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An integrable discontinuity - Bowcock, EC, Zambon (2003)

Start with a single selected point on the x-axis, say x0, and denote
the field to the left (x < x0) by u, and to the right (x > x0) by v :

. . . • . . .

u(x , t) x0 v(x , t)

Field equations in separated domains:

∂2u = −∂U
∂u

, x < x0, ∂2v = −∂V
∂v

, x > x0, ∂2 = ∂2
t − ∂2

x

• How can the fields u, v be ‘sewn’ together at x0?

• If the wave equations are nonlinear but ‘integrable’ are there sewing
conditions that preserve the integrability?

− Not so easy, see: Goodman, Holmes, Weinstein (2002)

− sine-Gordon, KdV, nonlinear Schrödinger ...



• A simple example (δ-impurity) would be to put

u(x0, t) = v(x0, t), ux (x0, t)− vx (x0, t) = 2λu(x0, t),

with linear wave equations for u and v .

• Typically, there is reflection and transmission:

u = e−iωt (eikx + R e−ikx) , v = e−iωtT eikx , ω2 = k2

with

R = −λe2ikx0

ik + λ
, T =

ik
ik + λ

• There is a distinguished point, translation symmetry is lost and
conservation laws - at least some of them (for example,
energy-momentum) - will be violated unless the impurity contributes
compensating terms.



Consider the field contributions to energy-momentum:

Pµ =

∫ x0

−∞
dx T 0µ(u) +

∫ ∞
x0

dx T 0µ(v), ∂νT νµ = 0

where the components of T νµ(u) are (similarly with v )

T 00 =
1
2
(
u2

t + u2
x
)

+ U, T 01 = T 10 = −utux , T 11 =
1
2
(
u2

t + u2
x
)
− U

Using the field equations, can we arrange

dPµ

dt
= −

[
T 1µ(u)

]
x=x0

+
[
T 1µ(v)

]
x=x0

= −dDµ(u, v)

dt

with the right hand side depending only on the fields at x = x0?

If so, Pµ + Dµ is conserved with Dµ being the defect contribution.

• It turns out that only a few possible sewing conditions (and bulk
potentials U, V ) are permitted for this to work.



Consider the field contribution to energy and calculate

dP0

dt
= [uxut ]x0 − [vxvt ]x0 .

Choosing sewing conditions of the form

ux = vt + X (u, v), vx = ut + Y (u, v), at x = x0

we find
dP0

dt
= utX − vtY .

This is a total time derivative if

X = −∂D0

∂u
, Y =

∂D0

∂v
,

for some D0. Then
dP0

dt
= −dD0

dt
.

• Expected anyway since time translation remains good.



On the other hand, for momentum

dP1

dt
= −

[
u2

t + u2
x

2
− U(u)

]
x0

+

[
v2

t + v2
x

2
− V (v)

]
x0

=

[
−vtX + utY −

X 2 − Y 2

2
+ U − V

]
x0

= −dD1(u, v)

dt

This is a total time derivative provided the first piece is a perfect
differential and the second piece vanishes. Thus

X = −∂D0

∂u
=
∂D1

∂v
, Y =

∂D0

∂v
= −∂D1

∂u
,

In other words the fields at the defect should satisfy:

∂2D0

∂v2 =
∂2D0

∂u2 ,
1
2

(
∂D0

∂u

)2

− 1
2

(
∂D0

∂v

)2

= U(u)− V (v).



Highly constraining - just a few possible combinations U,V ,D0 ...

• sine-Gordon, Liouville, massless free, or, massive free.

For example, if U(u) = m2u2/2, V (v) = m2v2/2, D0 turns out to be

D0(u, v) =
mσ
4

(u + v)2 +
m
4σ

(u − v)2,

and σ is a free parameter.

• Note: the Tzitzéica (aka BD, MZS, a(2)
2 affine Toda) potential

U(u) = eu + 2e−u/2

is not possible.

