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Cohomology

Cohomology is an important part of mathematics and so ubiquitous as
to form part of essentially any mathematical theory. It comes in many
varieties but there are also unifying aspects.
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An Example

Locally trivial G-bundles. F → B
Exists open covering Oi of B and isomorphisms
φi : F � Oi → Oi ×G.
φiφ
−1
j (x ,g) = (x , zijg), x ∈ Oi ∩ Oj .

zijzjk = zik , Oi ∩ Oj ∩ Ok 6= ∅, 1-cocycle.
Given z exists Fz . ζ 7→ Fz not a 1-1 correspondence. Need
equivalence relations.
z ∼ z ′ if there is a yi ∈ G such that zijyj = yizij if Oi ∩ Oj 6= ∅.
Equivalence of G-bundles.
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Typical Features

Cohomology has a degree ∈ Z.
In low degree cohomology classifies something: H1(B,G)
classifies locally trivial G–bundles.
Cohomology is the cohomology of some type of mathematical
object, here the Čech ohomology of a topological space B.
A cohomology has coefficients, here the group G.
May provide examples,
May help with general theory
Cohomology classes can often be computed by cohomological
methods.
But cohomology may prove to be just an alternative language. For
example the problem of the existence of a field algebra and a
gauge group boils down to asking whether the 6-j symbols of the
relevant tensor category which form a 3-cocycle are actually a
3-coboundary. There are then 3-j symbols which can be used to
embed the category in the category of Hilbert spaces.
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Superselection Theory

Selection Criterion π � O⊥ ' π0 � O⊥, O ∈ K.
Exists unitary V = VO with Vπ(A) = π0(A)V , A ∈ A(O⊥).
Identify π0(A) with A
Set ρ(A) := Vπ(A)V ∗. ρ endomorphism localized in O.
Things might have gone differently.
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Simplices of a Partially Ordered Set

A 0-simplex of K is an element a ∈ K. A 1–simplex b of K consists
of three elements ∂0b, ∂1b ⊂ |b|.
A 2-simplex c of K consists of three 1–simplices ∂0c, ∂1c and ∂2c
with ∂0∂0c = ∂0∂1c, ∂1∂0c = ∂0∂2c and ∂1∂1c = ∂1∂2c together
with a further element |c|, the support of c, such that ∂i∂jc ⊂ |c|,
for all i , j .
Pick Va as above and set z(b) := V∂0bV ∗∂1b then
z(∂1c) = z(∂0)z(∂2c) so that z is a 1–cocycle.
It follows from duality that z(b) ∈ A(|b|). We have local
coefficients as in sheaf cohomology. Net cohomology.
Exist localized endomorphisms y(a) with z(b) ∈ (y(∂1b), y(∂0b)).
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Solitons 1972

2-spacetime dimensions A ⊂ F

z ∈ Z 1(A) ⊂ Z 1(F).
Exist two sets of localized endomorphisms y`(a) and yr (a) with
z(b) ∈ (y`(∂1b), y`(∂0b)) and z(b) ∈ (yr (∂1b), yr (∂0b)).
α-induction
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Completeness of sectors 1980

Free field with gauge group G. Easy to see that there is a sector
corresponding to each irreducible representation of G.
Question of whether there are other sectors remained open for
quite some time.

a) ∩∂b′=∂b F(O + |b′|) = F(O + ∂0b) ∨ F(O + ∂1b), b ∈ Σ1,

b) If (O + ∂0b) ⊥ (O + ∂1b) then F(O + ∂0b) ∨ F(O + ∂1b)

is canonically isomorphic to F(O + ∂0b)⊗ F(O + ∂1b), b ∈ Σ1.
Abstract conditions that can be verified in the case of the free field.
Ciolli completeness for the Streater and Wilde model.
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Essential Duality

duality Ad = A, where

Ad (O) = ∩{A(O1)′ : O1 ⊥ O}.

