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Introduction BFV LCT SPASs

Verstehen Sie SPASs?

I If a theory represents the same physics in all spacetimes, it
should represent the same physics in the same spacetime.
Seek a generally covariant formulation.

I If two theories both represent SPASs and are equivalent in one
spacetime, then they should be equivalent in all spacetimes.

Example:

L =
1

2

√
−g
(
∇aφ∇aφ− ξRφ2

)
Although the equation of motion and solution space are
independent of ξ ∈ R in Ricci-flat spacetimes, these theories are
distinguished by the stress-energy tensor.
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However,

L =
1

2

√
−g
(
∇aφ∇aφ− ζ(R)φ2

)
with ζ smooth and vanishing in a neighbourhood of 0, cannot be
distinguished from the ζ ≡ 0 model in Ricci-flat spacetimes.

I SPASs can be ensured by restricting to actions depending
analytically on the metric.

I Not a great problem when constructing models from known
Lagrangians – use good taste and experience!

I More problematic in axiomatic settings.
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In this talk we consider a restricted version of SPASs, only
comparing theories by embedding one as a subtheory of the other.

Working definition:

A class of theories T has the SPASs property if no proper
subtheory T ′ of T in T can fully account for the physics of T in
any single spacetime.
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Locally covariant QFT BFV: Brunetti, Fredenhagen, Verch (2003)

Define a locally covariant QFT to be a functor A from a category
of spacetimes Man to a category of ∗-algebras Alg

Man

Objects Globally hyperbolic spacetimes with orientation and
time orientation.

Morphisms Hyperbolic embeddings, i.e., isometric embeddings
with causally convex image that preserve the
(time)-orientation.

Alg

Objects Unital ∗-algebras (or C ∗, to taste...)

Morphisms Unit-preserving ∗-monomorphisms
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Unpacking the definition:

I To each spacetime M there is an algebra A (M) of observables

I To each hyperbolic embedding M
ψ→ N there is

A (M)
A (ψ)−→ A (N)

embedding the observables on M among the observables on N
with

A (ψ ◦ ϕ) = A (ψ) ◦A (ϕ) (covariance)
A (idM) = idA (M)
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Successes of the locally covariant approach

I Spin and statistics – Verch

I Perturbation theory – Brunetti & Fredenhagen;
Hollands & Wald

I Existence of a covariant stress-energy tensor – BFV

I Superselection theory – Ruzzi; Brunetti & Ruzzi

I Quantum (Energy) Inequalities – CJF & Pfenning; Marecki

I Reeh–Schlieder theorem – Sanders
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Two key tools

ψ : M→ N is Cauchy if ψ(M) contains a Cauchy surface of N.
A locally covariant theory A satisfies the time-slice axiom if

ψ is Cauchy =⇒ A (ψ) is an isomorphism

ψ

N

M

CJ Fewster University of York Perspectives on local covariance
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Two key tools

ψ : M→ N is Cauchy if ψ(M) contains a Cauchy surface of N.
A locally covariant theory A satisfies the time-slice axiom if

ψ is Cauchy =⇒ A (ψ) is an isomorphism

Any two spacetimes with homeomorphic Cauchy surfaces are linked
by Cauchy morphisms. Fulling, Narcowich & Wald 1981

M

N
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Relative Cauchy evolution and the stress-energy tensor

ι+[h]

ι−[h]

ι+

ι−

h

M[h]M

M+

M−

If A obeys timeslice, any metric perturbation h preserving global
hyperbolicity defines an automorphism of A (M),

rceM[h] = A (ι−) ◦A (ι−[h])−1 ◦A (ι+[h]) ◦A (ι+)−1

whose functional derivative gives a stress-energy tensor:

[TM(f ),A] = 2i
d

ds
rceM[h(s)]A

∣∣∣∣
s=0

f =
dh(s)

ds

∣∣∣∣
s=0

.
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The category of locally covariant theories

LCT (= Fun(Man,Alg))

Objects functors from Man to Alg

Morphisms natural transformations

A natural transformation ζ : A
.→ B between theories A and B

assigns to each M a morphism A (M)
ζM−→ B(M) so that for each

hyperbolic embedding ψ,

ζN ◦A (ψ) = B(ψ) ◦ ζM

A (M) B(M)

A (N) B(N)

ζM

A (ψ)

ζN

B(ψ)

Interpretation: ζ embeds A as a sub-theory of B. If every ζM is
an isomorphism, ζ is an equivalence of A and B.
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Examples:

I Given any A , define A ⊗k by

A ⊗k(M) = A (M)⊗k , A ⊗k(ψ) = A (ψ)⊗k

i.e., k independent copies of A . Then

ηk,l
M : A ⊗k(M)→ A ⊗l(M)

A 7→ A⊗ 1
⊗(l−k)
A (M)

defines a natural ηk,l : A ⊗k .→ A ⊗l for k ≤ l .
Naturally, ηk,m = ηl ,m ◦ ηk,l if k ≤ l ≤ m.

