Standard Subspaces and Applications to Quantum Field Theory

Roberto Longo

Göttingen, July 2009

Standard real Hilbert subspaces

 ${\mathcal H}$ complex Hilbert space and $H\subset {\mathcal H}$ a real linear subspace.

Symplectic complement:

$$H' \equiv \{ \xi \in \mathcal{H} : \Im(\xi, \eta) = 0 \quad \forall \eta \in H \}.$$

 $H' = (iH)^{\perp}$ (real orthogonal complement)

$$H_1 \subset H_2 \Rightarrow H_1' \supset H_2'$$
.

A standard subspace H of \mathcal{H} is a closed, real linear subspace of \mathcal{H} which is both cyclic $(\overline{H+iH}=\mathcal{H})$ and separating $(H\cap iH=\{0\})$. H is standard iff H' is standard.

H standard subspace \rightarrow anti-linear operator $S \equiv S_H : D(S) \subset \mathcal{H} \rightarrow \mathcal{H}$, where $D(S) \equiv H + iH$,

$$S: \xi + i\eta \mapsto \xi - i\eta$$
, $\xi, \eta \in H$.

 $S^2 = 1 \upharpoonright_{D(S)}$. S is closed and densely defined.

Conversely, S densely defined, closed, anti-linear involution on $\mathcal H$ gives

 $H = \{\xi : S\xi = \xi\}$ is a standard subspace

$$H \longleftrightarrow S$$
 bijection

Modular theory. Set

$$S_H = J_H \Delta_H^{1/2}$$

polar decomposition of $S=S_H$. Then J_H is an anti-unitary involution $\Delta \equiv S^*S>0$

$$\Delta_H^{-it}H = H, \quad J_H H = H'$$

Borchers theorem (real subspace version) H standard subspace, U a one-parameter group with positive generator

$$U(s)H \subset H \quad s \geqslant 0.$$

Then:

$$\begin{cases} \Delta_H^{it} U(s) \Delta_H^{-it} = U(e^{-2\pi t}s), \\ J_H U(s) J_H = U(-s), \quad t, s \in \mathbb{R}. \end{cases}$$

Note: Setting $K \equiv U(1)H$ we have

$$\Delta_H^{-it}K = \Delta_H^{-it}U(1)H = U(e^{2\pi t})\Delta_H^{-it}H$$
$$= U(e^{2\pi t})H \subset K, \quad t \ge 0.$$

 $K \subset H$ is a half-sided modular inclusion.

About the proof (adapted from Florig). With $\xi \in H, \xi' \in H'$

$$f_U(z) = (\Delta^{i\bar{z}}\xi', U(e^{2\pi z}s)\Delta^{-iz}\xi).$$

is analytic in $\mathbb{S}_{1/2}=\{z\in\mathbb{C}:\ 0<\Im\ z<\frac{1}{2}\}$ (the generator of U(t) is positive and $\Im e^{2\pi z}s\geqslant 0$ for $z\in\mathbb{S}_{1/2}$).

V(t) = JU(-t)J satisfies the same assumptions then U because of JH = H'

$$f_{U}\left(t + \frac{i}{2}\right) = (\Delta^{-1/2}\Delta^{-it}\xi', U(e^{2\pi t + i\pi}s)\Delta^{-it}\Delta^{1/2}\xi)$$

$$= (\Delta^{-1/2}\Delta^{-it}\xi', JV(e^{2\pi t}s)\Delta^{-it}\xi)$$

$$= (\Delta^{-it}\xi', (J\Delta^{1/2})V(e^{2\pi t}s)\Delta^{-it}\xi)$$

$$= (\Delta^{-it}\xi', V(e^{2\pi t}s)\Delta^{-it}\xi) = f_{V}(t)$$

(KMS and positivity of energy) analogously V(t) = JU(-t)J satisfies the same assumptions then U because of JH = H'

$$f_V\left(t + \frac{i}{2}\right) = f_U(t)$$

 f_U and f_V glue to an entire bounded function, thus constant.

