Localization in Nets of Standard Spaces

Gandalf Lechner

joint work with Roberto Longo arXiv:1403.1226, to appear in CMP

UNIVERSITAT LEIPZIG

AQFT 2014
Vienna, May 21

Model building in AQFT

Recently, many new ideas about model building within the setting of AQFT. Partial list:

- construction of interaction-free theories by modular localization [Brunetti/Guido/Longo 2002]
- boundary QFT models [Longo/Rehren 2004]
- Construction of integrable models [Schroer 2000, GL 2003, Buchholz/GL 2004, GL 2006, Bostelmann/Cadamuro 2012,...]
- Models of string-local infinite spin fields [Mund/Schroer/Yngvason 2006]
- construction of conformal local nets by framed VOAs [Kawahigashi/Longo 2006]
- Deformations of QFTs [Grosse/GL 2007, Buchholz/GL/Summers 2011, GL 2012, Plaschke 2013, Alazzawi 2013, GL/Schlemmer/Tanimoto 2013]
- Constructions with endomorphisms of standard pairs [Longo/Witten 2011, Tanimoto 2012, Bischoff/Tanimoto 2013]

Modular theory and standard spaces

Important mathematical tool: Modular theory.

- For von Neumann algebra $\mathcal{A} \subset \mathcal{B}(\mathcal{H})$ with cyclic and separating vector Ω, the real subspace $H:=\overline{\mathcal{A}(\mathcal{O})_{\text {sa }} \Omega} \subset \mathcal{H}$ is standard:

$$
\overline{H+i H}=\mathcal{H}, \quad H \cap i H=\{0\} .
$$

- Modular data of (\mathcal{A}, Ω) completely encoded in H :

$$
S: H+i H \rightarrow H+i H, \quad h+i k \mapsto h-i k .
$$

- Polar decomposition of S gives interesting data $\left(7, \Delta^{i t}\right)$. In particular

$$
\mathcal{F} H=H^{\prime}=\text { symplectic complement w.r.t. } \operatorname{Im}\langle\cdot, \cdot\rangle, \quad \Delta^{i t} H=H .
$$

■ "symplectic complement replaces commutant"

Von Neumann algebras and real standard spaces

- important data (but not the full algebraic structure) encoded in standard spaces $H(\mathcal{O})$

Von Neumann algebras and real standard spaces

- $\mathcal{O} \mapsto H(\mathcal{O})$ inherits isotony, covariance, locality (with symplectic complements instead of commutants) from $\mathcal{O} \mapsto \mathcal{A}(\mathcal{O})$

Von Neumann algebras and real standard spaces

- Can go back to algebraic setting by second quantization, $H(\mathcal{O}) \mapsto \mathcal{A}_{0}(\mathcal{O}):=\{\operatorname{Weyl}(h): h \in H(\mathcal{O})\}^{\prime \prime}$
- Free field theory \Leftrightarrow net of standard spaces

Von Neumann algebras and real standard spaces

- Also "deformed" versions of second quantization exist; give interacting nets $\mathcal{A}_{\varphi}(\varphi=2$-particle S-matrix). So far under control for integrable models, see talks by Sabina (today) and Yoh (Friday)

Von Neumann algebras and real standard spaces

- Focus here: Nets of standard spaces and their properties
- Simplified version in comparison to von Neumann algebra situation

Standard pairs and nets of standard spaces

Definition

A (1- or 2-dimensional) standard pair (H, T) consists of

- a real standard subspace $H \subset \mathcal{H}$
- a unitary strongly continuous positive energy representation T of the translations such that $T(x) H \subset H$ for x "on the right".

Standard pairs and nets of standard spaces

Definition

A (1- or 2-dimensional) standard pair (H, T) consists of

- a real standard subspace $H \subset \mathcal{H}$
- a unitary strongly continuous positive energy representation T of the translations such that $T(x) H \subset H$ for x "on the right".

