Perspectives on local covariance

CJ Fewster University of York

 299

э \mathbb{R}

э

Perspectives on local covariance

CJ Fewster University of York

- \blacktriangleright The category of locally covariant theories Can QFT be analysed fruitfully at the functorial level?
- \blacktriangleright Physical content of local covariance Does it enforce the 'same physics in all spacetimes'?

Perspectives on local covariance

CJ Fewster University of York

- \blacktriangleright The category of locally covariant theories Can QFT be analysed fruitfully at the functorial level?
- \blacktriangleright Physical content of local covariance Does it enforce the 'same physics in all spacetimes'?

Slogan: the Same Physics in All Spacetimes $=$ SPASs.

Work in progress; partly in collaboration with R Verch.

Verstehen Sie SPASs?

4 0 8 → 母 \rightarrow 目

→ (唐)→ (唐)→

 299

Verstehen Sie SPASs?

If a theory represents the same physics in all spacetimes, it should represent the same physics in the same spacetime. Seek a generally covariant formulation.

Verstehen Sie SPASs?

- If a theory represents the same physics in all spacetimes, it should represent the same physics in the same spacetime. Seek a generally covariant formulation.
- \triangleright If two theories both represent SPASs and are equivalent in one spacetime, then they should be equivalent in all spacetimes.

Example:

$$
\mathcal{L} = \frac{1}{2}\sqrt{-g} \left(\nabla^a \phi \nabla_a \phi - \xi R \phi^2 \right)
$$

Although the equation of motion and solution space are independent of $\xi \in \mathbb{R}$ in Ricci-flat spacetimes, these theories are distinguished by the stress-energy tensor.

However,

$$
\mathcal{L} = \frac{1}{2}\sqrt{-g} \left(\nabla^a \phi \nabla_a \phi - \zeta(R) \phi^2 \right)
$$

with ζ smooth and vanishing in a neighbourhood of 0, cannot be distinguished from the $\zeta \equiv 0$ model in Ricci-flat spacetimes.

- \triangleright SPASs can be ensured by restricting to actions depending analytically on the metric.
- \triangleright Not a great problem when constructing models from known Lagrangians – use good taste and experience!
- \blacktriangleright More problematic in axiomatic settings.

In this talk we consider a restricted version of SPASs, only comparing theories by embedding one as a subtheory of the other.

Working definition:

A class of theories $\mathfrak T$ has the SPASs property if no proper subtheory \mathscr{T}' of \mathscr{T} in $\mathfrak T$ can fully account for the physics of \mathscr{T} in any single spacetime.

Locally covariant QFT BFV: Brunetti, Fredenhagen, Verch (2003)

Define a locally covariant QFT to be a functor $\mathscr A$ from a category of spacetimes Man to a category of ∗-algebras Alg

Man

- Objects Globally hyperbolic spacetimes with orientation and time orientation.
- Morphisms Hyperbolic embeddings, i.e., isometric embeddings with causally convex image that preserve the (time)-orientation.

Alg

Objects Unital $*$ -algebras (or C^* , to taste...) Morphisms Unit-preserving ∗-monomorphisms

Unpacking the definition:

- \triangleright To each spacetime **M** there is an algebra $\mathscr{A}(M)$ of observables
- \blacktriangleright To each hyperbolic embedding $\mathsf{M} \stackrel{\psi}{\rightarrow} \mathsf{N}$ there is

$$
\mathscr{A}(\mathsf{M}) \stackrel{\mathscr{A}(\psi)}{\longrightarrow} \mathscr{A}(\mathsf{N})
$$

embedding the observables on M among the observables on N with

$$
\mathscr{A}(\psi \circ \varphi) = \mathscr{A}(\psi) \circ \mathscr{A}(\varphi) \qquad \text{(covariance)}
$$

$$
\mathscr{A}(\text{id}_{\mathbf{M}}) = \text{id}_{\mathscr{A}(\mathbf{M})}
$$

Successes of the locally covariant approach

- \blacktriangleright Spin and statistics Verch
- \triangleright Perturbation theory Brunetti & Fredenhagen; Hollands & Wald
- \triangleright Existence of a covariant stress-energy tensor BFV
- \triangleright Superselection theory Ruzzi; Brunetti & Ruzzi
- \triangleright Quantum (Energy) Inequalities CJF & Pfenning; Marecki
- \blacktriangleright Reeh–Schlieder theorem Sanders