Converse: Wiesbrock, Borchers, Araki-Zsido theorem (real subspace version)

Let H, K be standard subspaces. Assume half-sided modular inclusion:

$$\Delta_H^{-it}K \subset K, \qquad t \ge 0$$

Then $\{\Delta_K^{it}, \Delta_H^{is}\}$ generates a unitary representation of the "ax+b" group with positive energy

dilation group =
$$\Delta_H^{-is/2\pi}$$

gen. of translations $P = \frac{1}{2\pi} (\log \Delta_K - \log \Delta_H)$

Conclusion:

positive energy rep. of "ax + b" group

Borchers pair (U, H)

half-sided modular inclusion of standard subspace

therefore, if U has no non-zero fixed vector, (U, H) is unique up to multiplicity.

von Neumann algebras and real Hilbert subspaces

M von Neumann algebra on \mathcal{H} , $\Omega \in \mathcal{H}$ a cyclic separating vector,

$$H_M \equiv \overline{M_{sa}\Omega}$$

is a standard subspace of H

$$\Delta_M = \Delta_{H_M}, \quad J_M = J_{H_M}$$

In particular

$$H_M' = H_{M'}$$

Borchers theorem (original for vN algebras)

M von Neumann algebra, Ω cyclic serating vector, U a one-parameter group with positive generator with $U(s)\Omega=\Omega$ and

$$U(s)MU(-s) \subset M \quad s \geqslant 0.$$

Then:

$$\begin{cases} \Delta_M^{it} U(s) \Delta_M^{-it} = U(e^{-2\pi t}s), \\ J_M U(s) J_M = U(-s), \quad t, s \in \mathbb{R}. \end{cases}$$

Note: If Ω is the unique U-fixed vector then M is a type III_1 factor.

Wiesbrock, Borchers, Araki-Zsido theorem (original for vN algebras)

Let M,N be vN algebras, Ω jointly cyclic and separating vector. Assume half-sided modular inclusion:

$$\Delta_M^{-it}N\Delta_M^{it}\subset N\,,\qquad t\geq 0\,.$$

Then $\{\Delta_N^{it}, \Delta_M^{is}\}$ generates a unitary representation of the "ax+b" group with positive energy

dilations =
$$\Delta_M^{-is/2\pi}$$

gen. of translations $P=\frac{1}{2\,\pi}\,(\,\log\Delta_N-\log\Delta_M)$

Therefore Borchers triple \Leftrightarrow Wiesbrock triple.

How many Borchers triples there are?

Is is possible that $U(s)MU(-s)'\cap M=\mathbb{C}$ for s>0?

Möbius covariant nets of real Hilbert subspaces

A local Möbius covariant net of standard subspaces \mathcal{A} of real Hilbert subspaces on the intervals of S^1 is a map

$$I \rightarrow H(I)$$

with

1. Isotony : If I_1 , I_2 are intervals and $I_1 \subset I_2$, then

$$H(I_1) \subset H(I_2)$$
.

2. Möbius invariance: There is a unitary representation U of \mathbf{Mob} on \mathcal{H} such that

$$U(g)H(I) = H(gI)$$
, $g \in Mob$, $I \in \mathcal{I}$.

Here $\operatorname{Mob} \simeq PSL(2,\mathbb{R})$ acts on S^1 as usual.

- 3. Positivity of the energy : $L_0 \ge 0$
- 4. Cyclicity: the complex linear span of all spaces H(I) is dense in \mathcal{H} .
- 5. Locality: If I_1 and I_2 are disjoint intervals then

$$H(I_1) \subset H(I_2)'$$

First consequences

Irreducibility: $\overline{\text{real lin.span}}_{I \in \mathcal{I}} \mathcal{H}(I) = H$.

Reeh-Schlieder theorem: H(I) is a standard subspace for every I.

Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of

H(I), are

$$U(\Lambda_I(2\pi t)) = \Delta_I^{-it}, \ t \in \mathbb{R},$$
 dilations $U(r_I) = J_I$ reflection

 $(\Lambda_{I_1}(t)x=e^tx,x\in\mathbb{R},\ I_1\simeq\mathbb{R}^+$ upper semicircle)

Haag duality:
$$H(I)' = H(I')$$
 $(I' \equiv S^1 \setminus I)$.

Factoriality: $H(I) \cap H(I)' = 0$

Additivity: $I \subset \cup_i I_i \implies H(I) \subset \overline{\text{real lin.span}}_i H(I_i)$.

Modular theory and representations of $SL(2,\mathbb{R})$ (Brunetti, Guido, L.)

U a unitary, positive energy representation of \mathbf{Mob} on $\mathcal H$ and J anti-unitary involution on $\mathcal H$ s.t.

$$JU(g)J = U(rgr), \quad g \in Mob$$

where $r: z \mapsto \overline{z}$ reflection on S^1 w.r.t. the upper semicircle I_1 . Then define

$$J_I \equiv U(g)JU(g)^*$$

where $g \in \mathbf{Mob}$ maps I_1 onto I.

$$\Delta_I^{it} \equiv U(\Lambda_I(-2\pi t)), \quad t \in \mathbb{R}$$

namely $-\frac{1}{2\pi}\log\Delta_I$ generator of dilations of I,

$$S_I \equiv J_I \Delta_I^{1/2}$$

is a densely defined, antilinear, closed involution on \mathcal{H} .

H(I) standard subspace associated with S_I

Möbius covariant local net of real Hilbert spaces

A $\pm hsm$ factorization of real subspaces is a triple K_0, K_1, K_2 , where $\{K_i, i \in \mathbb{Z}_3\}$ is a set of

standard subspaces s.t. $K_i \subset K'_{i+1}$ is a $\pm hsm$ inclusion.

Factorization

Local Möbius covariant net of real Hilbert spaces

Positive energy representation of $SL(2,\mathbb{R})/\{1,-1\}$

Note: Irr. positive energy rep. of $SL(2,\mathbb{R})/\{1,-1\}$ are parametrized by \mathbb{N}

Möbius covariant nets of vN algebras. A (local) Möbius covariant net \mathcal{A} on S^1 is a map

$$I \in \mathcal{I} \to \mathcal{A}(I) \subset B(\mathcal{H})$$

 $\mathcal{I} \equiv$ family of proper intervals of S^1 , that satisfies:

A. Isotony.
$$I_1 \subset I_2 \implies \mathcal{A}(I_1) \subset \mathcal{A}(I_2)$$

B. Locality.
$$I_1 \cap I_2 = \emptyset \implies [\mathcal{A}(I_1), \mathcal{A}(I_2)] = \{0\}$$

C. Möbius covariance. \exists unitary rep. U of the Möbius group \mathbf{Mob} on $\mathcal H$ such that

$$U(g)\mathcal{A}(I)U(g)^* = \mathcal{A}(gI), \quad g \in \mathbf{Mob}, \ I \in \mathcal{I}.$$

- **D.** Positivity of the energy. Generator L_0 of rotation subgroup of U (conformal Hamiltonian) is positive.
- **E.** Existence of the vacuum. $\exists !\ U$ -invariant vector $\Omega \in \mathcal{H}$ (vacuum vector), and Ω is cyclic

for the von Neumann algebra $\bigvee_{I\in\mathcal{I}}\mathcal{A}(I)$ and unique U-invariant.

First consequences

Irreducibility: $\bigvee_{I \in \mathcal{I}} \mathcal{A}(I) = B(\mathcal{H})$.

Reeh-Schlieder theorem: Ω is cyclic and separating for each $\mathcal{A}(I)$.