In $d=1$: Set

Standard pairs and nets of standard spaces

Definition

A (1- or 2-dimensional) standard pair (H, T) consists of

- a real standard subspace $H \subset \mathcal{H}$
- a unitary strongly continuous positive energy representation T of the translations such that $T(x) H \subset H$ for x "on the right".

In $d=1$: Set

Standard pairs and nets of standard spaces

Definition

A (1- or 2-dimensional) standard pair (H, T) consists of

- a real standard subspace $H \subset \mathcal{H}$
- a unitary strongly continuous positive energy representation T of the translations such that $T(x) H \subset H$ for x "on the right".

In $d=1$: Set

Standard pairs and nets of standard spaces

Definition

A (1- or 2-dimensional) standard pair (H, T) consists of

- a real standard subspace $H \subset \mathcal{H}$
- a unitary strongly continuous positive energy representation T of the translations such that $T(x) H \subset H$ for x "on the right".

In $d=1$: Set

Standard pairs and nets of standard spaces

Definition

A (1- or 2-dimensional) standard pair (H, T) consists of

- a real standard subspace $H \subset \mathcal{H}$
- a unitary strongly continuous positive energy representation T of the translations such that $T(x) H \subset H$ for x "on the right".

In $d=1$: Set

Standard pairs and nets of standard spaces

Definition

A (1- or 2-dimensional) standard pair (H, T) consists of

- a real standard subspace $H \subset \mathcal{H}$
- a unitary strongly continuous positive energy representation T of the translations such that $T(x) H \subset H$ for x "on the right".

In $d=1$: Set

- Gives map $I \longmapsto H(I)$ from intervals in \mathbb{R} to real subspaces of \mathcal{H}.
- Same construction can be done in $d=2$ with the right wedge instead of \mathbb{R}_{+}.

From standard pairs to nets of standard spaces

- $I \mapsto H(I)$ is isotonous, local, T-covariant.
- By Borchers' Theorem, T extends to a (anti-) unitary representation U of the "($a x+b$)-group" (in $d=1$) or the proper 2d Poincaré group (in $d=2$), under which $I \mapsto H(I)$ is still covariant.

Theorem

If (H, T) is non-degenerate (no non-zero T-invariant vectors), then $H(I)$ is standard for any non-empty interval I.

From standard pairs to nets of standard spaces

- $I \mapsto H(I)$ is isotonous, local, T-covariant.
- By Borchers' Theorem, Textends to a (anti-) unitary representation U of the "($a x+b$)-group" (in $d=1$) or the proper 2d Poincaré group (in $d=2$), under which $I \mapsto H(I)$ is still covariant.

Theorem

If (H, T) is non-degenerate (no non-zero T-invariant vectors), then $H(I)$ is standard for any non-empty interval I.

- follows essentially from [Brunetti/Guido/Longo 2002]
- No comparable result for von Neumann-algebraic case exists.
- The functions φ used in the "deformed second quantization" appear in standard space setting when passing to endomorphisms/subnets.

Endomorphism Subnets H_{V}

Definition

An endomorphism of a standard pair (H, T) is a unitary V with

- $V H \subset H$
- $[V, T(x)]=0$ for all x.

Endomorphisms form semigroup $\mathcal{E}(H, T)$.

Given $V \in \mathcal{E}(H, T)$, define

$$
H_{V}(a, b):=H(-\infty, b) \cap V H(a, \infty)
$$

and analogously in $d=2$.

- Setting $V=1$ returns previous construction.
- For general endomorphism V, have inclusions (subnet)

Endomorphism Subnets H_{V}

Definition

An endomorphism of a standard pair (H, T) is a unitary V with

- $V H \subset H$
- $[V, T(x)]=0$ for all x.

Endomorphisms form semigroup $\mathcal{E}(H, T)$.

Given $V \in \mathcal{E}(H, T)$, define

$$
H_{V}(a, b):=H(-\infty, b) \cap V H(a, \infty)
$$

and analogously in $d=2$.

