M=V (= X))

¥
[Aut(7)|

*T,int —

A

® ~ has labelled vertices 1 and 2;

® every unlabelled vertex has at least one ingoing edge and one outgoing edge;



Interacting Product

The Mgller operator intertwines the interacting and non-interacting products.

Fborim G = R;}AV(RT,WF*T RravG)

B (—ih)e M=V (= X)) /
= 2 ) ’

A

® ~ has labelled vertices 1 and 2;
® every unlabelled vertex has at least one ingoing edge and one outgoing edge;

® the vertices can be ordered with 1 lowest, 2 highest, and edges pointing down.
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Z (—ih)e M=V (=1)v()
Aut(7)] !
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v

v has labelled vertices 1 and 2;

every unlabelled vertex has at least one ingoing edge and one outgoing edge;

unlabelled vertices have valency at least 3;

the vertices can be ordered with 1 lowest, 2 highest, and edges pointing down.
This is a star product quantizing S.
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