Bisognano-Wichmann property: Tomita-Takesaki modular operator Δ_I and conjugation J_I of $(\mathcal{A}(I), \Omega)$, are

$$U(\Lambda_I(2\pi t)) = \Delta_I^{it}, \ t \in \mathbb{R},$$
 dilations $U(r_I) = J_I$ reflection

(Guido-L., Frölich-Gabbiani)

Haag duality: A(I)' = A(I')

Factoriality: A(I) is III_1 -factor (or $A(I) = \mathbb{C}$).

Additivity: $I \subset \cup_i I_i \implies \mathcal{A}(I) \subset \vee_i \mathcal{A}(I_i)$ (Fredenhagen, Jorss).

- Net of factors on $\mathcal{H} \to \text{Net}$ of standard subspaces (not one-to-one) on \mathcal{H}
- Net of standard subspaces on $\mathcal{H} \to \mathrm{Net}$ of factors on on $e^{\mathcal{H}}$ (second quantization)

$$\mathcal{A}(I) \equiv \{W(h) : h \in H(I)\}''$$

Further selection properties.

ullet Split property. ${\cal A}$ is split if the von Neumann algebra

$$\mathcal{A}(I_1) \vee \mathcal{A}(I_2) \simeq \mathcal{A}(I_1) \otimes \mathcal{A}(I_2)$$

(natural isomorphism) if $\bar{I}_1 \cap \bar{I}_2 = \emptyset$.

- Split is a property of the net (not of U).

- Split is crucial, e.g. for local charges, complete rationality, hypefinetness, classification...
- Trace class condition.

$$\operatorname{Tr}(e^{-tL_0}) < \infty, \ \forall t > 0$$

- Trace class condition is standard in CFT
- Trace class condition ⇒ split
- Trace class condition can be refined to *log-ellipticity*

$$\log {\rm Tr}(e^{-tL_0}) \sim \frac{1}{t^\alpha}(a_0 + a_1 t + \cdots) \quad \text{as } t \to 0^+$$

$$\alpha = 1 \ ({\rm Kawahigashi, L.})$$

- Trace class is a property of U (not of the net).
- Buchholz-Wichmann nuclearity:

$$\Phi_I^{\mathsf{BW}}(\beta) : x \in \mathcal{A}(I) \to e^{-\beta P} x \Omega \in \mathcal{H}$$

is nuclear, I interval of \mathbb{R} , $\beta > 0$. P translation generator (Hamiltonian).

Recall: $A:X\to Y$ is nuclear if \exists sequences $f_k\in X^*$ and $y_k\in Y$ s.t. $\sum_k||f_k||\,||y_k||<\infty$ and

$$Ax = \sum_{k} f_k(x) y_k .$$

 $||A||_1 \equiv \inf \sum_k ||f_k|| \, ||y_k||.$

- BW-nuclearity is a physical property (Haag-Swieca): essentially finately many localized states in a finite volume.
- BW-nuclearity is a property of the full Möbius covariant net.
- Can be refined with $||\Phi_I^{\rm BW}(\beta)||_1 \le e^{cr^m/\beta^n}$ as $\beta \to 0^+$ and $\to KMS$ states for translations (Buchholz-Junglas).

Derive BW-nuclearity from the trace class condition (Buchholz, D'Antoni, L.)

Modular nuclearity

M von Neumann algebra, Ω cyclic separating unit vector. Set

$$L^{\infty}(M) = M, \qquad L^{2}(M) = \mathcal{H}, \qquad L^{1}(M) = M_{*}.$$

Then we have the embeddings

$$L^{\infty}(M) \xrightarrow{x \to (x\Omega, J \cdot \Omega)} L^{1}(M)$$

$$\Phi^{M}_{\infty,1} \qquad \Phi^{M}_{\infty,2} \qquad \Phi^{M}_{2,1}$$

$$x \to \Delta^{1/4} x\Omega \qquad \qquad \xi \to (\xi, J \cdot \Omega)$$

$$L^{2}(M)$$

Now let $N \subset M$ be an inclusion of vN algebras with cyclic and separating unit vector Ω .