Two key tools

 $\psi : \mathsf{M} \to \mathsf{N}$ is Cauchy if $\psi(\mathsf{M})$ contains a Cauchy surface of N. A locally covariant theory $\mathscr A$ satisfies the time-slice axiom if

 ψ is Cauchy $\implies \mathscr{A}(\psi)$ is an isomorphism

Two key tools

 $\psi : \mathsf{M} \to \mathsf{N}$ is Cauchy if $\psi(\mathsf{M})$ contains a Cauchy surface of N. A locally covariant theory $\mathscr A$ satisfies the time-slice axiom if

 ψ is Cauchy $\implies \mathscr{A}(\psi)$ is an isomorphism

Any two spacetimes with homeomorphic Cauchy surfaces are linked by Cauchy morphisms. Fulling, Narcowich & Wald 1981

Relative Cauchy evolution and the stress-energy tensor

If $\mathscr A$ obeys timeslice, any metric perturbation h preserving global hyperbolicity defines an automorphism of $\mathscr{A}(M)$,

$$
\mathsf{rce}_{\mathsf{M}}[h] = \mathscr{A}(\iota^-) \circ \mathscr{A}(\iota^-[h])^{-1} \circ \mathscr{A}(\iota^+[h]) \circ \mathscr{A}(\iota^+)^{-1}
$$

whose functional derivative gives a stress-energy tensor:

$$
[\mathsf{T}_{\mathsf{M}}(f), A] = 2i \left. \frac{d}{ds} \text{rce}_{\mathsf{M}}[h(s)]A \right|_{s=0} \qquad f = \frac{dh(s)}{ds} \Big|_{s=0}.
$$

The category of locally covariant theories

 LCT (= Fun(Man, Alg))

Objects functors from Man to Alg

Morphisms natural transformations

A natural transformation $\zeta:\mathscr{A}\to\mathscr{B}$ between theories $\mathscr A$ and $\mathscr B$ assigns to each **M** a morphism $\mathscr{A}(\mathsf{M}) \xrightarrow{\zeta_{\mathsf{M}}} \mathscr{B}(\mathsf{M})$ so that for each hyperbolic embedding ψ ,

$$
\zeta_{\mathbf{N}} \circ \mathscr{A}(\psi) = \mathscr{B}(\psi) \circ \zeta_{\mathbf{M}} \qquad \qquad \downarrow \mathscr{A}(\mathbf{M}) \xrightarrow{\zeta_{\mathbf{M}}} \mathscr{B}(\mathbf{M})
$$
\n
$$
\mathscr{A}(\mathbf{M}) \xrightarrow{\zeta_{\mathbf{N}}} \mathscr{B}(\mathbf{M})
$$
\n
$$
\mathscr{A}(\mathbf{N}) \xrightarrow{\zeta_{\mathbf{N}}} \mathscr{B}(\mathbf{N})
$$

Interpretation: ζ embeds $\mathscr A$ as a sub-theory of $\mathscr B$. If every ζ_M is an isomorphism, ζ is an equivalence of $\mathscr A$ and $\mathscr B$.

Examples:

► Given any $\mathscr A$, define $\mathscr A^{\otimes k}$ by

$$
\mathscr{A}^{\otimes k}(\mathbf{M}) = \mathscr{A}(\mathbf{M})^{\otimes k}, \qquad \mathscr{A}^{\otimes k}(\psi) = \mathscr{A}(\psi)^{\otimes k}
$$

i.e., k independent copies of $\mathscr A$. Then

$$
\eta_{\mathbf{M}}^{k,l} : \mathscr{A}^{\otimes k}(\mathbf{M}) \to \mathscr{A}^{\otimes l}(\mathbf{M})
$$

$$
A \mapsto A \otimes \mathbf{1}_{\mathscr{A}(\mathbf{M})}^{\otimes (l-k)}
$$

defines a natural $\eta^{k,l}: \mathscr{A}^{\otimes k} \stackrel{.}{\to} \mathscr{A}^{\otimes l}$ for $k \leq l.$ Naturally, $\eta^{k,m} = \eta^{l,m} \circ \eta^{k,l}$ if $k \le l \le m$.

 \blacktriangleright Theories with distinct mass spectra in Minkowski space are inequivalent.

Some immediate questions:

- \triangleright Is there any operational content to the morphisms of LCT? Can two morphisms be distinguished on the basis of their action in a single spacetime?
- \blacktriangleright How large can the set of morphisms between two theories be? Can the hom-sets be computed in concrete cases?

