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1 Symmetries in quantum theory

“Symmetry” is an extremely broad and versatile concept in physics in general. The realization
of symmetries acquires more facets and shadings in quantum theory, than it already exhibits
in classical physics. Rather than attempting a full coverage of the topic, I just start by recalling
in a schematic way of the richness of the notion in quantum theory, before I turn to a more
specific discussion of symmetries in the context of quantum field theory, and finally turn to
concentrate on its relation with superselection structure. This relation strongly depends on
the number of spacetime dimensions.
Already terminology is quite diverse, and never uniform across contexts. Let us say that, most
generally speaking, a “transformation” 𝑇 is a prescription to associate new object(s) to given
objects:

𝑋
𝑇↦→ 𝑋𝑇 .

It is called a “symmetry” if it preserves some pertinent feature of interest: e.g., the dynamics
of a physical system (equations of motion, Hamiltonian), relational structures (algebras),
concrete realizations (solutions of equations of motion, states of quantum systems). Noether’s
groundbreaking work taught us that symmetries of the (classical) Hamiltonian are related to
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dynamical conservation laws, providing a priori knowledge about the physical system under
consideration, that may be of eminent importance for both practical applications and structural
understanding.
In quantum theory, transformations or symmetries can be given at various levels, indicated
with increasing mathematical restrictiveness from left to right and from top to bottom in a
schematic diagram for the case of continuous transformations of an algebra:

𝛿𝑇 (·)
integrable?

−→ 𝛼𝑇 (·)
implementable? ↓ ↓ implementable?

𝑖[𝑄𝑇 , ·]
self-adjoint?

−→ 𝑈𝑇 ·𝑈∗
𝑇

The “·” is a placeholder for algebra elements. The first line refers to the purely algebraic
perspective: 𝛼𝑇 may stand for a one-parameter group of automorphisms of an algebra, and 𝛿𝑇
for the associated infinitesimal derivation. Derivations may not be integrable, and conversely
groups of automorphisms may not be differentiable. The situation depends on manifold
domain questions in Banach spaces. The second line refers to the “spatial” perspective when
the algebra is realized by operators on a Hilbert space. Whether a derivation is implementable
by a self-adjoint generator, or whether an automorphism is implemented by a unitary operator,
depends on the representations. (The right column pertains also to discrete transformations.)
The questions addressed by the diagram pose nontrivial and possibly hard mathematical
problems, which this nontechnical contribution is not the place to discuss. They reach far
beyond group theory and representation theory, requiring methods from Functional Analysis.
E.g., the issue of self-adjointness of generators to ensure unitary one-parameter groups (Stone-
von Neumann) lies at the origin of spectral theory. Suffice it to state that answers will depend
on the specific physical system under consideration.
In a “third dimension” to be added to the diagram, one may ask whether several derivations
form a Lie algebra, and whether this Lie algebra can be integrated to a possibly non-Abelian
group of automorphisms. The corresponding questions in the second line are of cohomological
nature and lead to the theory of projective representations and the Bargmann theorem about
the conditions under which the latter give rise to true representations of a covering group.
When dynamical quantum systems are addressed, one could add yet another “dimension” to
the diagram, concerning distinguished states, and ask whether ground states (or KMS states)
are invariant under derivations, automorphisms, or unitaries. If they are not, the symmetry of
the algebra is said to be “spontaneously broken” by the state.