- Setting $V=1$ returns previous construction.
- For general endomorphism V, have inclusions (subnet)

$$
H_{V}(I)=H(I) \cap V H(I) \subset H(I)
$$

- For general V, have T-covariant local net $I \mapsto H_{V}(I)$ of real subspaces
- H_{V} will be fully U-covariant only if $V H=H$.
- Main question: Are the $H_{V}(I)$ cyclic or at least non-trivial?

Definition

The minimal Incalization radius ry (of the net HV) is
(no non-zero vectors localized in intervals shorter than $2 r_{V}$.)

- For general V, have T-covariant local net $I \mapsto H_{V}(I)$ of real subspaces
- H_{V} will be fully U-covariant only if $V H=H$.
- Main question: Are the $H_{V}(I)$ cyclic or at least non-trivial?
- Trivial example: $V=T(x), x \geq 0$, then

$$
H_{V}(I)= \begin{cases}\{0\} & |I| \leq x \\ \text { cyclic } & |I|>x\end{cases}
$$

Definition

The minimal Incalization radius ry (of the net H_{V}) is
(no non-zero vectors localized in intervals shorter than $2 r_{V}$.)

- For general V, have T-covariant local net $I \mapsto H_{V}(I)$ of real subspaces
- H_{V} will be fully U-covariant only if $V H=H$.
- Main question: Are the $H_{V}(I)$ cyclic or at least non-trivial?
- Trivial example: $V=T(x), x \geq 0$, then

$$
H_{V}(I)= \begin{cases}\{0\} & |I| \leq x \\ \text { cyclic } & |I|>x\end{cases}
$$

Definition

The minimal localization radius r_{V} (of the net H_{V}) is

$$
r_{V}:=\inf \left\{r \geq 0: H_{V}(-r, r) \neq\{0\}\right\} \in[0, \infty]
$$

(no non-zero vectors localized in intervals shorter than $2 r_{V}$.)

For understanding H_{V}, one needs to understand V.

Definition

A symmetric inner function on the upper half plane is an analytic bounded function $\varphi: \mathbb{C}_{+} \rightarrow \mathbb{C}$ such that

$$
\varphi(-p)=\overline{\varphi(p)}=\varphi(p)^{-1}, \quad p \geq 0
$$

Theorem (Longo/Witten 2011)

There exists a unique 1d non-degenerate standard pair (H, T) with U irreducible. Its endomorphism semigroup is

$$
\mathcal{E}(H, T)=\{\varphi(P): \varphi \text { symmetric inner }\},
$$

where P is the generator of T.

Structure of symmetric inner functions matches that of scattering functions up to one condition.

Inner functions

Canonical Factorization

Any symmetric inner function φ is of the form

$$
\varphi(p)= \pm e^{i p x} B(p) S(p),
$$

with

- $x \geq 0$
- B a (symmetric) Blaschke product, $B(p)=\prod_{n} \frac{p-p_{n}}{p-\overline{p_{n}}}$
- S singular inner, $S(p)=e^{-i \int d \mu(t) \frac{1+p t}{p-t}}$

$$
\varphi \Longleftrightarrow x,\left\{p_{n}\right\}_{n}, \mu
$$

Calculating r_{φ}

What is the localization radius r_{φ} of the subnet with $V=\varphi(P)$ and the unique irreducible 1d standard pair?

Localization radii of elementary factors:

inner function φ	localization radius r_{φ}
$\pm e^{i p x}$	$x / 2$
single Blaschke factor	0
singular function	∞

Calculating r_{φ}

What is the localization radius r_{φ} of the subnet with $V=\varphi(P)$ and the unique irreducible 1d standard pair?

Localization radii of elementary factors:

inner function φ	localization radius r_{φ}
$\pm e^{i p x}$	$x / 2$
single Blaschke factor	0
singular function	∞

- Need to consider infinite products, but $\varphi \longmapsto r_{\varphi}$ discontinuous (cf. [Tanimoto 2011] for similar effect)

Calculating r_{φ}

What is the localization radius r_{φ} of the subnet with $V=\varphi(P)$ and the unique irreducible 1d standard pair?