I Theories with distinct mass spectra in Minkowski space are
inequivalent.
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Some immediate questions:

I Is there any operational content to the morphisms of LCT?
Can two morphisms be distinguished on the basis of their
action in a single spacetime?

I How large can the set of morphisms between two theories be?
Can the hom-sets be computed in concrete cases?
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Suppose ζ, ζ ′ : A
.→ B and ζM = ζ ′M for some M. Then:

I if L
ψ→M then ζL = ζ ′L

B(ψ) ◦ ζL = ζM ◦A (ψ) = ζ ′
M ◦A (ψ) = B(ψ) ◦ ζ ′

L

and B(ψ) is monic.

I if M
ϕ→ N is Cauchy and A obeys timeslice then ζN = ζ ′

N

ζN ◦A (ϕ) = B(ϕ) ◦ ζM = B(ϕ) ◦ ζ ′
M = ζ ′

N ◦A (ϕ)

and A (ϕ) is an isomorphism, hence epic.

I if A obeys timeslice and M and N have homeomorphic Cauchy
surfaces then ζN = ζ ′

N

Using spacetime deformation, there are Cauchy morphisms

M←M′ →M′′ ←M′′′ → N

CJ Fewster University of York Perspectives on local covariance
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A diamond O of M is the domain of determinacy of an open ball
w.r.t. local coordinates in a Cauchy surface of M.

M

M|O

Consider O as a spacetime M|O , with inclusion ιO : M|O →M.

Then
ζM = ζ ′M =⇒ ζM|O = ζ ′M|O

But all diamonds have homeomorphic Cauchy surfaces:

ζM = ζ ′M =⇒ ζM̃|
Õ

= ζ ′
M̃|

Õ

where Õ is a diamond of any spacetime M̃.
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If A also obeys additivity in the form

A (M̃) =
∨
O

A (ιO)(A (M̃|O))

where O ranges over the diamonds of M̃, then

ζM = ζ ′M =⇒ ζ = ζ ′

ζ is uniquely determined by any of its components ζM

This result is supplemented by a strong constraint from the r.c.e.:

rce
(B)
M [h] ◦ ζM = ζM ◦ rce

(A )
M [h]

for all hyperbolic perturbations h of M.
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rce
(B)
M [h] ◦ ζM = ζM ◦ rce

(A )
M [h]

B(M+)

A (M+)

B(M) A (M) A (M[h]) B(M[h])

A (M−)

B(M−)

A
(ι

+ )
A

(ι +
[h])

A
(ι −

)
A

(ι
− [h])

B
(ι

+ ) B(ι +
[h])

B
(ι −

) B(ι
− [h])

ζM+

ζM−

ζM

ζM[h]ζM
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Summarising:

Theorem
If A and B obey timeslice and A is additive then

I ζ : A
.→ B is uniquely determined by any of its components

I rce
(B)
M [h] ◦ ζM = ζM ◦ rce

(A )
M [h]

I if the stress-energy tensors exist as derivations

[T
(B)
M (f ), ζMA] = ζM[T

(A )
M (f ),A]

for all A ∈ A (M) and symmetric C∞0 -tensors f .

Computation in concrete examples now becomes possible.
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Example: For A = real Klein–Gordon field of mass m,

End(A ⊗N) = Aut(A ⊗N)

∼=

{
O(N) m > 0

O(N)nRN m = 0

(ζR

,α

Φ)M(f ) = ΦM(Rf )

+

(∫
dvolM αT f

)
1A (M)

Interpretation & consequences:

I Aut(A ) is the global gauge group of ‘field functor’ A

I Aut(A ) is trivial for an ‘observable functor’.

I Linear fields of the theory appear in Aut(A )-multiplets.

I Superselection theory at the functorial level?
(Complementary to Ruzzi/Brunetti–Ruzzi results)

CJ Fewster University of York Perspectives on local covariance
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Fun with functors

Return to the question of whether local covariance implies SPASs.

Any functor ϕ : Man→ LCT, i.e.,

ϕ ∈ Fun(Man,Fun(Man,Alg))

is a locally covariant choice of locally covariant theory.

I Each ϕ(M) is a theory ϕ(M) ∈ LCT

I Each hyperbolic embedding ψ corresponds to an embedding
ϕ(ψ) of ϕ(M) as a sub-theory of ϕ(N).

We use ϕ to define a diagonal theory ϕ∆ ∈ LCT.
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Diagonal theories

Given ϕ ∈ Fun(Man, LCT), define, for spacetime M and hyperbolic
embedding ψ : M→ N

ϕ∆(M) = ϕ(M)(M) ϕ∆(ψ) = ϕ(ψ)N ◦ ϕ(M)(ψ)

M ϕ(M)(M) ϕ(N)(M)

N ϕ(M)(N) ϕ(N)(N)

ψ

ϕ(ψ)M

ϕ(M)(ψ) ϕ(N)(ψ)

ϕ(ψ)N

ϕ
∆ (ψ)

ϕ∆ is a functor and therefore defines a locally covariant theory!
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Example:

I Write Σ(M) = Cauchy surface of M/homeomorphisms

I Let µ : Man→ N = {1, 2, . . .} be a topological invariant of
Cauchy surfaces s.t. µ(M) = 1 if Σ(M) is noncompact.