• There is a Lagrangian description of this type of defect (type I):

L = θ(−x+x0)L(u)+δ(x−x0))

(
uvt − utv

2
− D0(u, v)

)
+θ(x−x0))L(v)



In the free case (m 6= 0), with a wave incident from the left half-line

u =
(
eikx + Re−ikx)e−iωt , v = T eikxe−iωt , ω2 = k2 + m2,

we find:

R = 0, T = − (iω −m sinh η)

(ik + m cosh η)
= −i

sinh
(
θ−η

2 −
iπ
4

)
sinh

(
θ−η

2 + iπ
4

) , σ = e−η

• By design, conserves energy/momentum (no dependence on x0).

• No bound state (provided η is real).

• By comparison, for δ-impurity:

u(x0, t) = v(x0, t), ux (x0, t)− vx (x0, t) = 2λu(x0, t)),

R = − λe2ix0

λ+ ik
, T =

ik
λ+ ik

• Bound state at k = iλ if m > λ > 0. The δ-impurity preserves
energy but not momentum (explicit dependence on x0 in R)



sine-Gordon - Bowcock, EC, Zambon (2003, 2004, 2005)

Choosing u, v to be sine-Gordon fields (and scaling the coupling and
mass parameters to unity), the allowed possibilities are:

D0(u, v) = −2
(
σ cos

u + v
2

+ σ−1 cos
u − v

2

)
,

where σ is a constant, to find (putting x0 = 0)

x < 0 : ∂2u = − sin u,
x > 0 : ∂2v = − sin v ,

x = 0 : ux = vt − σ sin
u + v

2
− σ−1 sin

u − v
2

,

x = 0 : vx = ut + σ sin
u + v

2
− σ−1 sin

u − v
2

.

• The final two are a Bäcklund transformation frozen at x = 0.

• The defect could be anywhere - essentially topological

• Other features (eg higher spin charges) have been checked.



Solitons and defects - Bowcock, EC, Zambon (2005)

The sine-Gordon model has solitons and antisolitons.

Consider a soliton incident from x < 0.

It will not be possible to satisfy the sewing conditions (in general, for
all times) unless a similar soliton emerges into the region x > 0:

x < 0 : eiu/2 =
1 + iE
1− iE

,

x > 0 : eiv/2 =
1 + izE
1− izE

,

E = eax+bt+c , a = cosh θ, b = − sinh θ,

where z is to be determined. It is also useful to set σ = e−η.

•We find....



z = coth

(
η − θ

2

)
θ > 0

Remarks:

• η < θ implies z < 0; ie the soliton emerges as an anti-soliton.

- the final state will contain a discontinuity of magnitude 4π at x = 0.

• η = θ implies z =∞ and there is no emerging soliton.

- the energy-momentum of the soliton is captured by the ‘defect’.

- the topological charge is also captured by a discontinuity 2π.

• η > θ implies z > 0; ie the soliton retains its character.



Delayed soliton



Delayed soliton



Delayed soliton



Swapped soliton/anti-soliton



Swapped soliton/anti-soliton



Swapped soliton/anti-soliton



Swapped soliton/anti-soliton



Comments

• Defects at x = x1 < x2 < x3 < · · · < xn behave independently

- each contributes a factor zi for a total z = z1z2 . . . zn.

• Each component of a multisoliton is affected separately

- thus at most one can be ‘filtered out’.

• Since a soliton can be absorbed, can a starting configuration with
u = 0, v = 2π decay into a soliton?

- needs quantum mechanics to provide the probability for decay.

• Contrast Estabrook - Wahlquist (1973)

- a Bäcklund transformation ‘creates’ a soliton.

• Defects can also move (with constant speed), and scatter.



Generalisations

• What about Tzitzéica (a(2)
2 affine Toda)?

• Multi-component fields - what about other affine Toda field
theories?

- only the a(1)
n affine Toda theories can work - EC, Zambon (2009)

- Bäcklund transformations are similar - Fordy, Gibbons (1980)
• What about nonlinear Schrödinger, KdV, mKdV, etc, etc?

- yes, see Caudrelier, Mintchev, Ragoucy (2004,) EC, Zambon
(2005), Caudrelier (2008), . . .