Suppose $\zeta, \zeta': \mathscr{A} \to \mathscr{B}$ and $\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}'$ for some \mathbf{M} . Then: \blacktriangleright if $\blacktriangle \stackrel{\psi}{\rightarrow} M$ then $\zeta_{\mathsf{L}} = \zeta'_{\mathsf{L}}$

if $M \stackrel{\varphi}{\rightarrow} N$ is Cauchy and $\mathscr A$ obeys timeslice then $\zeta_N = \zeta_N'$

 \triangleright if $\mathscr A$ obeys timeslice and **M** and **N** have homeomorphic Cauchy surfaces then $\zeta_{\mathbf{N}} = \zeta_{\mathbf{N}}'$

Suppose $\zeta, \zeta': \mathscr{A} \to \mathscr{B}$ and $\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}'$ for some \mathbf{M} . Then: \blacktriangleright if $\blacktriangle \stackrel{\psi}{\rightarrow} M$ then $\zeta_{\mathsf{L}} = \zeta'_{\mathsf{L}}$ $\mathscr{B}(\psi) \circ \zeta_{\mathsf{L}} = \zeta_{\mathsf{M}} \circ \mathscr{A}(\psi) = \zeta_{\mathsf{M}}' \circ \mathscr{A}(\psi) = \mathscr{B}(\psi) \circ \zeta_{\mathsf{L}}'$

and $\mathscr{B}(\psi)$ is monic.

if $M \stackrel{\varphi}{\rightarrow} N$ is Cauchy and $\mathscr A$ obeys timeslice then $\zeta_N = \zeta_N'$

 \triangleright if $\mathscr A$ obeys timeslice and **M** and **N** have homeomorphic Cauchy surfaces then $\zeta_{\mathbf{N}} = \zeta_{\mathbf{N}}'$

Suppose $\zeta, \zeta': \mathscr{A} \to \mathscr{B}$ and $\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}'$ for some \mathbf{M} . Then: \blacktriangleright if $\blacktriangle \stackrel{\psi}{\rightarrow} M$ then $\zeta_{\mathsf{L}} = \zeta'_{\mathsf{L}}$

 $\mathscr{B}(\psi) \circ \zeta_{\mathsf{L}} = \zeta_{\mathsf{M}} \circ \mathscr{A}(\psi) = \zeta_{\mathsf{M}}' \circ \mathscr{A}(\psi) = \mathscr{B}(\psi) \circ \zeta_{\mathsf{L}}'$

and $\mathscr{B}(\psi)$ is monic.

if $M \stackrel{\varphi}{\rightarrow} N$ is Cauchy and $\mathscr A$ obeys timeslice then $\zeta_N = \zeta_N'$

 $\zeta_{\mathsf{N}}\circ\mathscr{A}(\varphi)=\mathscr{B}(\varphi)\circ\zeta_{\mathsf{M}}=\mathscr{B}(\varphi)\circ\zeta_{\mathsf{M}}'=\zeta_{\mathsf{N}}'\circ\mathscr{A}(\varphi)$

and $\mathscr{A}(\varphi)$ is an isomorphism, hence epic.

 \triangleright if $\mathscr A$ obeys timeslice and **M** and **N** have homeomorphic Cauchy surfaces then $\zeta_{\mathbf{N}} = \zeta_{\mathbf{N}}'$

AD > (E > (E >)

Suppose $\zeta, \zeta': \mathscr{A} \to \mathscr{B}$ and $\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}'$ for some \mathbf{M} . Then: \blacktriangleright if $\blacktriangle \stackrel{\psi}{\rightarrow} M$ then $\zeta_{\mathsf{L}} = \zeta'_{\mathsf{L}}$

 $\mathscr{B}(\psi) \circ \zeta_{\mathsf{L}} = \zeta_{\mathsf{M}} \circ \mathscr{A}(\psi) = \zeta_{\mathsf{M}}' \circ \mathscr{A}(\psi) = \mathscr{B}(\psi) \circ \zeta_{\mathsf{L}}'$

and $\mathscr{B}(\psi)$ is monic.

if $M \stackrel{\varphi}{\rightarrow} N$ is Cauchy and $\mathscr A$ obeys timeslice then $\zeta_N = \zeta_N'$

 $\zeta_{\mathsf{N}}\circ\mathscr{A}(\varphi)=\mathscr{B}(\varphi)\circ\zeta_{\mathsf{M}}=\mathscr{B}(\varphi)\circ\zeta_{\mathsf{M}}'=\zeta_{\mathsf{N}}'\circ\mathscr{A}(\varphi)$

and $\mathscr{A}(\varphi)$ is an isomorphism, hence epic.