 $L^{p,q}$ -nuclearity if $\Phi^M_{p,q}|_N$ is a nuclear operator.

 $L^{\infty,2}$ -nuclearity was called *modular nuclearity*, i.e.

$$\Phi_{\infty,2}^M|_N: x \in N \to \Delta_M^{1/4} x \Omega$$

is nuclear.

As
$$\Phi^M_{\infty,1} = \Phi^M_{2,1} \Phi^M_{\infty,2}$$
, we have

$$||\Phi_{\infty,1}^{M}|_{N}||_{1} \leq ||\Phi_{2,1}^{M}|| \cdot ||\Phi_{\infty,2}^{M}|_{N}||_{1} \leq ||\Phi_{\infty,2}^{M}|_{N}||_{1} ,$$

Thus

Modular nuclearity $\Rightarrow L^{\infty,1}$ – nuclearity.

indeed $\Phi^M_{\infty,1}|_N=\Phi^N_{2,1}\cdot\Phi^M_{\infty,2}|_N$ and $||\Phi^N_{2,1}||\leq 1$ so $||\Phi^M_{\infty,1}|_N||_1\leq ||\Phi^M_{\infty,2}|_N||_1$. (A certain converse holds) .

- If N or M is a factor and $\Phi^M_{\infty,1}|_N$ is nuclear then $N\subset M$ is a split inclusion $(N\vee M'\simeq N\otimes M')$.

Short proof. By definition $\Phi^M_{\infty,1}|_N$ nuclear means: \exists sequences of elements $\varphi_k \in N^*$ and $\psi_k \in M'_* (\simeq L^1(M))$ such that $\sum_k ||\varphi_k|| \ ||\psi_k|| < \infty$ and

$$\omega(nm') = \sum_{k} \varphi_k(n) \psi_k(m') , \quad n \in \mathbb{N}, m' \in M' .$$

where $\omega \equiv (\cdot \Omega, \Omega)$. As $\Phi^M_{\infty,1}|_N$ is normal the φ_k can be chosen normal (take the normal part). Thus the state ω on $N \odot M'$ extends to $N \otimes M'$ and this gives the split property.

Consider now the commutative diagram

$$L^{\infty}(N) \xrightarrow{\Phi_{\infty,1}^{M}|_{N}} L^{1}(M)$$

$$\Phi_{\infty,2}^{N} \downarrow \qquad \qquad \uparrow \Phi_{2,1}^{M}$$

$$L^{2}(N) \xrightarrow{T_{M,N} \equiv \Delta_{M}^{1/4} \Delta_{N}^{-1/4}} L^{2}(M)$$

 $T_{M,N} \equiv \Phi^M_{2,2}|_N$. L^2 -nuclearity condition (or $L^{2,2}$ -nuclearity) means that

$$\boxed{||T_{M,N}||_1 < \infty}$$

- L^2 -nuclearity \Rightarrow modular nuclearity,

indeed
$$||\Phi_{\infty,2}^{M}|_{N}||_{1} \leq ||T_{M,N}||_{1}$$
 because $\Phi_{\infty,2}^{M}|_{N} = T_{M,N} \cdot \Phi_{\infty,2}^{N}$ and $||\Phi_{\infty,2}^{N}|| \leq 1$.

 $L^2\text{-Nuclearity.}$ Let $H\subset \tilde{H}$ be an inclusion of standard subspaces. Set

$$T_{\tilde{H},H} \equiv \Delta_{\tilde{H}}^{1/4} \Delta_{H}^{-1/4}$$

then $||T_{\tilde{H},H}|| \leq 1$. The inclusion is *nuclear* if $T_{\tilde{H},H}$ is a nuclear (i.e. trace class) operator.