I Set

ϕ(M) = A ⊗µ(M) ϕ(M
ψ→ N) = ηµ(M),µ(N)

Then ϕ ∈ Fun(Man, LCT).

Key point: If Σ(M) is compact and ∃ M→ N then Σ(M) = Σ(N).
Thus µ(M) ≤ µ(N) whenever M→ N; functorial properties follow
immediately from properties of ηk,l .
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E.g. µ(M) =

{
1 Σ(M) noncompact

2 otherwise

ϕ∆(D) = A (D) ϕ∆(C) = A ⊗2(C)

The subtheory embeddings A
.−→ ϕ∆

.−→ A ⊗2 are isomorphisms
in some spacetimes but not in others. SPASs fails in LCT.
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Properties of ϕ∆

1. ϕ∆ is more than one copy of A , but less than two!

A
.−→ ϕ∆

.−→ A ⊗2

2. ϕ∆ shares the timeslice and causality properties with the
underlying theory A .

3. For any diamond O of any spacetime, ϕ∆(M|O) = A (M|O).

I In particular ϕ∆ is not additive.

I The local algebras are insensitive to the ambient algebra

I Is ϕ∆ really just one copy of A in disguise?
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Relative Cauchy evolution again

The intertwining rule rce
(B)
M [h] ◦ ζM = ζM ◦ rce

(A )
M [h] implies

rce
(ϕ∆)
M [h] = (rce

(ϕ)
M [h])M ◦ rce

(ϕ(M))
M [h]

where rce
(ϕ)
M [h] ∈ Aut(ϕ(M)) is the r.c.e. of ϕ in LCT!

If rce(ϕ) is trivial and stress-energy tensors exist:

[T
(ϕ∆)
M (f ),A] = [T

(ϕ(M))
M (f ),A]

E.g., in the example above:

T
(ϕ∆)
D (f ) = T

(A )
D (f ); T

(ϕ∆)
C (f ) = T

(A⊗A )
C (f )

R.c.e. detects ambient degrees of freedom missed by local algebras.
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Intrinsic local algebras

For any compact set K define

A •(M; K ) = {A ∈ A (M) : rceM[h]A = A for all h ∈ H(M; K⊥)}

i.e., the subalgebra insensitive to spacetime geometry in the causal
complement K⊥.

For any open O, define

A int(M; O) =
∨

K⊂O

A •(M; K )

running over compact K with a diamond neighbourhoods.
Say that A is strongly local if

A int(M; O) = A ext(M; O)
def
= A (ιO)(A (M|O))

for all open globally hyperbolic subsets O of M.
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Consequences of strong locality

I Additivity: if A is strongly local then

A (M) =
∨
O

A int(M; O) =
∨
O

A ext(M; O)

for O running over the diamonds of M.
I SPASs: Suppose

I A and B are strongly local,
I ζ : A

.→ B and
I ζM is an isomorphism for some M

Then ζ is an equivalence.

The category of strongly local theories has the SPASs property.
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Strongly local diagonal theories

Suppose ϕ∆ is a diagonal theory (with rceϕ trivial) such that ϕ∆

and every ϕ(M) are strongly local.

Then

I ϕ(M) ∼= ϕ(N) for all M,N ∈ Man

I ϕ∆
∼= A for A with

A (ψ) = η(ψ)N ◦ ϕ(M0)(ψ)

for every ψ : M→ N, where η ∈ Fun(Man,Aut(ϕ(M0))) and
M0 ∈ Man is arbitrary.

I If Aut(ϕ(M0)) is trivial, then ϕ∆
∼= ϕ(M0).
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Example The Klein–Gordon theory of mass m > 0 is strongly local:

A •(M; K ) = subalgebra of A (M) generated by

ΦM(f ) with supp f ⊂ K

A int(M; O) = subalgebra of A (M) generated by

ΦM(f ) with supp f ⊂ O

Complication: if m = 0 and Σ(M) is compact then

A int(M; O) = A ext(M; O)
∨
〈A0〉

where A0 is the ‘pure gauge’ generator induced by the classical
solution φ ≡ 1.
Related to other pathologies (e.g., absence of static ground state).
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Summary and outlook

Summary
Local covariance does not enforce SPASs, but does open new ways
of analysing QFT.

I Global gauge group

I Diagonal theories

I Strong locality

I Key role of the r.c.e. and stress-tensor.

Outlook

I Analysis at the functorial level:
QFT in CST without the spacetimes?

I Superselection theory?

I Cohomology of Man
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Traditionally: QFT in CST is ‘hard’ because of the absence of
global symmetries available in Minkowksi space.

But perhaps: QFT in Minkowski space is ‘hard’ because of the
absence of the stress-energy tensor available in locally covariant
QFT in CST.
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