 \triangleright if $\mathscr A$ obeys timeslice and **M** and **N** have homeomorphic Cauchy surfaces then $\zeta_{\mathbf{N}} = \zeta_{\mathbf{N}}'$ Using spacetime deformation, there are Cauchy morphisms

$$
M \leftarrow M' \rightarrow M'' \leftarrow M''' \rightarrow N
$$

AD > (E > (E >)

A diamond O of M is the domain of determinacy of an open ball w.r.t. local coordinates in a Cauchy surface of M.

A diamond O of M is the domain of determinacy of an open ball w.r.t. local coordinates in a Cauchy surface of M.

Consider O as a spacetime $M|_O$, with inclusion $\iota_O : M|_O \to M$. Then

$$
\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}' \quad \implies \quad \zeta_{\mathbf{M}|_O} = \zeta_{\mathbf{M}|_O}'
$$

But all diamonds have homeomorphic Cauchy surfaces:

$$
\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}' \quad \Longrightarrow \quad \zeta_{\widetilde{\mathbf{M}}|_{\widetilde{O}}} = \zeta_{\widetilde{\mathbf{M}}|_{\widetilde{O}}}'
$$

where \widetilde{O} is a diamond of any spacetime \widetilde{M} .

If $\mathscr A$ also obeys additivity in the form

$$
\mathscr{A}(\widetilde{\mathsf{M}}) = \bigvee_{O}\mathscr{A}(\iota_{O})(\mathscr{A}(\widetilde{\mathsf{M}}|_{O}))
$$

where O ranges over the diamonds of M , then

$$
\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}' \quad \implies \quad \zeta = \zeta'
$$

 ζ is uniquely determined by any of its components ζ_M

If $\mathscr A$ also obeys additivity in the form

$$
\mathscr{A}(\widetilde{\mathsf{M}}) = \bigvee_{O}\mathscr{A}(\iota_{O})(\mathscr{A}(\widetilde{\mathsf{M}}|_{O}))
$$

where O ranges over the diamonds of M , then

$$
\zeta_{\mathbf{M}} = \zeta_{\mathbf{M}}' \quad \implies \quad \zeta = \zeta'
$$

 ζ is uniquely determined by any of its components ζ_M

This result is supplemented by a strong constraint from the r.c.e.:

$$
\mathsf{rce}_{\mathsf{M}}^{(\mathscr{B})}[h] \circ \zeta_{\mathsf{M}} = \zeta_{\mathsf{M}} \circ \mathsf{rce}_{\mathsf{M}}^{(\mathscr{A})}[h]
$$

for all hyperbolic perturbations h of M .

 QQ

 $\mathsf{rce}_{\mathsf{M}}^{(\mathscr{B})}[h] \circ \zeta_{\mathsf{M}} = \zeta_{\mathsf{M}} \circ \mathsf{rce}_{\mathsf{M}}^{(\mathscr{A})}[h]$

 $\mathsf{rce}_{\mathsf{M}}^{(\mathscr{B})}[h] \circ \zeta_{\mathsf{M}} = \zeta_{\mathsf{M}} \circ \mathsf{rce}_{\mathsf{M}}^{(\mathscr{A})}[h]$

 $\mathsf{rce}_{\mathsf{M}}^{(\mathscr{B})}[h] \circ \zeta_{\mathsf{M}} = \zeta_{\mathsf{M}} \circ \mathsf{rce}_{\mathsf{M}}^{(\mathscr{A})}[h]$

Summarising:

Theorem

If $\mathscr A$ and $\mathscr B$ obey timeslice and $\mathscr A$ is additive then

- $\blacktriangleright \zeta : \mathscr{A} \to \mathscr{B}$ is uniquely determined by any of its components **►** $rce^{\mathcal{(B)}_M}[h] \circ \zeta_M = \zeta_M \circ rce^{\mathcal{(A)}_M}[h]$
- \triangleright if the stress-energy tensors exist as derivations

$$
[\mathsf{T}_{\mathsf{M}}^{(\mathscr{B})}(f),\zeta_{\mathsf{M}}A]=\zeta_{\mathsf{M}}[\mathsf{T}_{\mathsf{M}}^{(\mathscr{A})}(f),A]
$$

for all $A \in \mathscr{A}(\mathbf{M})$ and symmetric C_0^{∞} -tensors f.