2 Quantum field theory

Quantum field theory knows the distinction between spacetime symmetries (usually given
by the Poincaré or conformal group), and “inner symmetries”, that affect only inner degrees
of freedom of quantum fields (“multiplets”) but neither the localization of field operators in
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spacetime nor the momentum transfer on states induced by them. Spacetime symmetries in
the first place act on the spacetime, but are expected to lift to unitary operators acting on the
Hilbert space or to automorphisms acting on the field algebra, changing the localization in a
geometric way.
The Coleman-Mandula theorem of QFT [Coleman and Mandula (1967)] states that (under
standard assumptions) inner and spacetime symmetries “cannot interfere” with each other:
they must commute and form a direct product of groups. An exception is supersymmetry
(admitting fermionic generators) [Haag et al. (1975)]. An intriguing feature is that the Hamil-
tonian arises as the square of a supersymmetry generator, implying that it is automatically
positive.
Yet, also without supersymmetry, the interplay of the axioms of Locality and Covariance
(including positive energy) provide an indirect relation, when continuous inner symmetries
are assumed to be implemented by generators that are associated with covariant and local
conserved currents. In this case, the relation (the Goldstone theorem) is of spectral nature:
the non-preservation of the vacuum state under the symmetry (“spontaneous symmetry break-
down”) requires the presence of massless excitations of the vacuum, known as “Goldstone
modes”. More differentiated versions of the theorem, according to which the precise situation
depends on the decay behavior of correlations, have been elaborated by [Ezawa and Swieca
(1967),Buchholz et al. (1992)].
Inner symmetries are often regarded as “global gauge symmetries”. “Global” is understood in
the sense that they transform fields in the same way irrespective of their localization; “gauge”
in the sense that only the invariant quantities are considered as observables. Because the latter
commute with the unitary representation 𝑈 of the gauge group 𝐺, its centre 𝑈 (𝐺)′′ splits
the representation of the fields into inequivalent representations of the observables. These
are called superselection sectors, because observables cannot make transitions among them.
(Historically, the first recognition of this fact was the superselection rule that local operators
cannot interpolate between states of integer and half-inter spin.) The gauge-variant fields are
then rather auxiliary mathematical tools whose role is to create from the vacuum “charged
states” carrying quantum numbers that cannot be accessed by observables.
“Local gauge transformations” cannot be realized on Hilbert spaces (and consequently many
mathematical theorems do not apply; e.g., the Goldstone theorem must fail in order to allow
for the so-called Higgs mechanism). They do not relate physical states to each other. They
act only on unphysical auxiliary “states” appearing at intermediate levels in the course of the
construction of a model. In a famous panel dicussion it was acceded that they should not be
regarded as “symmetries” at all [Zichichi (1984)]. Their main role is in fact their seminal
power of selecting of renormalizable interactions that lie at the basis of the Standard Model of
particles, without being a symmetry of the final quantum theory. Local gauge symmetry falls
outside the scope of this contribution and shall not be addressed further. For an alternative
method to predict and deal with the interactions of the Standard Model without “quantum
field theory on indefinite state spaces”, see [E6].
The traditional Wightman axiomatics [Streater and Wightman (1964)] of quantum field theory
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assumes that (globally) gauge-variant fields obey the same axioms as observable quantum
fields, with the only exception that they may be “anti-local”. The (analytic) Spin-Statistics
theorem of [Streater and Wightman (1964), Jost (1965)] asserts that they cannot be local if
they transform in a representation of the Poincaré group with half-integer spin or helicity.
The theorem actually implies anti-locality only, when the axioms only offer the two options
“local” or “anti-local”. Relaxing this axiom, many new possibilities arise, see [E6].
Algebraic quantum field theory, or “Local Quantum Physics” (LQP) [Haag (1992)], avoids to
talk (and make assumptions about) non-observable fields altogether. Instead, it axiomatizes
the structural properties of observables with the emphasis on their localization properties.
Localization and locality in LQP are algebraic properties: An observable is called “localized”
in a region if it commutes with all observables localized at spacelike distance from that
region. They can therefore by formulated in terms of a 𝐶∗ algebra without reference to a
specific Hilbert space representation. From algebraic axioms imposed on the assignment of
localized subalgebras to spacetime regions (the “local net”), LQP allows to draw conclusions
about possible states and representations in which these properties possibly can be realized,
see Sect. 3.
One may dwell on the “relative” character of algebraic localization, as just defined. This
feature opens the way to re-assign different geometric localizations to “the same elements” of
the𝐶∗ algebra, as long as they are again consistent with locality in the new interpretation. One
can thus “transplant” QFT models from one spacetime to another, such as Minkowski, Einstein
universe, deSitter and Robertson-Walker [Guido and Longo (2003), Buchholz et al. (2001)];
or re-interpret QFT models on anti-deSitter spacetime as conformal QFTs on the conformal
boundary of AdS (which is a completion of Minkowski spacetime) [Rehren (2000)]. The
abstract group of spacetime symmetries and its unitary representations are the same, but
the geometric interpretation of the group actions on regions are different. In a local setting
adapted to curved spacetime, allowing the transplantation of patches of one spacetime into
another spacetime in terms of a functor between categories of subregions and categories of
subalgebras of𝐶∗ algebras, one can give a rigorous meaning to the notion of “the same physics
on different spacetimes” [Fewster and Verch (2012)].