U unitary, positive energy representation of \mathbf{Mob} , H(I) the associated net of standard subspaces. U satisfies L^2 nuclearity if $H(I) \subset H(\tilde{I})$ is nuclear if $I \subset \subset \tilde{I}$.

 $SL(2,\mathbb{R})$ identities.

Formula 0 (Schroer-Wiesbrock)

U positive energy unitary \mathbf{Mob} rep., $\forall s \geq 0$:

$$\Delta_1^{1/4} \Delta_2^{-is} \Delta_1^{-1/4} = e^{-2\pi s L_0}$$

 $\Delta_1 = \Delta_{I_1}$, $\Delta_2 = \Delta_{I_2}$, with I_1, I_2 upper and right semicircles.

About the proof. Use of double interpretation of Δ_1 , Δ_2 : modular (analyticity) and $SL(2,\mathbb{R})$ (Lie algebra relations)

Formula 1 U positive energy unitary representation:

$$T_{\tilde{I},I} = e^{-sL_0} \Delta_2^{is/2\pi}$$

 $s=\ell(\tilde{I},I)$ is the inner distance (if I=(-1,1) and $\tilde{I}=(-e^s,e^s)$ on the real line, then $\ell(\tilde{I},I)=s$) thus

$$||T_{\tilde{I},I}||_1 = ||e^{-sL_0}||_1$$

About the proof.

$$e^{-2\pi s L_0} = \Delta_1^{1/4} \Delta_2^{-is} \Delta_1^{-1/4} = \Delta_1^{1/4} \Delta_2^{-is} \left(\Delta_1^{-1/4} \Delta_2^{is}\right) \Delta_2^{-is} = T_{I_1,I_{1,s}} \Delta_2^{-is}$$

Formula 2

$$T_{I,I_{a',a}} = e^{-a'P'_I}e^{-aP_I}e^{-iaP_I}e^{ia'P'_I}$$
.

 $I_{a',a} \equiv \tau'_{-a'} \tau_a I$ with a, a' > 0.

$$e^{-2sL_0} = e^{-\tanh(\frac{s}{2})P}e^{-\sinh(s)P'}e^{-\tanh(\frac{s}{2})P}$$

therefore

$$e^{-2sL_0} \le e^{-2\tanh(\frac{s}{2})P}$$

in particular $e^{-i\pi L_0} = e^{iP}e^{iP'}e^{iP}$.

About the proof. Consider $\tilde{I}=(0,\infty)$, $I=(t,\infty)$, then

$$T_{\tilde{I},I} = \Delta_{\tilde{I}}^{1/4} \Delta_{I}^{-1/4}$$

$$= \left(\Delta_{\tilde{I}}^{1/4} U(t) \Delta_{\tilde{I}}^{-1/4}\right) U(-t)$$

$$= e^{-tP} e^{itP}$$

where we have used the Borchers commutation relation $\Delta_{\tilde{I}}^{is}e^{itP}\Delta_{\tilde{I}}^{-is}=e^{i(e^{-2\pi s})tP}$. Any $I\subset\subset\tilde{I}$ is obtain by iteration the above, get a formula and compare with formula 1.

Formula 3

$$||e^{-\tan(2\pi\lambda)d_IP}\Delta_I^{-\lambda}|| \le 1$$
, $0 < \lambda < 1/4$.

with d_I the usual lenght. Thus

$$e^{-2\tan(2\pi\lambda)d_IP} \le \Delta_I^{2\lambda}$$
.

so we have

$$e^{-2d_I P} \le \Delta_I^{1/4} \le e^{\frac{2}{d_I} P'} .$$

Modular nuclearity and L^2 -nuclearity

 L^2 -nuclearity implies modular nuclearity and $||\Delta_{\tilde{H}}^{1/4}E_H||_1 \leq ||T_{\tilde{H},H}||_1.$

Comparison of nuclearity conditions

Let H be a Möbius covariant net of real Hilbert subspaces of a Hilbert space \mathcal{H} . Consider the following nuclearity conditions for H.