• Is the setup genuinely integrable? For an alternative (algebraic)
approach see Avan, Doikou (2012, 2013); Doikou (2014, 2016)

• What about SUSY? See, for example, Gomes, Ymai, Zimerman
(2008); Aguirre, Gomes, Spano, Zimerman (2015)

• How do the sewing conditions work for ‘finite gap’ solutions of
sine-Gordon (or KdV, NLS, etc)? EC, Parini (2016)



Classical type II defect - EC, Zambon (2009)

Consider two relativistic field theories with fields u and v , and add a
new degree of freedom λ(t) at the defect location (x = 0):

L = θ(−x)Lu + θ(x)Lv + δ(x)
(
(u − v)λt − D0(λ,u, v)

)
Then the usual Euler-Lagrange equations lead to

• equations of motion:

∂2u = −∂U
∂u

x < 0, ∂2v = −∂V
∂v

x > 0

• defect conditions at x = 0

ux = λt − D0
u vx = λt + D0

v (u − v)t = −D0
λ.



As before, consider momentum

P1 = −
∫ 0

−∞
dx utux −

∫ ∞
0

dx vtvx ,

and seek a functional D1(u, v , λ) such that P1
t ≡ −D1

t .

As before, implies constraints on U, V , D1.
Putting q = (u − v)/2, p = (u + v)/2 these are:

D0
p = −D1

λ D0
λ = −D1

p

implying

D0 = f (p + λ,q) + g(p − λ,q) D1 = f (p + λ,q)− g(p − λ,q)

and 1
2

(D0
λD1

q − D0
qD1

λ) = U(u)− V (v)

• Powerful constraint on f , g since λ does not enter the right side
- what is the general solution?



Note:
• Now possible to choose f ,g for potentials U,V any one of

sine-Gordon, Liouville, Tzitzéica, or free massive or massless.

• Tzitzéica:

U(u) = (eu + 2 e−u/2 − 3), V (v) = (ev + 2 e−v/2 − 3)

and the defect potential D0(λ,p,q) is given by

D0 = 2σ
(

e(p+λ)/2 + e−(p+λ)/4
(

eq/2 + e−q/2
))

+
1
σ

(
8 e−(p−λ)/4 + e(p−λ)/2

(
eq/2 + e−q/2

)2
)

• In sine-Gordon the type-II defect is new with two free parameters
- in a sense it is two ‘fused’ type-I defects - EC, Zambon (2010)

• Other field theories? - yes, *but not yet all*, Robertson (2014);
Bowcock, Umpleby (2008); Bowcock, Bristow (2016)



Defects in quantum field theory

• Expect Soliton-defect scattering - pure transmission compatible
with the bulk S-matrix

• Expect Topological charge will be preserved but may be
exchanged with the defect

• Expect For each type of defect there may be several types of
transmission matrix (eg in sine-Gordon expect two different
transmission matrices since the topological charge on a defect
can only change by ±2 as a soliton/anti-soliton passes).

• Expect Not all transmission matrices need be unitary (eg in
sine-Gordon one is a ‘resonance’ of the other)

• Questions Relationship between different types of defect;
assemblies of defects, defect-defect scattering; fusing defects; ...



A transmission matrix is intrinsically infinite-dimensional:

T bβ
aα (θ, η), a + α = b + β

where α, β and a,b are defect and particle (eg soliton) labels
respectively (typically they will be sets of weights); and η is a
collection of defect parameters.

Schematically:

�
�
�
�
�
�
�
�
�
�
��

α

β

a

b



Schematic compatibility relation - Delfino, Mussardo, Simonetti (1994)
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≡

�
�
�
�
��
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�
�
�
�
�
�
��

α

γ

b

a

e

f

Scd
ab (Θ) T fβ

dα(θa)T eγ
cβ (θb) = T dβ

bα (θb)T cγ
aβ (θa)Sef

cd (Θ)

With Θ = θa − θb and sums over the ‘internal’ indices β, c,d .