essential duality Add = Ad .
Z 1(A) ' Z 1(Add ).
Wedge duality implies essential duality.
The set of representations satisfying essential duality is closed
under direct sums and subrepresentations.
In the absence of duality a representation satisfying the selection
criterion, i.e. an object of Rep⊥A, yields a cocycle in Z 1

t (Ad ), the
path-independent cocycles in Z 1(Ad ).
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Curved Spacetime

The advent of curved spacetime revitalized superselection theory.
The obvious question being: how does the topology and causal
structure of spacetime affect the superselection structure?
Guido, Longo, J.E.R, Verch (2001)
Σ⊥1 = {b ∈ Σ1 : ∂0b ⊥ ∂1b} has same number of connected
components as in Minkowski space. No new solitonic phenomena.
Theory of sectors goes through if set K of regular diamonds is
directed. Standard use of cohomology. Interesting part of problem
left open.
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Homotopy

Two notions of path, usual topological one and one starting from
K, where a path is a concatenation of 1–simplices. We suppose
that K is path-connected.
Both notions of path lead to a notion of homotopy group. If K is
directed, Σ∗ admits a contracting homotopy.
LetM be arcwise connected and Hausdorff and K a base for the
topology ofM consisting of arcwise and simply connected
subsets ofM, then π1(M) = π1(K). (Ruzzi)
z ∈ Z 1(A) and p ∼ q then z(p) = z(q). Set

ηz([p]) := z(p), [p] ∈ π1(K,a0).

Map from 1–cocycles equivalent in B(H0) to equivalent unitary
representations of the homotopy group.
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Diamonds

The approach to superselection sectors in Guido et al was based
on the notion of regular diamond. These have the disadvantage
that their causal complements may not be pathwise connected.
Ruzzi improved matters by taking K to be the set of diamonds.
Given a spacelike Cauchy surface C we let G(C) denote the set of
open subsets G of C of the form φ(B) for a chart (U, φ) of C where
B is an open ball of R3 with cl(B) ⊂ φ−1(U). A diamond ofM is
then a subset O = D(G) where G ∈ G(C) for some spacelike
Cauchy surface C. D(G) is the domain of dependence of G.
K is a base for the topology ofM. A diamond is an open,
relatively compact, arcwise and simply connected subset. D(G) is
a globally hyperbolic spacetime with spacelike Cauchy surface G.
The causal complement of a diamond

O⊥ := {O1 ∈ K : O1 ⊥ O}

is pathwise connected in K.
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Causal Punctures

Typically, K is not directed when Cauchy surfaces ofM are
compact. Cannot transport charge to or from infinity. Remove a
point.
The causal puncture of K at a point x ∈M is

Kx := {O ∈ K : (O−) ⊥ x}.

Can also think in terms of a subset ofM
Mx =M\Xx = D(C\{x}) for some spacelike Cauchy surface C
containing {x}.
Considered as a spacetime,Mx is globally hyperbolic but an
element O ∈ Kx need not be a diamond ofMx . Still Kx is a basis
for the topology ofMx and,Mx being arcwise connected, Kx is
pathwise connected.
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Strategy

First discuss superselection sectors for Kx for all x and then ’glue‘
the results together to describe the superselection theory for K.
The advantage of studying Kx is that it behaves in much the same
way as Minkowski space.
Let Ax denote the restriction of A to Kx . Each Ax must satsfy
duality.
If z ∈ Z 1(A) is path-independent on Kx for each x ∈M, then z is
path-independent on K.
Hence the 1–cocycles of z ∈ Z 1(A) are trivial in B(H0) for an
arbitrary 4-dimensional globally hyperbolic spacetime.
A set of cocycles, zx ∈ Z 1

t (Ax ), x ∈M, extends to Z 1
t (A) if and

only if
zx1(b) = zx2(b)

whenever |b| ∈ Kx1 ∩ Kx2 . A similar result holds for arrows.
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Endomorphisms