A Quantum Noether theorem. As emphasized in [Haag (1992)], a local net of observables
together with the unitary representation of the Poincaré group determines “all the physics”,
including the scattering behaviour (from which phenomenologists are used to “deduce” the
interaction Lagrangian). An interesting example how information about the field content is
“encoded” in the net (even if the net refers only to algebras and not individual fields), is the
“Quantum Noether theorem” of [Doplicher and Longo (1983)], as follows.
A local net is said to satisfy the split property if two von Neumann algebras of observables
localized in two spacelike-separated spacetime regions with a finite distance generates an
algebra that is isomorphic to the tensor product of the two algebras. This property is related
to phase-space properties (localization and momentum transfer), and has been established in
several classes of models. It cannot be expected to hold when there is no finite distance because
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UV quantum fluctuations create correlations between the two regions that are incompatible
with a tensor product.
The tensor product structure allows to show that if a global gauge group is unitarily imple-
mented, then there exist also local implementers, i.e., unitary operators that implement the
symmetry on one of the two algebras, and commute with the other algebra. They share this
property with exponentiated local charge operators, although it was not assumed that the
theory possesses a conserved current. Instead, the local implementers are taken as the LQP
counterpart of the latter.

Poincaré symmetry and Modular Theory. Although the focus of this contribution is on
the relation between superselection sectors and global “inner symmetries”, see Sect. 3 and
Sect. 4, we include a paragraph that sheds a new light on spacetime symmetries, and their
relations to the Tomita-Takesaki modular theory [E5], see also [E4].
In a nutshell: Modular theory assigns to a von Neumann algebra 𝑀 and a cyclic and separating
vector in a Hilbert space, a unitary one-parameter “modular group” and an anti-unitary
“modular conjugation”. The former acts by automorphisms on 𝑀 , and the latter maps 𝑀

to its commutant 𝑀′. The assignment is intrinsic and enjoys many non-trivial “functorial”
algebraic features.
A “wedge” 𝑊 is a Poincaré transform of the spacetime region 𝑊0 := {𝑥 ∈ R4 : 𝑥1 >

|𝑥0 |}. Its causal complement is denoted by 𝑊′. Let 𝐴(𝑊) be the von Neumann algebra
associated with quantum fields localized in a wedge, and Ω the vacuum vector. [Bisognano
and Wichmann (1976)] showed that in QFT satisfying the Wightman axioms, the modular
group of the pair (𝐴(𝑊),Ω) is the subgroup of the Poincaré group of the Lorentz boosts that
preserve the wedge, and the modular conjugation is a PCT transformation mapping 𝐴(𝑊) to
𝐴(𝑊′).
Let now 𝑀 a von Neumann algebra with a cyclic and separating vector Ω ∈ H , and 𝑈 (𝑎) a
unitary one-parameter group onH , leavingΩ fixed. Assume the property𝑈 (𝑎)𝑀𝑈 (𝑎)∗ ⊂ 𝑀