Localization radii of elementary factors:

inner function φ	localization radius r_{φ}
$\pm e^{i p x}$	$x / 2$
single Blaschke factor	0
singular function	∞

- Need to consider infinite products, but $\varphi \longmapsto r_{\varphi}$ discontinuous (cf. [Tanimoto 2011] for similar effect)
- important quantity: convergence exponent of the zeros $\left\{p_{n}\right\}$ of φ,

$$
\rho_{\varphi}:=\inf \left\{\alpha \geq 0: \sum_{n}\left|p_{n}\right|^{-\alpha}<\infty\right\} \in[0, \infty]
$$

Calculating r_{φ}

Theorem

1 If $\rho_{\varphi}>1$ or $\mu_{\varphi} \neq 0$, then $r_{\varphi}=\infty \quad$ (all interval spaces trivial).
2 If $\rho_{\varphi}<1, \mu_{\varphi}=0$, then $r_{\varphi}=\frac{1}{2} x_{\varphi} \quad$ (all interv. sp. cyclic if $x_{\varphi}=0$).
3 If $r>r_{\varphi}$, then $H_{\varphi}(-r, r)$ is cyclic.
\qquad

Calculating r_{φ}

Theorem

1 If $\rho_{\varphi}>1$ or $\mu_{\varphi} \neq 0$, then $r_{\varphi}=\infty \quad$ (all interval spaces trivial).
2 If $\rho_{\varphi}<1, \mu_{\varphi}=0$, then $r_{\varphi}=\frac{1}{2} x_{\varphi} \quad$ (all interv. sp. cyclic if $x_{\varphi}=0$).
3 If $r>r_{\varphi}$, then $H_{\varphi}(-r, r)$ is cyclic.

- Proof relies on explicit characterization of the spaces $H(-r, r)$ in the (unique) irreducible case:
- In $\mathcal{H}=L^{2}\left(\mathbb{R}_{+}, d p / p\right)$, a function is localized in $H(-r, r)$ iff it extends to an entire function of exponential type at most r, with $\overline{\psi(-\bar{p})}=\psi(p)$.
- + complex analysis (entire functions, canonical products ...)

For intermediate case $\rho_{\varphi}=1$:
Example
$\varphi(p):=\frac{\sin (\nu p-i q)}{\sin (\nu p+i q)}, \nu, q>0$, is a symmetric inner function with

$$
x_{\varphi}=0, \quad \mu_{\varphi}=0, \quad \rho_{\varphi}=1, \quad r_{\varphi}=\nu
$$

- Get nets (of subspaces or von Neumann algebras) with intrinsic minimal localization length.
- Regularity of endomorphism (no singular part, zeros not too dense) is necessary (and sufficient) for rich local structure.
- \rightarrow Surprising analogies to integrable models and their scattering functions.

Symmetric inner functions vs. scattering functions

- A symmetric inner function is called a scattering function if it satisfies $\varphi=\gamma(\varphi)$, where $\gamma(\varphi)(p)=\overline{\varphi(1 / \bar{p})}, \operatorname{Im} p>0$ (cf. Sabina's talk)
- A scattering function is called regular iff $\varphi \circ \exp$ extends analytically and bounded to $-\varepsilon<\operatorname{Im} \theta<\pi+\varepsilon$ for some $\varepsilon>0$.
- For regular scattering functions, the inverse scattering problem can be solved by an operator-algebraic construction. Have there $r_{\varphi}<\infty$ respectively $r_{\varphi}=0$ [GL 2006]

