


Aspects of defects and integrability

Ed Corrigan

Department of Mathematics, University of York

University of York

April 2017



Contents

e Boundaries and defects (eg impurities, shocks, dislocations) are
ubiquitous in nature

e What are their properties within an integrable field theory in
two-dimensional space-time?

e How are boundaries and defects related?
o Examples of integrable defects and the special role played by
energy-momentum conservation and Backlund transformations
o Solitons scattering with defects and some curious effects

e Defects in integrable quantum field theory and transmission
matrices

e Boundaries revisited

e With - P Bowcock, C Robertson (Durham-Maths)
C Zambon (Durham-Physics)
D Hills, R Parini (York)



An integrable discontinuity -

Start with a single selected point on the x-axis, say X, and denote
the field to the left (x < xp) by u, and to the right (x > xp) by v:

u(x,t) Xo v(x,t)
Field equations in separated domains:

ou oV
2, 2, 2 _ 92 _ 92
o°u = £ X < Xg, OV E X > Xg, O of — O
e How can the fields u, v be ‘sewn’ together at x?

e If the wave equations are nonlinear but ‘integrable’ are there sewing
conditions that preserve the integrability?

— Not so easy, see:
— sine-Gordon, KdV, nonlinear Schrédinger ...



¢ A simple example (5-impurity) would be to put
u(xo, t) = v(xo, 1), ux(xo,t) — vx(Xo, t) = 2\u(xo, ),

with linear wave equations for v and v.

e Typically, there is reflection and transmission:
U= e vt (eikx + Re—ikx) L v—e WITgk (2 g2

with .
g2k ik

kN T= ik + A

e There is a distinguished point, translation symmetry is lost and
conservation laws - at least some of them (for example,
energy-momentum) - will be violated unless the impurity contributes
compensating terms.



Consider the field contributions to energy-momentum:
P —/ dx T%(u / dx T%(v), 9,T"* =0

where the components of T#(u) are (similarly with v)

1 1
70 — 5 (B4 )+ U, T =T"° = —yu,, T = 5 (U +U3) - U
Using the field equations, can we arrange
apP# . s dD"(u, v)
= T+ [T )] = -

with the right hand side depending only on the fields at x = x?
If so, P* + D* is conserved with D* being the defect contribution.

e It turns out that only a few possible sewing conditions (and bulk
potentials U, V) are permitted for this to work.



Consider the field contribution to energy and calculate

dP®
W = [Uxut]xo - [VXVI]XO-
Choosing sewing conditions of the form

uy =vi+ X(u,v), vx=u+ Y(u,v), at X =X

we find 0
% =wuX—-wvY.
This is a total time derivative if
oDo oDO
X=- , =
ou’ ov'’
for some D°. Then
P _ oD
a —  dt’

e Expected anyway since time translation remains good.



On the other hand, for momentum

dP? u? +u? V2 4+ v2
o _ _v
i = | v [ -]
2 2 1
{v,x+utYX Y +UV} __ )
. dt

This is a total time derivative provided the first piece is a perfect
differential and the second piece vanishes. Thus

o0 _oD' o0 _ oD'

ou ov’' ~ ov  ou’

In other words the fields at the defect should satisfy:

0?00 9PD° 1 (0D°>2 1 (aDO

2
o =g 2(aw) “2lar) =U@ -V



Highly constraining - just a few possible combinations U, V, D° ...
e sine-Gordon, Liouville, massless free, or, massive free.
For example, if U(u) = m?u?/2, V(v) = m?v?/2, D° turns out to be

Dou,v) = 20w+ v+ - v,
4 40
and o is a free parameter.
« Note: the Tzitzéica (aka BD, MZS, &’ affine Toda) potential
U(u) = e +2¢74/2

is not possible.

e There is a Lagrangian description of this type of defect (type I):

uvy — utv

L = 0(—x+X0)L(u)+d(x—Xp)) < >

— D%u, v)> +0(x—x0))L(V)



In the free case (m # 0), with a wave incident from the left half-line

u= (&% + Re®) gt v = Tee il (2= k24 mP,

we find:
H 60— T
(fw — msinhn) sinh ( 2 IZ) _
R=0, T=-—- =—i —~ o=¢e"
(ik + mcosh ) sinh (9571 n %r>

e By design, conserves energy/momentum (no dependence on Xp).
e No bound state (provided 7 is real).
e By comparison, for o-impurity:
u(xo, t) = v(xo,t), ux(xo,t) — vx(X0,t) = 2\u(xo, 1)),
B /\921')'(0 CT- ik'
A+ ik A+ ik

e Bound state at k = i\ if m > A > 0. The J-impurity preserves
energy but not momentum (explicit dependence on x in R)