for 𝑎 > 0 (which is characteristic for lightlike translations acting on wedge algebras in
QFT). [Borchers (1992)] showed: If 𝑈 (𝑎) has a positive generator, then the modular group
𝑉 (𝑠) and the modular conjugation of the pair (𝑀,Ω) satisfy the same commutation relations
with 𝑈 (𝑎) as the boosts and the PCT transformation of a two-dimensional QFT with the
lightlike translations (“Borchers’ theorem”). Also the converse is true: The commutation
relations imply positivity of the generator [Wiesbrock (1992)]. [Wiesbrock (1993)] showed a
stronger result with two von Neumann algebras 𝑀1 ⊂ 𝑀 such that the modular group 𝑉 (𝑠) of
𝑀 satisfies 𝑉 (𝑠)𝑀1𝑉 (𝑠)∗ ⊂ 𝑀1 for 𝑠 > 0 (“half-sided modular inclusion”). In this case, it is
possible to extract from the two modular groups of 𝑀1 and 𝑀 another unitary one-parameter
group 𝑈 (𝑎) with positive generator and the commutation relations with 𝑉 (𝑠) as before.
These results are most remarkable because they provide the entrance gate to extend the
“modular nature” of Lorentz boosts to the Poincaré group. They can be turned around in
various ways, and extended to the Poincaré group in four-dimensional spacetime (4D):
(i) A “Borchers triple” (see, e.g., [Buchholz et al. (2011)]) is a von Neumann algebra 𝑀
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with a cyclic and separating vector Ω ∈ H , a unitary positive-energy representation 𝑈 of
the translation group on H that leaves Ω invariant and acts on 𝑀 such that the semigroup of
translations inside 𝑊0 maps 𝑀 into itself. In two spacetime dimensions, these data suffice to
construct a full-fledged Poincaré covariant net of local algebras 𝐴(𝑊) for all wedge regions.
Namely, for the reference wedge, 𝐴(𝑊0) := 𝑀 and all other wedge algebras are defined by
acting with 𝑈. The conditions of the Borchers triple ensure that the resulting net of wedges
is a local net. Algebras of observables localized in doublecones (= intersections of a left and
a right wedge) may be defined by intersections of the wedge algebras. Since the local net
determines all the physics (including, e.g., the S-matrix, [Haag (1992)]), one has, in principle,
a completely “non-Lagrangian” way to construct dynamical models “out of symmetries” in
two spacetime dimensions. The difficulty is to ensure that Ω is cyclic and separating also
for algebras of compactly localized observables. These methods have been pivotal for the
construction of models with factorizing S-matrices [Lechner (2008)]. See [E2].
In four dimensions, Borchers’ theorem does not suffice to construct the Lorentz boosts in all
directions. One might add further assumptions concerning the rotations. A stronger result,
not even assuming the translations, is:
(ii) The modular groups of a small number of von Neumann algebras with a common cyclic
and invariant vector and in a “suitable modular position” relative to each other [Kähler
and Wiesbrock (2001)] suffice to construct a unitary positive-energy representation 𝑈 of
the Poincaré group. As before, by identifying the algebra of a reference wedge with one
of the given von Neumann algebras and acting with the Poincaré group, one obtains a net
of wedge algebras, and by intersections, one obtains a net of doublecone algebras. This
is, in principle, another non-Lagrangian way to construct dynamical models including their
spacetime symmetry by Modular Theory. A particularly elegant version of this result applying
to chiral conformal QFT (see Sect. 4) was given by [Guido et al. (1998)], see [E2].