Computation in concrete examples now becomes possible.

$$
\mathrm{End}(\mathscr{A}^{\otimes N})=\mathrm{Aut}(\mathscr{A}^{\otimes N})
$$

 4.171

 \sim

化重复 化重变

 299

重

$$
\mathrm{End}(\mathscr{A}^{\otimes N})=\mathrm{Aut}(\mathscr{A}^{\otimes N})\cong\begin{cases} \mathsf{O}(N) \qquad &m>0 \end{cases}
$$

$$
(\zeta_R \ \Phi)_{\mathbf{M}}(f) = \Phi_{\mathbf{M}}(Rf)
$$

 4.171

 \sim

化重复 化重变

 299

重

$$
\text{End}(\mathscr{A}^{\otimes N}) = \text{Aut}(\mathscr{A}^{\otimes N}) \cong \begin{cases} \mathsf{O}(N) & m > 0 \\ \mathsf{O}(N) \ltimes \mathbb{R}^N & m = 0 \end{cases}
$$

$$
(\zeta_{R,\alpha}\Phi)_{\mathbf{M}}(f) = \Phi_{\mathbf{M}}(Rf) + \left(\int d\mathrm{vol}_{\mathbf{M}}\,\alpha^Tf\right)\mathbf{1}_{\mathscr{A}(\mathbf{M})}
$$

 4.171

 \sim

化重复 化重变

 299

重

$$
\operatorname{End}(\mathscr{A}^{\otimes N}) = \operatorname{Aut}(\mathscr{A}^{\otimes N}) \cong \begin{cases} \mathsf{O}(N) & m > 0 \\ \mathsf{O}(N) \ltimes \mathbb{R}^N & m = 0 \end{cases}
$$

$$
(\zeta_{R,\alpha}\Phi)_{\mathbf{M}}(f)=\Phi_{\mathbf{M}}(Rf)+\left(\int d\mathrm{vol}_{\mathbf{M}}\,\alpha^Tf\right)\mathbf{1}_{\mathscr{A}(\mathbf{M})}
$$

Interpretation & consequences:

- Aut($\mathscr A$) is the global gauge group of 'field functor' $\mathscr A$
- Aut (\mathscr{A}) is trivial for an 'observable functor'.
- Inear fields of the theory appear in $Aut(\mathscr{A})$ -multiplets.
- \blacktriangleright Superselection theory at the functorial level? (Complementary to Ruzzi/Brunetti–Ruzzi results)

Fun with functors

Return to the question of whether local covariance implies SPASs.

```
Any functor \varphi : Man \rightarrow LCT, i.e.,
```
 $\varphi \in \mathsf{Fun}(\mathsf{Man}, \mathsf{Fun}(\mathsf{Man}, \mathsf{Alg}))$

is a locally covariant choice of locally covariant theory.

- ► Each $\varphi(\mathsf{M})$ is a theory $\varphi(\mathsf{M}) \in \mathsf{LCT}$
- **Each hyperbolic embedding** ψ **corresponds to an embedding** $\varphi(\psi)$ of $\varphi(\mathbf{M})$ as a sub-theory of $\varphi(\mathbf{N})$.

We use φ to define a diagonal theory $\varphi_{\Lambda} \in \mathsf{LCT}$.

Diagonal theories

Given $\varphi \in \text{Fun}(\text{Man}, \text{LCT})$, define, for spacetime M and hyperbolic embedding $\psi : \mathbf{M} \to \mathbf{N}$

 $\varphi_{\Lambda}(\mathbf{M}) = \varphi(\mathbf{M})(\mathbf{M}) \qquad \varphi_{\Lambda}(\psi) = \varphi(\psi)_{\mathbf{N}} \circ \varphi(\mathbf{M})(\psi)$ $M \longrightarrow \varphi(M)(M) \longrightarrow \varphi(N)(M)$ $N \qquad \varphi(M)(N) \longrightarrow \varphi(N)(N)$ ψ $\varphi(\psi)$ м $\varphi(\mathsf{M})(\psi)$ $\varphi(\mathsf{N})(\psi)$ $\varphi(\psi)$ n $\overset{\mathcal{C}_{\text{A}}}{\sim}$