R:




sine-Gordon -

Choosing u, v to be sine-Gordon fields (and scaling the coupling and
mass parameters to unity), the allowed possibilities are:

u+v u—v
Do(u,v):—Z(acos i + 0" cos ).,

2 2

where o is a constant, to find (putting xo = 0)

x<0: d°u = —sinu,
x>0: 0°v = —sinv,
x=0 u v i Vs tsind Y
=0: = — o sin — o 'sin
X t P P
_uU+v . u—v
x=0: Vx = Ui+ osin > — 0 'sin 5

e The final two are a Backlund transformation frozen at x = 0.
e The defect could be anywhere - essentially topological
e Other features (eg higher spin charges) have been checked.



Solitons and defects -
The sine-Gordon model has solitons and antisolitons.
Consider a soliton incident from x < 0.

It will not be possible to satisfy the sewing conditions (in general, for
all times) unless a similar soliton emerges into the region x > 0:

. 1+ IE
0: elu/2 _ i
X< 1_iE’
; 1+ izE
0: ev2—=_T"-
x= 1—izE’
E = e¥tbt+e, a=coshf, b= —sinh0,

where z is to be determined. It is also useful to set o = e~ ".
e We find....



n—=0
= h _—
Z = cot < 5 ) f>0

Remarks:
e 1) < 0 implies z < 0; ie the soliton emerges as an anti-soliton.
- the final state will contain a discontinuity of magnitude 47 at x = 0.

e 1 = 0 implies z = co and there is no emerging soliton.
- the energy-momentum of the soliton is captured by the ‘defect’.
- the topological charge is also captured by a discontinuity 27.

e 1) > 6 implies z > 0; ie the soliton retains its character.



Delayed soliton



Delayed soliton



Delayed soliton



Swapped soliton/anti-soliton



Swapped soliton/anti-soliton



Swapped soliton/anti-soliton



Swapped soliton/anti-soliton



Comments

e Defects at x = x1 < X2 < X3 < --- < X, behave independently
- each contributes a factor z; for a total z = z1 2 . . . z,.

e Each component of a multisoliton is affected separately
- thus at most one can be ‘filtered out’.

e Since a soliton can be absorbed, can a starting configuration with
u =0, v =2r decay into a soliton?

- needs quantum mechanics to provide the probability for decay.
e Contrast

- a Backlund transformation ‘creates’ a soliton.
e Defects can also move (with constant speed), and scatter.



Generalisations

« What about Tzitzéica (2} affine Toda)?

o Multi-component fields - what about other affine Toda field
theories?

- only the aff) affine Toda theories can work -

- Backlund transformations are similar -
e What about nonlinear Schrédinger, KdV, mKdV, etc, etc?

- yes, see

e Is the setup genuinely integrable? For an alternative (algebraic)
approach see

e What about SUSY? See, for example,

¢ How do the sewing conditions work for finite gap’ solutions of
sine-Gordon (or KdV, NLS, etc)?



Classical type Il defect -

Consider two relativistic field theories with fields u and v, and add a
new degree of freedom \(t) at the defect location (x = 0):

L=0(—X)Ly + 0(X)Ly + 8(x) ((u— V)Xt — D°(\, u, v))

Then the usual Euler-Lagrange equations lead to
e equations of motion:

82u:f%j X <0, Pv=———" x>0

e defect conditions at x = 0

Uy=X—-D% ve=M+D (u-v)=-D%.



As before, consider momentum

0 0o
P! = —/ ax Uply —/ ax vivy,
—o0 0

and seek a functional D'(u, v, \) such that P} = —D].

As before, implies constraints on U, V, D'.
Putting g = (u—Vv)/2, p=(u+ v)/2 these are:

DS=-D), DS=-Dj
implying
D°=fp+Xq)+9(p—Xq) D' =fp+Xq) -9(P-X0q

d 1
an 5(D3D; — D3D}) = U(u) — V(v)

e Powerful constraint on f, g since \ does not enter the right side
- what is the general solution?



