
Relativistic Vacuum State

Yet More Ado About Nothing:
The Remarkable Relativistic Vacuum

State
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Relativistic Vacuum State

What is the vacuum in modern science? Roughly speaking, it is that which is left

over after all which can “possibly” be removed has been removed. The vacuum is

therefore an idealization which is only approximately realized in the laboratory and

in nature. But it is a most useful idealization and a surprisingly rich concept.

Among other roles, it serves as a physically distinguished reference state with

respect to which other physical states can be defined and referred.
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Relativistic Vacuum State

The Mathematical Framework of AQFT

The operationally primary objects are the observables (equivalence classes of

measuring apparata) of the quantum system under investigation and the states

(equivalence classes of preparation apparata) in which the system is prepared.

These determine (in principle) the basic data of AQFT:

• An (isotonous) net {A(O)}O⊂M of unital C∗–algebras generated by all

observables measurable in the spacetime regions O ⊂ M (d spacetime

dimensional Minkowski space).

• A state ω on the quasilocal observable algebra A generated by

{A(O)}O⊂M .
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Relativistic Vacuum State

Nets of von Neumann Algebras

Let Rω(O)
.
= πω(A(O))′′ and Rω

.
= πω(A)′′. Under different sets of general

conditions (Driessler; Fredenhagen; Buchholz, D’Antoni & Fredenhagen etc), the

algebras Rω(O) are mutually isomorphic for a large class of regions O.

The primary encoding of information is located in the inclus ions

. . .Rω(O1) ⊂ Rω(O2) ⊂ Rω(O3) . . .

in the net {Rω(O)}O∈R and not in the algebras themselves .
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Vacuum State

• Vacuum state : A translation invariant state ω on a covariant net whose

corresponding GNS–representation satisfies the spectrum condition: the joint

spectrum of the self–adjoint generators of the strongly continuous unitary

representation Uω(IRd) of the translation subgroup of P↑
+ lies in the closed

forward light cone. The corresponding GNS representation is a vacuum

representation.

Note: Though this is the standard definition, there are crucial elements which are

not expressed solely in terms of the initial net and state: the action of the

translation group on the space–time and on the observable algebras and the

stability condition which is the spectrum condition. (Indeed, even Minkowski

space and the translation group themselves.)
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Relativistic Vacuum State

Examples of This Structure Exist!

Concrete examples have been rigorously constructed by various means!

(Araki; Glimm & Jaffe; Brunetti, Guido & Longo; Lechner etc.)
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Associated Vacuum Representations

Moreover, general conditions are known under which to a quantum field model

without a vacuum state can be (under certain conditions uniquely) associated a

vacuum representation which is physically equivalent and locally unitarily

equivalent to it. These ideas go back to Borchers, Haag and Schroer: Consider

〈Φ, A(x)Φ〉 for suitable states Φ and sufficiently many observables A as x

tends to spacelike infinity. Although the subsequent discovery of soliton states

and topological charges excluded the existence of such limits in general, under

certain conditions

〈Ω, AΩ〉 .
= lim

x→∞
〈Φ, A(x)Φ〉

defines a vacuum state on the given net. Hence, the mathematical existence of a

vacuum state is often assured even in models which are not initially provided with

one.
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Relativistic Vacuum State

Examples of such conditions are:

• Φ is a vector in a “massive particle representation.” (Buchholz &

Fredenhagen)

• There is a sufficiently large set D of local observables such that for some

r ∈ [1, d − 1)

supx0

∫
dd−1~x ‖ [A∗, A(x0, ~x)] Φ‖r

for all Φ ∈ H and A ∈ D. (Buchholz & Wanzenberg)

• A strengthened nuclearity condition, satisfied e.g. by the free massless field.

(Dybalski)
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Immediate Consequences of the Definition

Theorem 1 (Reeh & Schlieder; Araki). In any vacuum representation satisfying

locality and the condition Rω =
∨

x∈M Rω(O + x), all O, the implementing

vector Ωω is cyclic and separating for Rω(O), for all O.
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Relativistic Vacuum State

Any (vector) state can be arbitrarily well approximated by a local perturbation of

the vacuum state.

Thus, in principle, in a laboratory on earth one can, by artfully manipulating

vacuum fluctuations, construct a house on the backside of the moon.
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Relativistic Vacuum State

There are no local particle counters. Indeed, every nonzero local projection has

nonzero vacuum expectation.

If C is a particle counter, then since there are no particles in the vacuum, one

must have 〈Ω, CΩ〉 = 0. If C ∈ Rω(O), then C = 0.
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Relativistic Vacuum State

The vacuum is entangled across the pair (Rω(O1),Rω(O2)) for any spacelike

separated O1,O2. (Halvorson & Clifton)

A state is entangled across (Rω(O1),Rω(O2)) if it is not (a limit of) a mixture

of product states:

〈Φ, A1A2Φ〉 = 〈Φ, A1Φ〉〈Φ, A2Φ〉
for all A1 ∈ Rω(O1) and A2 ∈ Rω(O2).