 200

Diagonal theories

Given $\varphi \in \text{Fun}(\text{Man}, \text{LCT})$, define, for spacetime M and hyperbolic embedding $\psi : \mathbf{M} \to \mathbf{N}$

 $\varphi_{\Delta}(\mathbf{M}) = \varphi(\mathbf{M})(\mathbf{M}) \qquad \varphi_{\Delta}(\psi) = \varphi(\psi)_{\mathbf{N}} \circ \varphi(\mathbf{M})(\psi)$ $M \longrightarrow \varphi(M)(M) \longrightarrow \varphi(N)(M)$ $N \qquad \varphi(M)(N) \longrightarrow \varphi(N)(N)$ ψ $\varphi(\psi)$ м $\varphi(\mathsf{M})(\psi)$ $\varphi(\mathsf{N})(\psi)$ $\varphi(\psi)$ n $\overset{\mathcal{C}_{\text{A}}}{\sim}$

 φ_{Λ} is a functor and therefore defines a locally covariant theory!

Example:

- \triangleright Write $\Sigma(M) =$ Cauchy surface of **M**/homeomorphisms
- In Let μ : Man $\rightarrow \mathbb{N} = \{1, 2, \ldots\}$ be a topological invariant of Cauchy surfaces s.t. $\mu(\mathbf{M}) = 1$ if $\Sigma(\mathbf{M})$ is noncompact.

 \blacktriangleright Set

$$
\varphi(\mathbf{M}) = \mathscr{A}^{\otimes \mu(\mathbf{M})} \qquad \varphi(\mathbf{M} \xrightarrow{\psi} \mathbf{N}) = \eta^{\mu(\mathbf{M}), \mu(\mathbf{N})}
$$

Then $\varphi \in \mathsf{Fun}(\mathsf{Man}, \mathsf{LCT})$.

 200

Example:

- \triangleright Write $\Sigma(M) =$ Cauchy surface of M/homeomorphisms
- In Let μ : Man $\rightarrow \mathbb{N} = \{1, 2, \ldots\}$ be a topological invariant of Cauchy surfaces s.t. $\mu(\mathbf{M}) = 1$ if $\Sigma(\mathbf{M})$ is noncompact.

 \blacktriangleright Set

$$
\varphi(\mathbf{M}) = \mathscr{A}^{\otimes \mu(\mathbf{M})} \qquad \varphi(\mathbf{M} \xrightarrow{\psi} \mathbf{N}) = \eta^{\mu(\mathbf{M}), \mu(\mathbf{N})}
$$

Then $\varphi \in \mathsf{Fun}(\mathsf{Man}, \mathsf{LCT})$.

Key point: If $\Sigma(M)$ is compact and $\exists M \rightarrow N$ then $\Sigma(M) = \Sigma(N)$. Thus $\mu(\mathbf{M}) \leq \mu(\mathbf{N})$ whenever $\mathbf{M} \to \mathbf{N}$; functorial properties follow immediately from properties of $\eta^{k,l}.$

桐 レースモ レースモ レー

 209

E.g.
$$
\mu(\mathbf{M}) = \begin{cases} 1 & \Sigma(\mathbf{M}) \text{ noncompact} \\ 2 & \text{otherwise} \end{cases}
$$

The subtheory embeddings $\mathscr{A} \stackrel{\longrightarrow}{\longrightarrow} \varphi_\Delta \stackrel{\longrightarrow}{\longrightarrow} \mathscr{A}^{\otimes 2}$ are isomorphisms in some spacetimes but not in others. SPASs fails in LCT.

 299

重

医间周的

Properties of φ ∧

1. $\varphi \wedge$ is more than one copy of \mathscr{A} , but less than two!

$$
\mathscr{A} \stackrel{\cdot}{\longrightarrow} \varphi_\Delta \stackrel{\cdot}{\longrightarrow} \mathscr{A}^{\otimes 2}
$$

2. φ_{Δ} shares the timeslice and causality properties with the underlying theory $\mathscr A$.

3. For any diamond O of any spacetime, $\varphi_{\Delta}(\mathbf{M}|_O) = \mathscr{A}(\mathbf{M}|_O)$.

 209

Properties of φ ∧

1. $\varphi \wedge$ is more than one copy of $\mathscr A$, but less than two!

$$
\mathscr{A} \stackrel{\cdot}{\longrightarrow} \varphi_\Delta \stackrel{\cdot}{\longrightarrow} \mathscr{A}^{\otimes 2}
$$

2. φ_{Λ} shares the timeslice and causality properties with the underlying theory $\mathscr A$.