• For sine-Gordon a solution was known - Konik, LeClair (1999)



Zamolodchikov’s sine-Gordon soliton-soliton S-matrix - reminder

Scd
ab (Θ) = ρ(Θ)


A 0 0 0
0 C B 0
0 B C 0
0 0 0 A


where

A(Θ) =
qx2

x1
− x1

qx2
, B(Θ) =

x1

x2
− x2

x1
, C(Θ) = q − 1

q

xa = eγθa , a = 1,2, Θ = θ1 − θ2, q = eiπγ , γ =
8π
β2 − 1,

and

ρ(Θ) =
Γ(1 + z)Γ(1− γ − z)

2πi

∞∏
1

Rk (Θ)Rk (iπ −Θ)

Rk (Θ) =
Γ(2kγ + z)Γ(1 + 2kγ + z)

Γ((2k + 1)γ + z)Γ(1 + (2k + 1)γ + z)
, z = iγ/π.



Useful to define the variable Q = e4π2 i/β2
=
√
−q.

• K-L solutions have the form

T bβ
aα (θ) = f (q, x)

(
Qα δβα q−1/2eγ(θ−η) δβ−2

α

q−1/2 eγ(θ−η) δβ+2
α Q−α δβα

)
where f (q, x) is not uniquely determined but, for a unitary
transmission matrix, should satisfy

f̄ (q, x) = f (q,qx)

f (q, x)f (q,qx) =
(

1 + e2γ(θ−η)
)−1

• A ‘minimal’ solution has the following form

f (q, x) =
eiπ(1+γ)/4

1 + ie−2πiz
r(x)

r̄(x)
,

where it is convenient to put z = iγ(θ − η)/2π and

r(x) =
∞∏

k=0

Γ(kγ + 1/4− z)Γ((k + 1)γ + 3/4− z)

Γ((k + 1/2)γ + 1/4− z)Γ((k + 1/2)γ + 3/4− z)



T bβ
aα (θ) = f (q, x)

(
Qα δβα q−1/2eγ(θ−η) δβ−2

α

q−1/2 eγ(θ−η) δβ+2
α Q−α δβα

)

Remarks (supposing θ > 0) - Bowcock, EC, Zambon (2005):

Tempting to suppose η (possibly renormalized) is the same
parameter as in the type I classical model.

• η < 0 - the off-diagonal entries dominate;

• θ > η > 0 - the off-diagonal entries dominate;

• η > θ > 0 - the diagonal entries dominate.

• Similar features to the classical soliton-defect scattering.

• The different behaviour of solitons versus anti-solitons (diagonal
terms) is a direct consequence of the defect term proportional to

δ(x − x0)(uvt − vut )/2



• θ = η is not special (neither is z = −1/4) but there is a simple pole
nearby at z = 1/4:

θ = η − iπ
2γ
→ η, as β → 0

This pole is like a resonance, with complex energy,

E = ms cosh θ = ms(cosh η cos(π/2γ)− i sinh η sin(π/2γ))

and a ‘width’ proportional to sin(π/2γ).

• The Zamolodchikov S-matrix has ‘breather’ poles corresponding to
soliton-anti-soliton bound states at

Θ = iπ(1− n/γ), n = 1,2, ...,nmax;

use the bootstrap to define the transmission factors for breathers and
find for the lightest breather:

T (θ) = −i
sinh

(
θ−η

2 −
iπ
4

)
sinh

(
θ−η

2 + iπ
4

)



Type II transmission matrix for sine-Gordon - EC, Zambon (2010)

There is another, more general, set of solutions to the quadratic
relations for the transmission matrix:

ρ(θ)

(
(a+Qα + a−Q−α x2) δβα x (b+Qα + b−Q−α) δβ−2

α

x (c+Qα + c−Q−α) δβ+2
α (d+Qα x2 + d−Q−α) δβα

)
where x = eγθ.

The free constants satisfy the two constraints

a± d± − b± c± = 0

These and ρ(θ)are constrained further by crossing and unitarity.

• For a choice of parameters this descibes a type II defect.

•With a− = d+ = 0 and b+ = c− = 0 or b− = c+ = 0 (after a
similarity transformation), reduces to the type I solution.

• For other choices of parameters reduces to a direct sum of the
Zamolodchikov S-matrix and two infinite dimensional pieces.