3 Superselection sectors in 4D

The highlight of the analysis of representations of local nets of 𝐶∗ algebras is the theory of
superselection sectors developped by Doplicher, Haag and Roberts [Doplicher et al. (1971,
1974)] (DHR theory). There is a detailed account in [E1]. It is presented here rather briefly
as a “benchmark” to which the theory of superselection sectors in conformal QFT in two
dimensions (Sect. 4) should be compared.
The authors concentrate on states (considered as “relevant for scattering theory”) that belong
to positive-energy representations of the Poincaré group, and that are indistinguishable from
states in the vacuum sector by measurements in the causal complement of any open spacetime
region. Thus, the inequivalence from the vacuum representation is a global feature, generically
called “charge”, to label superselection sectors = inequivalent representations of the local net.
The selection criterium excludes, say, thermal states in which only number or charge densities
are defined but no total particle number or charge operators.
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The authors assume that the local observables satisfy a strengthened version of Locality:
Haag duality. It asserts that the von Neumann algebras generated by observables localized in
doublecone regions 𝑂 and by observables localized in the causal complement 𝑂′, are exactly
each others’ commutants. Under this maximality assumption, they discovered that one can
define a “tensor product” among the charged representations. This then turns the latter into
the objects of a 𝐶∗ tensor category, equipped with an intrinsic unitary symmetry in terms
of “statistics operators” which relate the tensor product (in the sense of the category) of
representations with the opposite tensor product. The statistics operators in their turn define
a representation of the infinite permutation group. From these data, one can then extract two
intrinsic quantum numbers which are invariants of the superselection sectors: the “statistical
dimension” and a sign. The statistical dimension is necessarily a positive integer (possibly
infinite), and the sign is −1 if and only if the representation of the Poincaré group in the sector
has half-integer spin (an algebraic Spin-Statistics theorem).
There is no assumption that the observables arise as the invariants of a larger “field algebra”
of unobservable operators, under the action of an inner symmetry. To the contrary, the
analysis was crowned by the “duality result” of [Doplicher and Roberts (1990)]: The DHR
symmetric tensor category of representations of the local net is isomorphic to the category
of representations of a compact group 𝐺, such that the statistical dimension is identified with
the natural dimension of the associated representation of 𝐺. Then, one can construct a field
algebra as a graded-local net with the grading given by the Spin-Statistic theorem, such that
the observables are the invariants under an action of 𝐺 by inner symmetry automorphisms
(global gauge group). Thus, the above scenario with a global symmetry being “responsible”
for the existence of superselection sectors can be deduced, rather than assumed. It is a subtle
consequence of locality and covariance of the observables in states “sufficiently close” to the
vacuum state.
The axioms of the DHR approach have to be relaxed in various cases of physical relevance.
Roberts [Roberts (1976)] pointed out that one of the main assumptions, Haag duality in the
vacuum sector, does not hold in theories with spontaneously broken global symmetries. As
a consequence, spontaneously broken symmetries do not give rise to superselection rules.
[Buchholz and Roberts (2014)] addressed the fact that there are “too many” charged sectors in
QED, because of long-range electromagnetic fields accompanying the charges which would
produce continuously many inequivalent sectors for each total electric charge. But these
sectors cannot be distinguished by measurements within future lightcones (which are the only
options experimenters have). By relaxing the notion of sector accordingly, the authors could
define more appropriate, coarser equivalence classes and establish (for sectors of statistical
dimension 1) the same sector structure as in DHR theory.
QFTs with long-range interactions or topological charges admit superselection sectors that do
not satisfy the DHR selection criterium (localization in doublecones). For charged states of
QED, “photon clouds” extending to infinity define inequivalent sectors [Fröhlich et al. (1979)].
Their electric flux cannot be compactly localized but possibly along infinite spacelike cones,
while the restriction of sectors to lightcones can distinguish only their total electric charge
[Buchholz (1982)], see above. Motivated by the search for confinement criteria, [Buchholz
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and Fredenhagen (1982)] showed for theories with a mass gap that the intrinsic localization
of sectors cannot be worse than arbitrary spacelike cones. It is rather clear from the DHR
analysis, that in such cases, the reconstruction as in [Doplicher and Roberts (1990)] cannot
give rise to a graded-local field net. Instead, the charged fields can only be localized, relative
to the local observables, along spacelike cones.
The Wightman axiomatics is therefore too restrictive for realistic quantum field theories. A
perturbative constructive scheme, in which string-localized charged quantum fields naturally
emerge, is the topic of [E6].