Indeed, the vacuum is 1–distillable across (Rω(O1),Rω(O2)). (Verch &

Werner)
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Relativistic Vacuum State

In the vacuum state, Bell’s inequalities are maximally violated across the pair

(Rω(O1),Rω(O2)) for any spacelike separated tangent O1,O2. Hence, the

vacuum is maximally entangled. (S. & Werner)

Bell’s inequality (CHSH form):

1

2
〈Φ, (A1B1 + A1B2 + A2B1 − A2B2)Φ〉 ≤ 1

for all Ai ∈ Rω(O1), Bj ∈ Rω(O2), ‖Ai‖, ‖Bj‖ ≤ 1.

If fact, for such regions O1,O2,

β(φ,Rω(O1),Rω(O2)) =
√

2 ,

for all states φ, including the vacuum.
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However, all of the above assertions are also true of any states analytic for the

energy. What, then, distinguishes the vacuum state?
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Tomita–Takesaki Theory

Given a von Neumann algebra M with a cyclic and separating vector Ω, the

modular theory of Tomita and Takesaki yields a unique antiunitary involution J

and positive ∆ such that JΩ = Ω = ∆Ω,

JMJ = M′ , ∆itM∆−it = M

for all t ∈ R.

Hence, by the Reeh–Schlieder Theorem, in a vacuum representation one has the

modular objects JO, ∆O corresponding to (Rω(O), Ωω). Crucial: The

modular objects are completely determined by the algebra an d state, i.e. by

the observables and preparation of the quantum system.
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• W : The set of wedges: After choosing a coordinatization of M , define the

right wedge WR = {x = (x0, x1, x2, x3) ∈ M | x1 > |x0|} and the set of

wedges W = {λWR | λ ∈ P↑
+}. (W is independent of the choice of

coordinatization.)

• θW : θR ∈ P+ is the reflection through the edge

{(0, 0, x2, x3) | x2, x3 ∈ R} of the wedge WR. θW is the corresponding

“reflection” about the edge of W (θW = λθRλ−1, for W = λWR).

• λW (t): {λW (t) | t ∈ R} ⊂ P↑
+ is the one-parameter subgroup of Lorentz

boosts leaving W invariant.
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W’ W

edge
space

time

Figure 1: A wedge W , its causal complement W ′ and their common edge
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Bisognano–Wichmann Theorem

Theorem 2 (Bisognano & Wichmann). Given a net of von Neumann algebras

{Rω(O)} locally associated with a quantum field satisfying the Wightman

axioms (i.e. in a vacuum representation), one has

JWR
= ΘUπ , ∆it

W = U(λW (2πt))

where Θ is the PCT-operator associated to the Wightman field and Uπ

implements the rotation through the angle π about the 1-axis. Hence,

JWRω(O)JW = Rω(θWO) , ∆it
WRω(O)∆−it

W = Rω(λW (2πt)O) ,

for all W ∈ W and O ⊂ M .
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Consequences

• (Buchholz & S.) If J is the group generated by {JW | W ∈ W}, then

J = U(P+). (Modular involutions encode the isometries of M and the

dynamics of the quantum field.)

• (Schroer) If the quantum field satisfies asymptotic completeness and J
(0)
WR

represents the modular involution corresponding to (R(0)(WR), Ω), then

S = JWR
J

(0)
WR

,

where S is the scattering matrix for the field theory.
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Further Consequences

• (Sewell) The vacuum state is a thermal equilibrium state at temperature

T = a~/(2πkBc) (in the observer’s proper time) for every uniformly

accelerated observer. (With a one G acceleration, T = 4 × 10−20 K.)

• (Buchholz & S.) JW JOJW = JθWO, for all W ∈ W and O.

Algebraic relations among the modular objects are determin ed by and,

in turn, encode information about the inclusions

. . .Rω(O1) ⊂ Rω(O2) . . . .
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Do such results hold only for the

vacuum state?
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Recall:
In the definition of the vacuum, the action of the translation group on the

space–time and on the observable algebras, as well as the spectrum condition,

are not expressed in terms of the operationally intrinsic states and observables.

Is there an intrinsic characterization of
vacuum states?
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The role of the vacuum state in Minkowski space theories has proven to be so

central that when theorists tried to formulate quantum field theory in space–times

other than Minkowski space, they tried to find analogous states in these new

settings, thereby running into some serious conceptual and mathematical

problems.