- 3. For any diamond O of any spacetime, $\varphi_{\Delta}(\mathbf{M}|_O) = \mathscr{A}(\mathbf{M}|_O)$.
	- In particular φ_{Λ} is not additive.
	- \triangleright The local algebras are insensitive to the ambient algebra
	- \triangleright Is φ really just one copy of $\mathscr A$ in disguise?

 209

Relative Cauchy evolution again

The intertwining rule rce $\binom{m}{M}$ [*h*] $\circ \zeta_M = \zeta_M \circ \mathsf{rce}_M^{(\mathscr{A})}[h]$ implies

$$
\mathsf{rce}_{\mathbf{M}}^{(\varphi_{\Delta})}[h] = (\mathsf{rce}_{\mathbf{M}}^{(\varphi)}[h])_{\mathbf{M}} \circ \mathsf{rce}_{\mathbf{M}}^{(\varphi(\mathbf{M}))}[h]
$$

where rce $\overset{\left(\varphi \right) }{\mathsf{M}}\left[h\right] \in \mathrm{Aut}(\varphi(\mathsf{M}))$ is the r.c.e. of φ in LCT! If $\mathsf{rce}^{(\varphi)}$ is trivial and stress-energy tensors exist:

$$
[\mathsf{T}_{\mathsf{M}}^{(\varphi_{\Delta})}(f),A]=[\mathsf{T}_{\mathsf{M}}^{(\varphi(\mathsf{M}))}(f),A]
$$

E.g., in the example above:

$$
\mathsf{T}_{\mathsf{D}}^{(\varphi_\Delta)}(f)=\mathsf{T}_{\mathsf{D}}^{(\mathscr{A})}(f); \qquad \mathsf{T}_{\mathsf{C}}^{(\varphi_\Delta)}(f)=\mathsf{T}_{\mathsf{C}}^{(\mathscr{A}\otimes\mathscr{A})}(f)
$$

R.c.e. detects ambient degrees of freedom missed by local algebras.

Intrinsic local algebras

For any compact set K define

 $\mathscr{A}^\bullet(\mathsf{M};K) = \{A \in \mathscr{A}(\mathsf{M}): \mathsf{rce}_\mathsf{M}[h]A = A \quad \text{for all } h \in H(\mathsf{M};K^\perp)\}$

i.e., the subalgebra insensitive to spacetime geometry in the causal complement $\mathcal{K}^{\perp}.$

Intrinsic local algebras

For any compact set K define

 $\mathscr{A}^\bullet(\mathsf{M};K) = \{A \in \mathscr{A}(\mathsf{M}): \mathsf{rce}_\mathsf{M}[h]A = A \quad \text{for all } h \in H(\mathsf{M};K^\perp)\}$

i.e., the subalgebra insensitive to spacetime geometry in the causal complement $\mathcal{K}^{\perp}.$

For any open O, define

$$
\mathscr{A}^{\mathrm{int}}(\mathsf{M};O)=\bigvee_{K\subset O}\mathscr{A}^\bullet(\mathsf{M};K)
$$

running over compact K with a diamond neighbourhoods.

 209

Intrinsic local algebras

For any compact set K define

 $\mathscr{A}^\bullet(\mathsf{M};K) = \{A \in \mathscr{A}(\mathsf{M}): \mathsf{rce}_\mathsf{M}[h]A = A \quad \text{for all } h \in H(\mathsf{M};K^\perp)\}$

i.e., the subalgebra insensitive to spacetime geometry in the causal complement $\mathcal{K}^{\perp}.$

For any open O, define

$$
\mathscr{A}^{\mathrm{int}}(\mathsf{M};\mathit{O})=\bigvee_{K\subset\mathit{O}}\mathscr{A}^{\bullet}(\mathsf{M};K)
$$

running over compact K with a diamond neighbourhoods. Say that $\mathscr A$ is strongly local if

$$
\mathscr{A}^{\mathrm{int}}(\mathsf{M};O)=\mathscr{A}^{\mathrm{ext}}(\mathsf{M};O)\stackrel{\mathrm{def}}{=}\mathscr{A}(\iota_O)(\mathscr{A}(\mathsf{M}|_O))
$$

for all open globally hyperbolic subsets O of [M](#page-43-0)[.](#page-45-0)

 209

Consequences of strong locality

Additivity: if $\mathscr A$ is strongly local then

$$
\mathscr{A}(\mathsf{M}) = \bigvee_{O} \mathscr{A}^{\mathrm{int}}(\mathsf{M}; O) = \bigvee_{O} \mathscr{A}^{\mathrm{ext}}(\mathsf{M}; O)
$$

for O running over the diamonds of M.

