
Free theories Interacting theories PPA gPPA Thermal mass

The generalized Principle of Perturbative
Agreement with applications to the thermal mass
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The AQFT approach is based on the identification of a
∗-algebra A of physical observables.

For free theories this construction is well under
control.[Brunetti, Duetsch & Fredenhagen ’09, F. & Rejzner ’12-’14]

Interacting theories are treated perturbatively and A is
identified up to renormalization freedom. Physical
requirements give restrictions on the possible choices.[Brunetti &

Fredenhagen ’00, Holland & Wald ’01-’02-’05, B., Duetsch & F. ’09]

The Principle of the Perturbative Agreement [Hollands & Wald

’05, Zahn ’13] provides an example of such a requirement:

−�gφ+ M2φ = −�gφ+ M2φ

The generalized PPA provides a generalization to PPA in case
of higher order polynomial interactions:

−�gφ+ M2φ+ λφ3 = −�gφ+ M2φ+ λφ3
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Functional approach

We deal with the real scalar Klein Gordon field on a globally
hyperbolic spacetime (M , g).

S1(φ) =
1

2

∫
M

f (φP1φ− 2jφ) , P1φ
.

= (−�g + M1)φ, f ∈ D(M ).

Dynamics is ruled by a linear differential hyperbolic operator

⇒ ∃! ∆
R/A
1 retarded/advanced propagators

∆
R/A
1 : D(M )→ E(M ),

P1∆1 = ∆1P1 = ID(M ), supp(∆
R/A
1 f ) ⊆ J±(supp(f )),

∆1
.

= ∆R
1 −∆A

1 causal propagator

Functional approach: the ∗-algebra A1 = A1(M , g) of observables
is generated by functionals on field configurations. φ ∈ E (M )
[Brunetti, Duetsch & Fredenhagen ’09]

.
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Functional approach

Functional approach: the ∗-algebra A1 = A1(M , g) of observables
is generated by functionals on field configurations. φ ∈ E (M )
[Brunetti, Duetsch & Fredenhagen ’09]

Actually A1 = Alg(Fµc , ?1, ∗) where

Fµc
.

= {F : E (M )→ C| F smooth, compactly supported,

WF(F (n)(φ)) ∩ (V n
+ ∪ V n

−) = ∅},

(F ?1 G )(φ)
.

=
∑
n≥0

~n

n!

〈
(∆+

1 )⊗n,F (n)(φ)⊗ G (n)(φ)
〉

F ∗(φ)
.

= F (φ),

being ∆+
1 ∈ D ′(M 2) an Hadamard bidistribution.
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∆+
1 is not unique: different choices of ∆+

1 , ∆̂
+
1 give to

∗-isomorphic algebras

αw : Â1 → A1, w
.

= ∆+
1 − ∆̂+

1

F 7→ αw (F )
.

=
∑
n≥0

~n

n!

〈
w⊗n,F (2n)

〉
,

Fµc contains local functionals, i.e.

Floc
.

= {F : E (M )→ C| F smooth, compactly supported,

supp(F (n)) ⊆ Dn, WF(F (n)) ⊥ T ∗Dn}.

A reg
1

.
= Alg(Freg, ?1, ∗) is the ∗-algebra generated by regular

functionals (WF(F (n)) = ∅).
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Bogoliubov formula

Interacting models are typically described by local non linear
perturbations

S1,V
.

= S1 + V , V ∈ Floc.

Perturbative approach: the interacting ∗-algebra Ã1,V is
represented onto A1 via Bogoliubov formula.

F ·T1 G
.

= F ?1 G if F & G ,

R~
1,V F

.
= S(V )−1 ?1 (S(V ) ·T1 F ), S(V )

.
= expT1

(
i

~
V

)
F ?1,V G

.
= (R~

1,V )−1
(
R~

1,V F ?1 R~
1,V G

)
F ∗1,V

.
= (R~

1,V )−1
(
R~

1,V (F )∗
)
.
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The time-ordered product is well defined on A reg
1 by an

exponential formula given by the Feynmann propagator
∆F

1
.