Some representative problems:

• What could replace the large isometry group of Minkowski space in the

definition of “vacuum state”, in light of the fact that the isometry group of a

generic space–time is trivial?

• In the definition of “vacuum state” the spectrum condition serves as a stability

condition; what could replace it even in such highly symmetric space–times

as de Sitter space, where the isometry group, though large, does not contain

any translations?
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Finding intrinsic characterizations of the Minkowski space vacuum has lead to

answers to such questions (and shall lead to more in the future).
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Condition of Geometric Modular Action

Definition 0.1 (Buchholz & S.). A state ω on a net {Rω(O)} satisfies the

Condition of Geometric Modular Action if the vector Ωω is cyclic and separating

for Rω(W ), W ∈ W , and if the modular conjugation JW corresponding to

(Rω(W ), Ωω) satisfies

JW {Rω(W̃ ) | W̃ ∈ W} JW ⊂ {Rω(W̃ ) | W̃ ∈ W} .

for all W ∈ W .

Note: This condition is a consequence of the theorem of Bisognano and

Wichmann.
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Theorem 3 (Buchholz, Dreyer, Florig & S.). If a state ω on a net {Rω(O)}
satisfies the Condition of Geometric Modular Action and some weak technical

conditions (all expressed solely in terms of the state and net), then

JWRω(O)JW = Rω(θWO), all O, W ∈ W . Moreover, J provides a

canonical strongly continuous (anti)unitary representation of P+ under which

{Rω(O)}O∈R transforms covariantly and which leaves Ω invariant. In addition,

the net satisfies locality.

If, further, ∆it
W ∈ J for all W ∈ W , t ∈ R, then modular covariance is satisfied

and the state ω is a vacuum state.

Only the vacuum state has the properties stated in the conclusion of the

Bisognano–Wichmann theorem. And this theorem provides an intrinsic

characterization of the vacuum state.
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So, from a suitable state and net of observable algebras on Minkowski space one

can derive a representation of the isometry group of the space–time acting

covariantly upon the observables etc. But the space–time itself and its isometries

are not expressed in terms of states and observables.
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Can one derive space–time itself from
a suitable state and collection of

observable algebras?
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Deriving Space–Time From States and Observables

Theorem 4 (S. & White). Let ω be a state on a net Ri, i ∈ I , of von Neumann

algebras such that Ωω is cyclic and separating for each Ri, i ∈ I . Let J be the

group on Hω generated by {Ji | i ∈ I}. Assume that the CGMA is satisfied (for

each i ∈ I , adJi leaves the set {Ri}i∈I invariant). Then if certain purely

algebraic relations in J hold, there exists a model of three dimensional

Minkowski space on which each Ji, i ∈ I , acts adjointly as the reflection about

the edge of some wedge. J is then isomorphic to P+ and forms a strongly

continuous (anti)unitary representation U of P+. Moreover, there exists a

bijection χ : I → W such that after defining R(χ(i)) = Ri, the resultant net

{R(χ(i))} of wedge algebras on Minkowski space is covariant under the action

of the representation U(P+) and satisfies Haag duality.

If, further, ∆it
j ∈ J for all j ∈ I , t ∈ R, then modular covariance is satisfied and

the state ω is a vacuum state on the net {R(χ(i))}.
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Hence, a net of observable algebras Ai and a state ω determine a space–time, a

strongly continuous representation of the isometry group of the space–time, and

an identification of each i with a suitable region of the space–time, such that the

original net is re-interpreted as a local Poincaré covariant quantum field theory on

the space–time.

Stephen J. Summers University of Florida Page 30



Relativistic Vacuum State

Similar (purely algebraic) conditions have been found which entail that the

resultant space–time on which the re-interpreted observable algebras are then

localized is four dimensional Minkowski space, resp. three dimensional de Sitter

space. A given structure (J , {Ji | i ∈ I}) can satisfy at most one of these sets

of conditions.

Work is in progress on four dimensional de Sitter and anti–de Sitter spaces.
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The modular involutions JW (together with the modular unitaries ∆it
W ) for wedge

algebras in the vacuum only encode the following information.

• the isometry group of the space–time

• a strongly continuous unitary representation of this isometry group (acting

covariantly upon the net of observable algebras and leaving the vacuum

invariant)

• the dynamics of the quantum systems

• the scattering theory of the quantum systems

• the locality, i.e. the Einstein causality, of the quantum systems

• the spin–statistics connection in the quantum systems (Kuckert; Guido &

Longo)

• the stability of the quantum systems

• the thermodynamic behavior of the quantum systems
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• characterization of the vacuum state

• the space–time itself
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A Convenient Reference

• S.J. Summers, Yet More Ado About Nothing: The Remarkable Relativistic

Vacuum State, arXiv:0802.1854
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