Note:

o Now possible to choose f, g for potentials U, V any one of
sine-Gordon, Liouville, Tzitzéica, or free massive or massless.

e Tzitzéica:
U(u) = (e"+2e Y2 =38), V(v)=(e"+2e"/?-3)
and the defect potential D°()\, p, q) is given by

D — 24 (e(pw/z 1 e (PtN)/4 (eq/z n e—q/2)>

A <8 AT L eq/2)2>

g

e In sine-Gordon the type-Il defect is new with two free parameters
-in a sense it is two ‘fused’ type-| defects -

e Other field theories? - yes, *but not yet all*,



Defects in quantum field theory

e Expect Soliton-defect scattering - pure transmission compatible
with the bulk S-matrix

o Expect Topological charge will be preserved but may be
exchanged with the defect

o Expect For each type of defect there may be several types of
transmission matrix (eg in sine-Gordon expect two different
transmission matrices since the topological charge on a defect
can only change by +2 as a soliton/anti-soliton passes).

e Expect Not all transmission matrices need be unitary (eg in
sine-Gordon one is a ‘resonance’ of the other)

e Questions Relationship between different types of defect;
assemblies of defects, defect-defect scattering; fusing defects; ...



A transmission matrix is intrinsically infinite-dimensional:

T(0,m), ata=b+p

where «, § and a, b are defect and particle (eg soliton) labels
respectively (typically they will be sets of weights); and » is a
collection of defect parameters.

Schematically:




Schematic compatibility relation - Delfino, Mussardo, Simonetti (1994)

If
-

SZA(0) Ti(02) TSI (06) = Tor (06) TS5 (92) SSH(O)

With © = 0, — 0, and sums over the ‘internal’ indices g, c, d.
e For sine-Gordon a solution was known - Konik, LeClair (1999)



Zamolodchikov’s sine-Gordon soliton-soliton S-matrix - reminder

A 0 0 O
0 C B O
S5(©) = p(©) 0O B C 0
0O 0 0 A
where
QX2 X Xy Xo 1
A(© — - — ., BO®)=——-—=,C(0)=qg—- —
@) ="~ o BO =303 C@O =0~
0 i 8w
Xa:e’Ya7a:1727@:91_927q:eﬂ"77,y:ﬁ_17
and
r+z
p(@) = ( ) HRk Rk IW—@)
R(©) — (2k7+z)r(1+2k7+z) z=iv/m

N2k +1)y+2)r(1 + 2k +1)y+ 2)’



Useful to define the variable Q = e*~ /%" = /=q.

e K-L solutions have the form
q—1/237(9—"1) 52—2 >

Q= 8¢
Q-

T2 (0) = f(q, x) ( q1/2 g(0=n) §p+2
where f(q, x) is not uniquely determined but, for a unitary
transmission matrix, should satisfy

fla.x) = f(g,qx)

fla.0f(@.a) = (1+e00)

¢ A ‘minimal’ solution has the following form
eiTr(1+'y)/4 r(x

f(q,X) = T o _( ),

1+ /e r(x)

where it is convenient to put z = iv(6 — n)/2r and
= M(ky+1/4—2)T((k+1)y+3/4-2)

rix) = k[[O T((k+1/2)y +1/4 - 2)[((k +1/2)y + 3/4 — 2)




b Q 5£ q—1/26’y(9—’r/) 5&—2
Ta(/xj(e) = f(q~ X) ( q71/2 67(07") (;{[erZ Q (5(6

Remarks (supposing 6 > 0) -
Tempting to suppose 7 (possibly renormalized) is the same
parameter as in the type | classical model.
e 1) < 0 - the off-diagonal entries dominate;
e 0 > n > 0 - the off-diagonal entries dominate;
e 7> 0 > 0 - the diagonal entries dominate.

e Similar features to the classical soliton-defect scattering.

e The different behaviour of solitons versus anti-solitons (diagonal
terms) is a direct consequence of the defect term proportional to

6(x — xo)(uvt — vuy) /2



e § = n is not special (neither is z = —1/4) but there is a simple pole
nearby at z = 1/4:

iT

; 0
2 — 1, as f —

0=n—

This pole is like a resonance, with complex energy,
E = ms cosh § = mg(cosh ) cos(m/27) — isinhnsin(mw/27))
and a ‘width’ proportional to sin(7/27).