- \triangleright SPASs: Suppose
	- $\blacktriangleright \mathscr{A}$ and \mathscr{B} are strongly local,
	- $\blacktriangleright \zeta : \mathscr{A} \to \mathscr{B}$ and
	- \triangleright ζ_M is an isomorphism for some M

Then ζ is an equivalence.

The category of strongly local theories has the SPASs property.

Strongly local diagonal theories

Suppose $\varphi \wedge$ is a diagonal theory (with rce^{φ} trivial) such that $\varphi \wedge$ and every $\varphi(\mathbf{M})$ are strongly local.

Then

$$
\blacktriangleright \varphi(\mathsf{M}) \cong \varphi(\mathsf{N}) \text{ for all } \mathsf{M}, \mathsf{N} \in \mathsf{Man}
$$

► $\varphi_{\Delta} \cong \mathscr{A}$ for \mathscr{A} with

$$
\mathscr{A}(\psi) = \eta(\psi)_{\mathsf{N}} \circ \varphi(\mathsf{M}_{0})(\psi)
$$

for every $\psi : \mathbf{M} \to \mathbf{N}$, where $\eta \in \text{Fun}(\text{Man}, \text{Aut}(\varphi(\mathbf{M}_0)))$ and $M_0 \in$ Man is arbitrary.

► If $\text{Aut}(\varphi(\mathsf{M}_0))$ is trivial, then $\varphi_{\Delta} \cong \varphi(\mathsf{M}_0)$.

医间周的 间医的

 209

Example The Klein–Gordon theory of mass $m > 0$ is strongly local:

$$
\mathscr{A}^{\bullet}(\mathsf{M}; K) = \text{subalgebra of } \mathscr{A}(\mathsf{M}) \text{ generated by}
$$
\n
$$
\Phi_{\mathsf{M}}(f) \text{ with } \text{supp } f \subset K
$$
\n
$$
\mathscr{A}^{\text{int}}(\mathsf{M}; O) = \text{subalgebra of } \mathscr{A}(\mathsf{M}) \text{ generated by}
$$
\n
$$
\Phi_{\mathsf{M}}(f) \text{ with } \text{supp } f \subset O
$$

 4.17

4 重 下 - 4 国 ド 299

э

Example The Klein–Gordon theory of mass $m > 0$ is strongly local:

$$
\mathscr{A}^{\bullet}(\mathsf{M}; K) = \text{subalgebra of } \mathscr{A}(\mathsf{M}) \text{ generated by}
$$
\n
$$
\Phi_{\mathsf{M}}(f) \text{ with } \text{supp } f \subset K
$$
\n
$$
\mathscr{A}^{\text{int}}(\mathsf{M}; O) = \text{subalgebra of } \mathscr{A}(\mathsf{M}) \text{ generated by}
$$
\n
$$
\Phi_{\mathsf{M}}(f) \text{ with } \text{supp } f \subset O
$$

Complication: if $m = 0$ and $\Sigma(M)$ is compact then

$$
\mathscr{A}^{\mathrm{int}}(M;O)=\mathscr{A}^{\mathrm{ext}}(M;O)\bigvee \langle A_0\rangle
$$

where A_0 is the 'pure gauge' generator induced by the classical solution $\phi \equiv 1$. Related to other pathologies (e.g., absence of static ground state).

Summary and outlook

Summary

Local covariance does not enforce SPASs, but does open new ways of analysing QFT.

- \blacktriangleright Global gauge group
- \blacktriangleright Diagonal theories
- \triangleright Strong locality
- \blacktriangleright Key role of the r.c.e. and stress-tensor.

Outlook

- \blacktriangleright Analysis at the functorial level: QFT in CST without the spacetimes?
- \blacktriangleright Superselection theory?
- \triangleright Cohomology of Man

Traditionally: QFT in CST is 'hard' because of the absence of global symmetries available in Minkowksi space.

 QQ

∍

Traditionally: QFT in CST is 'hard' because of the absence of global symmetries available in Minkowksi space.

But perhaps: QFT in Minkowski space is 'hard' because of the absence of the stress-energy tensor available in locally covariant QFT in CST.