Alternative formulation - Weston (2010)

Summary: for Type II

T = ρ(x)

(
xa+Q−N + x−1a−QN a

a∗ xd+QN + x−1d−Q−N

)
,

where a∗ and a are ’generalised’ raising and lowering operators,
respectively,

a∗|k〉 = |k + 2〉 a|k〉 = F (k)|k − 2〉 N|k〉 = k |k〉, k ∈ Z

F (N) = f0 + f+Q2N + f−Q−2N , f+ = Q−2a−d+ f− = Q2a+d−

- T intertwines the coproducts of finite (soliton) and infinite (defect)
representations of the Borel subalgebra of Uq(a(1)

1 ).

- Idea generalises to all other quantum algebras allowing (in principle)
calculations of associated defect matrices. For some examples see
EC, Zambon (2010), Boos et al. (2011).



Defect-defect scattering - type I

T bγ
1 aα T cδ

2 bβ Uρσ
γδ = Uδγ

αβ T bρ
2 aδ T cσ

1 bγ .

Ti ≈
(

QNi βi x Ai
βi x A∗i Q−Ni

)
, i = 1,2

where
x = eγθ, q = eiπγ , Q2 = −q; β∗ = β.

Data carried by βi , Ai , A∗i , i = 1,2 with two sets of mutually
commuting generalised annihilation and creation operators.

U is independent of x : equating terms in powers of x leads to the
following four equations:(

β2 QN1 A2 + β1 Q−N2 A1
)

U = U
(
β1 QN2 A1 + β2 Q−N1 A2

)
(
β1 QN2 A∗1 + β2 Q−N1 A∗2

)
U = U

(
β2 QN1 A∗2 + β1 Q−N2 A∗1

)
QN1+N2 U = U QN1+N2 , A1 U A1 = A2 U A2



U =
∞∑

k=−∞

Ak
1 A−k

2 Uk (N1,N2, λ), λ = β1/β2

Then
Uk+2(N1,N2, λ) = Uk (N1 − 2,N2 + 2, λ)

U2l (N1,N2, λ) = U0(N1 − 2l ,N2 + 2l , λ)

U2l+1(N1,N2, λ) = U1(N1 − 2l ,N2 + 2l , λ).

and (
λQ−N2A1 + QN1A2

)
U = U

(
Q−N1A2 + λQN2 A1

)
,

QN1−2U(N1,N2)
1 + λQ−N2U(N1,N2)

0 = λQN2U(N1−2,N2)
0 + Q−N1U(N1,N2−2)

1

QN1U(N1,N2+2)
0 + λQ−N2U(N1+2,N2)

1 = λQN2+2U(N1,N2)
1 + Q−N1U(N1,N2)

0



Formal generating functionals

U(x , y) =
∑
n,m

xnymU0(n,m), V (x , y) =
∑
n,m

xnymU1(n,m)

Then

λU(x , y/Q) + Q−2V (Qx , y) = λx2U(x ,Qy) + y2V (x/Q, y)

(λ/x2)V (x , y/Q) + (1/y2)U(Qx , y) = λQ2V (x ,Qy) + U(x/Q, y).

These can be written slightly more symmetrically by rearranging and
putting r = Q, s = λQ:

x U(x , ry)− x−1 U(x , r−1y) =
y
xs
(
(ry)−1 V (rx , y)− ry V (r−1x , y)

)
y−1 U(rx , y)− y U(r−1x , y) =

ys
x
(
rx V (x , ry)− (rx)−1 V (x , r−1y)

)
.

•What is the general solution?



Further questions....

• Some alternative views and other aspects are discussed in several
places. Eg - Habibullin, Kundu (2008); Bajnok, Simon (2008)

• Other Toda models - defects can be constructed for some other
affine Toda models, eg the a(1)

r , (c(1)
n , d (2)

n+1), a(2)
2n ,d

(1)
n

Bowcock, EC, Zambon (2004), EC, Zambon (2007, 2010, 2011),
Robertson (2014), Bowcock, Bristow (2016)

What about all the others?

• Once the question is answered....

• ....What are the general integrable boundary conditions for all affine
Toda field theories?



Thank you!