4 Superselection sectors in conformal QFT in 2D

In two spacetime dimensions (2D), the causal complement of a doublecone is not connected.
This circumstance is responsible for the fact that in the DHR theory of superselection sectors,
the tensor category of representations of the (chiral or 2D) observables is braided, i.e., it is not
equipped with a unitary representation of the infinite permutation group but of the infinite braid
group [Fröhlich and Gabbiani (1990),Fredenhagen et al. (1989)]. Namely, the cohomological
argument to show that the statistics operators (the representers of transpositions) are their own
inverses, fails.
Braided tensor categories are much richer than symmetric ones. In particular, a general
duality theorem as in [Doplicher and Roberts (1990)] does not exist, and there is no obvious
analogue of a global gauge group that can a posteriori be made “responsible” for the presence
of superselection sectors, as is the case in 4D. The statistical dimensions of sectors are in
general positive but not integer numbers; they can therefore not be identified with the natural
dimension of a representation of some compact group (or Hopf algebra) – it is rather the
square root of the Jones index of a subfactor that characterizes the failure of Haag duality in
the sector under consideration [Longo (1989)]. Also, the sign of the statistics (distinguishing
fermions from bosons in 4D) may be rather a complex phase.
A natural question arises: are there other “reconstructions” of an algebra of fields that create
the superselection sectors of the given observables, and what are the algebraic properties of
the “charged fields”? The question is void, though, for massive quantum field theories in
which the split property (see Sect. 2) holds for wedge regions: [Müger (1998)] has shown that
such theories do not have any DHR sectors besides the vacuum sector.
On the other hand, a conformal quantum field theory (CQFT) neither has a mass gap, nor does
the split property hold for wedge regions. The latter is because two wedges at a finite distance
can be mapped by a conformal transformation to a pair of doublecones touching each other in
a point. Indeed, large classes of models of CQFT in 2D have a rich superselection structure.
We therefore limit the subsequent discussion to the case of CQFT in 2D.

Geometric preliminaries. Conformal quantum field theory is QFT in which the Poincaré
group is extended to the conformal group. In two spacetime dimensions, due to the factor-
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ization of the metric 𝑑𝑠2 = 𝑑𝑡2 − 𝑑𝑥2 = 𝑑 (𝑡 − 𝑥)𝑑 (𝑡 + 𝑥), the conformal group is infinite-
dimensional. It acts geometrically on a “conformal completion” of the spacetime. The latter
can be visualized with the help of the Cayley map (the inverse of the stereographic projection)

𝑢± = 𝑡 ± 𝑥 ↦→ 𝑧± =
1 + 𝑖𝑢±
1 − 𝑖𝑢±

= 𝑒𝑖𝜃±

which maps the left and right chiral lightrays to the sphere 𝑆1 ⊂ C. The completion is
the addition of the points 𝑧± = −1. Thus, the conformal spacetime is 𝑆1 × 𝑆1. The 2D
Einstein universe is a covering space of 𝑆1×𝑆1 respecting the spacelike periodicity (𝜃+, 𝜃−) =
(𝜃+ + 2𝜋, 𝜃− − 2𝜋). The conformal group is then (a covering of) Diff+(𝑆1) ×Diff+(𝑆1), where
Diff+(𝑆1) are the orientation-preserving diffeomorphisms of the circle.
The conformal completion “at infinity” (where opposite wedges touch each other) is the reason
why the split property for wedges fails, as stated above.