= ∆+
1 + i∆A

1 .

·T1 can be extended as a map

T1 : Fmloc
.

=
⊕
n

F⊗nloc → A1, T1 = T (M , g ,M1, j)

F1 ·T1 . . . ·T1 Fn
.

= T1

(
T−1

1 (F1)⊗ · · · ⊗ T−1
1 (Fn)

)
satisfying suitable axioms. [Brunetti & Fredenhagen ’00, Holland &

Wald ’01-’02-’05, Brunetti, Duetsch & Fredenhagen ’09]

Non uniqueness is controlled by renormalization freedom.

On Floc, T1 corresponds to the assignment of local and
covariant Wick polynomials as element in A1.
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·T1 is an associative product defined on

FT1loc
.

=

∑
n≥0

F1,n ·T1 . . . ·T1 Fn,n,Fk,l ∈ Freg ∪Floc


R~

1,V : FT1loc → A1

Ã1,V is ill-defined even for the simplest cases of quadratic V .

F ?1,V G
.

= (R~
1,V )−1

(
R~

1,V F ?1 R~
1,V G

)
.

A1,V
.

= Alg(R~
1,VFT1loc, ?1, ∗) ⊆ A1 is a well-defined

∗-subalgebra.

Nicolò Drago arXiv:1502.02705 University of Genova

The generalized Principle of Perturbative Agreement with applications to the thermal mass



Free theories Interacting theories PPA gPPA Thermal mass

PPA for mass/curvature variation

(M , g ,M, j) 7→ T (M , g ,M, j) is locally covariant

(M1, g ,M, j) T1 = T (M1, g ,M, j)//To/ o/ o/ o/ o/ o/ o/ o/

(M2, g
′,M ′, j ′)
��

ψ

T2 = T (M2, g
′,M ′, j ′)//To/ o/ o/ o/ o/ o/ o/

��

A (ψ)
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PPA for mass/curvature variation

What if we change M?

(M , g ,M1, j) T1 = T (M , g ,M1, j)//To/ o/ o/ o/ o/ o/ o/

(M , g ,M2, j)
��

T2 = T (M , g ,M2, j)//To/ o/ o/ o/ o/ o/ o/
��

?!?

�
�
�
�
�
�
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PPA for mass/curvature variation

Assume Q ∈ Floc is such that Q(φ)
.

= 1
2

∫
M M2φ2.

S1,Q = S1 + Q = S2 =
1

2

∫
M

f (φP2φ− 2jφ) .

Ã1,Q and A2 carry the same physical information.
⇓

“Ã1,Q ' A2” for a suitable choice of renormalization freedom.

A1 Ã1,Q

R~
1,Qoo_ _ _ _ _ _

β1,Q
.
=R−1

1,Q◦R
~
1,Q

~~}
}

}
}

}
}

}
}

}

A2

R1,Q

OO
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PPA for mass/curvature variation

(M , g ,M1, j) T1 = T (M , g ,M1, j)//To/ o/ o/ o/ o/ o/ o/

(M , g ,M2, j)
��

T2 = (M , g ,M2, j)//To/ o/ o/ o/ o/ o/ o/ o/
��

β1,Q

�
�
�
�
�
�

Principle of Perturbative Agreement (Hollands & Wald ’05)

As a map (M , g ,M, j)→ T (M , g ,M, j), T is said to satisfies the
Principle of Perturbative Agreement if

T2 = β1,Q ◦ T1 on Fmloc β1,Q
.

= R−1
1,Q ◦R~

1,Q .
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Classical Møller operator

The classical Møller operator intertwines the dynamics of A2 and
A1 by identifying them in the past.

R1,Q : A2 → A1, R1,QF (φ)
.

= F (R1,Qφ), P2 ◦ R1,Q = P1.

Theorem (D.,Hack, Pinamonti)

∆R
2 = R1,Q ◦∆R

1 , ∆A
2 = ∆A

1 ◦ R†1,Q ;

∆
(+)
2 = R1,Q ◦∆

(+)
1 ◦ R†1,Q ;

R1,Q : A2 → R1,Q(A2) ⊂ A1 is a ∗-isomorphism.