e The Zamolodchikov S-matrix has ‘breather’ poles corresponding to
soliton-anti-soliton bound states at

© =ir(1—n/y), n=1,2, ..., Nyas;

use the bootstrap to define the transmission factors for breathers and
find for the lightest breather:

S

sinh (9%”
T(0)=—i : .
sinh (Tn +

)
)

o5



Type Il transmission matrix for sine-Gordon -

There is another, more general, set of solutions to the quadratic
relations for the transmission matrix:

o) ( (@@ +a-Q x5 x(b.Q" 1 b.Q )5~
Xx(ciQ¥+c_Q )58+ (d,Q*x?>+d_Q )s?
where x = 7%,

The free constants satisfy the two constraints
ardy —bircr =0

These and p(#)are constrained further by crossing and unitarity.
e For a choice of parameters this descibes a type Il defect.

eWitha_ =d, =0and b, =c_=0o0rb_ =c, =0 (aftera
similarity transformation), reduces to the type I solution.

e For other choices of parameters reduces to a direct sum of the
Zamolodchikov S-matrix and two infinite dimensional pieces.



Alternative formulation -
Summary: for Type Il

T = o(x) xa, QN+ x'a_QV a
=P ar xd, QY + x'd_QN

where a* and a are ’generalised’ raising and lowering operators,
respectively,

a'|k) = |k +2) alk)=F(k)k—2) N|k)=k|k), keZ

FIN=f+f°N+f Q2N f =Q32%a.d, f =Q%a.d

- T intertwines the coproducts of finite (soliton) and infinite (defect)
representations of the Borel subalgebra of Uq(as1)).

- I[dea generalises to all other quantum algebras allowing (in principle)
calculations of associated defect matrices. For some examples see



Defect-defect scattering - type |

by cs jpo 119y bp co
T a0 Tobs U'y5 —UaﬁT Tipy-

1aa 2ad
. Qv BixA; .
TIN(ﬁIXA;k QfN,' ) I_1a2
where ‘
x=e" qg=6e", P=-q B =8

Data carried by ;, A;, A7, i = 1,2 with two sets of mutually
commuting generalised annihilation and creation operators.

U is independent of x: equating terms in powers of x leads to the
following four equations:

(B2 QY Ap+ 51 QM A) U=U (81 Q% Ay + 5 QM )
(B Q%A+ B QM A U= U (B QM A3 + 81 QM A)

ON1+N2 U= UONﬁLNz, A1 UA1 = A2 UA2



U= > AFA Uc(Ni,Ne, N), A= B1/Bz

k=—o00
Then
Uk2(Ny, N2, A) = Uk(Ny — 2, N2 + 2, 0)
Ug/(N1 s N27 )\) = Uo(N1 - 2/, N2 + 2/, /\)
Uz 1(Ny, N2y X) = Uy (Ny — 21, N2 +- 21, A).
and

(AQ ™A + QY A) U=U(Q MA, + \Q™ Ay)

Ny—2 (N Na) Nop f(NND) y AN f(NI—2Ne) | ANy g (NrNo—2)
01 U12_~_>\Q 2U12 A02U1 2_"_0 1U112

oV u N1 No+2) LAQ e U(N1+2 No) )\QN2+2U1(N17N2) + QM U(()NnNz)



Formal generating functionals

U(Xay):ZXnmeO(na m)a V(Xay):ZXnme1(na m)
n,m n.m

Then

AU(x,y/Q)+Q2V(Qx,y) = M2U(x,Qy)+y?V(x/Q,y)
A/XP)V(xy/Q)+(1/y))U(Qx,y) = A@FV(x,Qy)+U(x/Q,y).

These can be written slightly more symmetrically by rearranging and
putting r = Q, s = \Q:

xUx,ry) —x"U(x,r ly) = ((ry)" V(rx,y) — ry V(r-"x,y))

y
XS
y " U(rx,y) —y U(r 'x,y) = yys (x V(x,ry) — ()" V(x,r y)).

e What is the general solution?



Further questions....
e Some alternative views and other aspects are discussed in several
places. Eg -

e Other Toda models - defects can be constructed for some other

affine Toda models, eg the &', (c\), d%?,), a2, d}"

What about all the others?
e Once the question is answered....

e ...What are the general integrable boundary conditions for all affine
Toda field theories?



Thank you!