Conformal quantum fields. Before we turn to the DHR superselection theory of CQFT in
two dimensions, we explain that conformal symmetry is a very restrictive property for the
structure of conformal fields.
The challenge for conformal quantum field theory (CQFT) in 2D is to understand how
conformal symmetry can be implemented as an action on algebras of local quantum fields
on a Hilbert space. A first, and most prominent in the sequel, indicator for the individual
fields is the “scaling dimension”, that characterizes their transformation law under the scale
transformations of the (embedded) Minkowski spacetime.
The remarkable fact about CQFT is the existence of “chiral fields”, depending on only one of
the lightcone coordinates 𝑡 ± 𝑥. The name comes from the left- or right-handed free massless
Dirac fields in 2D which are chiral in the present sense. Beyond this example, every conserved
symmetric and traceless tensor field of rank 𝑟 (e.g., conserved currents of rank 1 or the stress-
energy tensor of rank 2) has only two linearly independent components, and these provide
a pair of chiral fields if and only its scaling dimension equals its rank 𝑟. Thus, chiral fields
abound in conformal field theories whenever there are symmetries associated with conserved
tensor fields of canonical dimension.
When the Hamiltonian is positive, correlation functions are boundary values of analytic
functions with ordered imaginary parts of the time variables. Under the Cayley map, this
ordering becomes “radial ordering” in the complex variables 𝑧±. In the complex domain,
𝑧+ and 𝑧− are independent complex variables, and chiral fields are holomorphic functions of
either 𝑧+ or 𝑧−. At the “Euclidean points” with real 𝑥 and imaginary time (where the metric
becomes Euclidean), one has 𝑢− = −𝑢+ and (after the Cayley map) 𝑧− = 𝑧+. This justifies the
popular terminology “holomorphic” and “anti-holomorphic” [di Francesco et al. (1997)].
In the “Euclidean” formulation, conformal field theory has a non-relativistic interpretation as
critical equilibrium points of systems of Statistical Mechanics with infinitely many degrees of
freedom in two spatial dimensions. Namely, conformal invariance emerges at critical points
by the loss of a finite correlation length to set a scale.

9



Most of the structures of CQFT “in real time” (Lorentzian metric) can be “translated” to
Euclidean CFT. However, Euclidean CFT is much less restrictive than CQFT which needs
a Hilbert space, and not every Euclidean model will have correlation functions obeying the
Osterwalder-Schrader positivity conditions, so as to be the “Wick rotation” of a relativistic
QFT. In particular, many of the classification results for symmetries and representations of
CQFT will not apply, or have to be extended to Euclidean CFT.
Models of Euclidean CFT exhibit a mathematically far richer structure, including rational
models with “forbidden” central charges (see below) like the Yang-Lee model with 𝑐 = −22

5 ,
or logarithmic CFT models with not completely decomposable fusion structure (appearing,
e.g., in percolating systems), that have no counterpart in CQFT.