Trace class condition: $\operatorname{Tr}(e^{-sL_0}) < \infty$, s > 0;

 L^2 -nuclearity: $||T_{\widetilde{I},I}||_1<\infty$, $\forall I\subset\subset\widetilde{I}$;

Modular nuclearity: $\Xi_{\tilde{I},I}: \xi \in H(I) \to \Delta_{\tilde{I}}^{1/4} \xi \in \mathcal{H}$ is nuclear $\forall I \subset \subset \tilde{I}$;

Buchholz-Wichmann nuclearity: $\Phi_I^{\text{BW}}(s): \xi \in H(I) \to e^{-sP}\xi \in \mathcal{H}$ is nuclear, I interval of \mathbb{R} , s > 0 (P the generator of translations);

Conformal nuclearity: $\Psi_I(s)$: $\xi \in H(I) \rightarrow e^{-sL_0}\xi \in \mathcal{H}$ is nuclear, I interval of S^1 , s > 0.

We shall show the following chain of implications:

Trace class condition

 \updownarrow

 L^2 – nuclearity

 $\downarrow \downarrow$

Modular nuclearity

 \Downarrow

Buchholz-Wichmann nuclearity

Conformal nuclearity

Where all the conditions can be understood for a specific value of the parameter, that will be determined, or for all values in the parameter range.

We have already discussed the implications "Trace class condition $\Leftrightarrow L^2$ -nuclearity \Rightarrow Modular nuclearity".

Modular nuclearity \Rightarrow BW-nuclearity

We have

$$||\Phi_{I_0}^{\mathsf{BW}}(d_I)||_1 \le ||\Xi_{I,I_0}||_1$$

where d_I is the length of I on \mathbb{R} .

BW-nuclearity ⇒ Conformal nuclearity

By formula 2 there exists a bounded operator B with norm $||B|| \leq 1$ such that $e^{-sL_0} = Be^{-\tanh(\frac{s}{2})H}$, therefore

$$\Psi_I(s) = B\Phi_I^{\mathsf{BW}}(\tanh(s/2))$$
$$||\Psi_I(s)||_1 < ||\Phi_I^{\mathsf{BW}}(\tanh(s/2))||_1.$$

Consequences

- Distal split property. If $\operatorname{Tr}(e^{-sL_0})<\infty$ for a fixes s>0, then $\mathcal{A}(I)\subset\mathcal{A}(\tilde{I})$ is split if $I\subset \tilde{I}$ and $\ell(\tilde{I},I)>s$ e.g free probability nets (D'Antoni, Radulescu, L.).
- Constructing KMS states. $\mathcal{A}|_{\mathbb{R}}$ restriction of \mathcal{A} to $\mathbb{R} \simeq S^1 \setminus \{-1\}$, \mathcal{A}_0 the quasi-local C*-algebra. i.e. the norm closure of $\cup_I \mathcal{A}(I)$ as I varies in the bounded intervals of \mathbb{R} . Let $\mathfrak{A} \subset \mathcal{A}_0$ the C*-algebras of elements with norm continuous orbit, namely

$$\mathfrak{A} = \{ X \in \mathcal{A}_0 : \lim_{t \to 0} ||\tau_t(X) - X|| = 0 \}$$

au translation automorphism group.

Thm. If the trace class condition holds for $\mathcal A$ with the asymptotic bound

$$\operatorname{Tr}(e^{-sL_0}) \le e^{\operatorname{const.}\frac{1}{s^{\alpha}}}, \quad s \to 0^+$$

for some $\alpha > 0$, then the BW-nuclearity holds with $m = n = \alpha$.

If the trace class condition holds with log-ellipticity (above asymptotics) then for every $\beta>0$ there exists a translation β -KMS state on $\mathfrak A$.