From now on the ?2-product on A2 will be the one induced by ?1

via R1,Q .
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Perturbative Agreement for Freg

A reg
1 Ã reg

1,Q

R~
1,Qoo

β1,Q
.
=R−1

1,Q◦R
~
1,Q

}}|||||||||||||||||

A reg
2

R1,Q

OO

Proposition

Ã reg
1,Q = Alg(Freg, ?1,Q , ∗1,Q) is well-defined.

β1,Q : Ã reg
1,Q → A reg

2 is a ∗-isomorphism.
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Characterization of β1,Q on Freg

Let Ff (φ)
.

=
∫

f φ ∈ Freg. Consider β1,Q : Ã reg
1,Q → A reg

2 .

Theorem

R~
1,QFf = R1,QFf (=⇒ β1,QFf = Ff );

[Ff ,Fg ]?1,Q
= β−1

1,Q [β1,QFf , β1,QFg ]?2 = i~∆2(f , g).

The ?1,Q-product on Ã reg
1,Q is given by an exponential formula

with

∆+
1,Q

.
= ∆+

2 + ∆F
1 −∆F

2 .

β1,Q = αd1,Q
, where d1,Q = ∆F

2 −∆F
1 .

The Principle of Perturbative Agreement holds on Fmreg.
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Extension on Fmloc

β1,Q(F ) = αd1,Q
(F ) for F ∈ Floc?

d1,Q = ∆F
2 −∆F

1 is at least logarithmically divergent on D2.
Perturbative expansion:

∆F
2 = ∆+

2 + i∆A
2

= R1,Q ◦∆+
1 R†1,Q + i∆A

1 ◦ R†1,Q ,

R1,Q = (I + ∆R
1 Q(1))−1 =

∑
(−∆R

1 Q(1))n

∆F
2 −∆F

1 ∼n in∆F
1 (Q(1)∆F

1 )n + A.

It is enough to renormalize ∆F
1 .
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Theorem (D.,Hack, Pinamonti)

β1,Q : FT1loc → Fµc is a deformation αd1,Q
.

T2
.

= β1,Q ◦ T1 defines a time ordered map for A2.

It holds the cocycle condition

β1,Q3
= β2,Q3

◦ β1,Q2
.

Fixing T1 = T1(M , g ,M = 0, j) the map

T (M , g ,M2, j)
.

= β1,Q ◦ T1(M , g , 0, j)

satisfies the Perturbative Agreement for mass/curvature
variation.

The perturbative construction is “exact”.
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generalized PPA

−�gφ +M2φ+ λφ3 = −�gφ+ M2φ +λφ3

A1 A2

R1,Qoo

Ã1,Q

R~
1,Q

ccH
H

H
H

H β1,Q

<<y
y

y
y

Ã1,Q+V

R~
1,Q+T1(V )

OO�
�
�
�
�
�
�

Ã2,V
//?_ _ _ _ _ _ _ _

R~
2,T2(V )

OO�
�
�
�
�
�
�

generalized Principle of Perturbative Agreement

On FT1loc, R~
1,Q+T1(V ) = R1,Q ◦R~

2,T2(V ) ◦ β1,Q .
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Applications: thermal mass

Theorem (Fredenhagen & Lindner ’14)

Let A1 = A1(M4, η), V ∈ Floc, ωβ a β-KMS for A1 w.r.t. {αt}t .
If the truncated functions of ωβ satisfy suitable space-like decay
behaviour, then there exists a β-KMS state ωβV on Ã1,V w.r.t.
{αV

t }t constructed out of ωβ.

This construction applies for the case of massive Klein Gordon field.

What about the massless case?

gPPA: Ã1,V ' Ã1+Q,V−Q , Q= “virtual” mass.

Theorem (D.,Hack,Pinamonti)

In the above hypothesis, the pull-back of the β-KMS state ωβV−Q
on A2,V−Q defines a β-KMS state on A1,V .
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