Symmetric inner functions vs. scattering functions

- A symmetric inner function is called a scattering function if it satisfies $\varphi=\gamma(\varphi)$, where $\gamma(\varphi)(p)=\overline{\varphi(1 / \bar{p})}$, Im $p>0$ (cf. Sabina's talk)
- A scattering function is called regular iff $\varphi \circ \exp$ extends analytically and bounded to $-\varepsilon<\operatorname{Im} \theta<\pi+\varepsilon$ for some $\varepsilon>0$.
- For regular scattering functions, the inverse scattering problem can be solved by an operator-algebraic construction. Have there $r_{\varphi}<\infty$ respectively $r_{\varphi}=0$ [GL 2006]
- Here: If φ is a scattering function, then either $\rho_{\varphi}=0$ or $\rho_{\varphi}=\infty$. If $\rho_{\varphi}=0$, then regularity of φ is equivalent to $r_{\varphi}=0$.

The 2d situation

- In $d=2$, the non-degenerate irreps U (of the 2d Poincaré group) are uniquely labeled by either a mass $m>0$, or $m=0$ and choice of left/right.
- The $m=0$ irreps give the same nets as in 1 d (chiral situation). \rightarrow focus on massive case.

Theorem

let (H T) he a non-degenerate 2d standard pair with massive multiplicity free representation U. Then

$$
\mathcal{E}(H, T)=\left\{\psi\left(P_{+}, M\right): \psi \in L^{\infty}\left(\mathbb{R}_{+}^{2}\right), \psi(\cdot, m) \text { symmetric inner }\right\}
$$

The 2d situation

- In $d=2$, the non-degenerate irreps U (of the 2d Poincaré group) are uniquely labeled by either a mass $m>0$, or $m=0$ and choice of left/right.
- The $m=0$ irreps give the same nets as in 1 d (chiral situation). \rightarrow focus on massive case.
- Generalization of Longo/Witten Theorem to massive 2d case:

Theorem

Let (H, T) be a non-degenerate $2 d$ standard pair with massive multiplicity free representation U. Then

$$
\mathcal{E}(H, T)=\left\{\psi\left(P_{+}, M\right): \psi \in L^{\infty}\left(\mathbb{R}_{+}^{2}\right), \psi(\cdot, m) \text { symmetric inner }\right\}
$$

- P_{+}: generator of lightlike translations, M : mass operator.
- Examples: $U=U_{m}$ irreducible, or $U=U_{m} \otimes_{+} U_{m}$ (symmetric tensor square, " 2 particle situation"), ...

The 2d situation - localization radius

- Localization radius $r_{m, \varphi}$ of net $\mathcal{O} \mapsto H_{\varphi}^{m}(\mathcal{O})$ with irreducible $U=U_{m}$ and $V=\varphi\left(P_{+}\right)$?
$1 r>r_{m, \varphi} \Longrightarrow H_{\varphi}^{m}\left(\mathcal{O}_{r}\right)$ is cyclic.
$2 \frac{1}{2} \max \left\{x_{\varphi}, x_{\gamma(\varphi)}\right\} \leq r_{m, \varphi} \leq \min \left\{r_{\varphi}, r_{\gamma(\varphi)}\right\}$
3 If $\operatorname{supp} \mu_{\varphi} \neq\{0\} \Rightarrow r_{m, \varphi}=\infty$.
4 But there also exist Blaschke products φ such that $r_{\varphi}=r_{\gamma(\varphi)}=\infty$, but $r_{m, \varphi}=0$.
(analogous to scaling limits of integrable models,
[Bostelmann/GL/Morsella 2011])
- The symmetry $\varphi \mapsto \gamma(\varphi)$ corresponds to time reflection.

Conclusions

- Have studied (sub-)nets of standard spaces and their localization properties.
- Regularity of endomorphism influences localization radius.
- Similarities to integrable models ($\varphi=2$-particle S-matrix)
- Link between endomorphism picture and deformation picture not yet clear, to be investigated also at 2-particle level
- In higher particle situations (tensor products of standard subspaces), $\mathcal{E}(H, T)$ will be non-abelian and also contain integral operators (momentum transfer).
- Should provide input into the construction of models with stronger interaction.