Superselection theory comes alive when endomorphisms are
introduced.
Kx is not necessarily directed and the definition of yz(a) is a
variant on the traditional one.
Given z ∈ Z 1

t (Ax ), a ∈ Σ0(Kx ) and define

yz
O(a)(A) := z(p)Az(p)∗, A ∈ A(O1), O1 ⊥ O,

where x ∈ O ∈ K, p is a path in Kx with ∂1p ⊂ O and ∂0p = a.
This definition does not depend on the chosen path and, letting O
shrink to {x}, extends to an endomorphism of A⊥(x), the
C∗–algebra generated by the A(O1) with O1 ∈ Kx .
z(p)yz(∂1p)(A) = yz(∂0p)(A)z(p).
yz(a)(A(a1)) ⊂ A(a1) for a1 ∈ Kx with a ⊂ a1.
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Tensor Product

Tensor product on Z 1
t (Ax ):

(z ⊗ z1)(b) := z(b)yz(∂1b)(z1(b)), b ∈ Σ1(Kx ),

(t ⊗ s)a := tayz(a)(sa), a ∈ Σ0(Kx ),

where t ∈ (z, z1), s ∈ (z2, z3).
The composition law ⊗ makes Z 1

t (Ax ) into a tensor C∗–category.

16 / 19



Conjugates

Let z be a simple object of Z 1
t (Ax ) then a conjugate z of z is given

by
z(b) := yz−1(∂0b)(z(b)∗), b ∈ Σ1(Kx )

.
In a symmetric tensor C∗–category with (ι, ι) = C where every
simple object has a conjugate every object with finite statistics has
a conjugate.
Let T be a symmetric tensor C∗–category with conjugates,
subobjects and direct sums, each object having a statistical phase
1 then T is isomorphic to the symmetric tensor C∗–category of
finite dimensional unitary representations of a compact group
unique up to isomorphism.
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Global Theory

Results for Z 1
t (Ax ) for all x can be glued together to give the

corresponding results for Z 1
t (A).

Given an object z of Z 1
t (A), let yz

x (a) denote the endomorphism of
A⊥(x) associated with the restriction of z to Z 1

t (Ax ).

yz
x1

(a) � A(O) = yz
x2

(a) � A(O),

whenever O ∈ Kx1 ∩ Kx2

If p is a path in Kx1 ∩ Kx2 then yz
x1

(a)(z(p)) = yz
x2

(a)(z(p)).

There is a unique symmetry ε for Z 1
t (A) such that

ε(z, z1)a = εx (z, z1) for x ⊥ a.
Objects of Z 1

t (A) with finite statistics have conjugates.
The restriction tensor ∗–functor Fx from Z 1

t (A) to Z 1
t (Ax ) is full

and faithful.
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Further Work

Last part of talk has been based on
G. Ruzzi. Homotopy of posets, net-cohomology, and theory of superselection
sectors in global ly hyperbolic spacetimes. Rev. Math. Phys. 17, no.9, (2005),
1021-1070.
There has been further work by Brunetti and Ruzzi on superselection theory in
locally covariant quantum field theory. This, too, makes use of cohomology.

I think we may conclude, that in the course of the years, cohomology has turned
into the preferred tool for tackling problems in superselection theory. What is the
reason?

The alternative to using cohomology is to use endomorphisms. Endomorphisms
work well when K is directed and we get endomorphisms of A(M). In the case
of Kx we got endomorphisms of A⊥(x). But in general an endomorphism will
need a domain of definition.

Endomorphisms are used to define the tensor product structure. But this can be
defined instead using cocycles:

z ⊗ z1(b) = z(b)z(p)z1(b)z(p)∗ ∂0p = ∂1b, ∂1p ⊥ |b|.

There is a similar formula for the tensor product of arrows in Z 1(A). Here we do
not need K to be directed but just connected.
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