Classifications and superselection structure. It was known by [Lüscher and Mack (1976)]
that a conserved symmetric and traceless stress-energy tensor in two spacetime dimensions,
without any further model input, splits into two chiral components, whose commutation
relations are a position-space version of (two copies of) the Virasoro algebra. Conversely, the
Virasoro algebra is a mode expansion of the chiral stress-energy tensor. The Virasoro algebra
is the unique central extension of the Lie algebra of Diff+(𝑆1), where the eigenvalue of the
central extension is called the “central charge” 𝑐. This parameter is the only model-dependent
quantum number of conformal stress-energy tensors.
It is worth noting here, that the Virasoro generators 𝐿𝑛 with |𝑛| ≤ 1 including the “conformal
Hamiltonian” 𝐿0 serve a double role: as the generators of the “unbroken” Möbius subgroup of
Diff+(𝑆1), under which the vacuum vector is invariant, and as field observables (integrals over
the chiral stress-energy tensor). This is the reason why the vacuum state cannot be invariant
under the infinite-dimensional conformal group: the stress-energy tensor would have to be
zero.
A breakthrough in CQFT in two spacetime dimensions was made by [Friedan et al. (1984)]:
There are many inequivalent positive-energy representations of the Virasoro algebra, char-
acterized by their “lowest weight” ℎ (= lowest eigenvalue of 𝐿0) which is interpreted as the
scaling dimension of an associated quantum field. The surprising discovery (already an-
ticipated in [Lüscher and Mack (1976)]) is that in the range 𝑐 < 1, the possible values of
𝑐 and ℎ are discretely quantized by Hilbert space positivity. (Later, many other nontrivial
classification results could be achieved along similar lines.)
The kinematics of chiral fields is particularly simple and often allows to determine their
correlation functions and commutation relations. The “more interesting” fields of CQFT are
non-chiral local fields that can coexist with the chiral ones. Among the non-chiral fields there
must be “primary” ones with a pair (ℎ+, ℎ−) of chiral scaling dimensions so that ℎ+ − ℎ+ is
the spin. They create states from the vacuum which belong to representations of the chiral
Virasoro algebras with lowest weights ℎ+ and ℎ−, respectively. Conversely, the a priori
classification of admissible values of ℎ± is taken as signal for the existence of fields with these
quantum numbers.
A second breakthrough discovery was made by [Belavin et al. (1984)]: the fulfilment of the
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quantization conditions in [Friedan et al. (1984)] leads to Ward identities for the correlation
functions of putative primary fields. These are linear differential equations which can be
used to actually compute the correlation functions (up to a finite number of undetermined
coefficients), and to derive “fusion rules” for the operator product expansion of these fields.
Although obtained in a completely different way, these result are in a certain sense comparable
to the reconstruction of a field algebra [Doplicher and Roberts (1990)] out of the representation
theory of the observables (see Sect. 3), with the fusion rules corresponding to the tensor
product of the category of representations. The picture was completed by constructive
proofs [Goddard et al. (1986)] that all admissible values of (𝑐 < 1, ℎ) can indeed be realized.
For a model-independent treatment, we turn to the DHR theory of superselection sectors.
As said, the theory of Sect. 3 can be adapted to CQFT, with the chiral stress-energy tensors
(the local version of the Virasoro algebra) or other chiral fields as algebras of observables.
The main difference as compared to 4D is that the tensor category of DHR representations is
braided. As a consequence, a duality theorem as in [Doplicher and Roberts (1990)] does not
exist.
The absence of a group underlying the superselection structure of CQFT in 2D does not
exclude that CQFT models 𝐵 can have actions of compact inner symmetry groups 𝐺. In this
case, one may descend to the invariant subalgebra 𝐴 = 𝐵𝐺 (“orbifold model”). Then, as in
4D, the centre of𝑈 (𝐺) splits the vacuum representation of 𝐵 into superselection sectors of 𝐴
in correspondence with the representations of the group. But due to the geometry of the 2D
conformal spacetime, there arise on top so-called “twisted sectors”. These are restrictions of
solitonic sectors of 𝐵, differing at the “left” and “right” infinity of spacetime by the action of
group elements 𝑔 ∈ 𝐺. Because of the twisted representations, the resulting tensor category
of sectors of 𝐴 is no longer isomorphic to the tensor category of representations of 𝐺, but to
the tensor category of the “Drinfel’d double” of 𝐺, which is a Hopf algebra.
However, compact Hopf algebras still fall short as candidates for a symmetry notion, that
could be made responsible for the existence of superselection sectors in general. In particular,
they cannot account for non-integer statistical dimensions, that abound in the multitude of
known CQFT models. Instead, the fusion rules of minimal models suggest that quantum
groups with the deformation parameter 𝑞 a root of unity may play a role. There is, however,
for complex values of 𝑞 a conflict between their ∗-structure and their actions on 𝐶∗ algebras.
The notion of 𝑄-system [Longo and Rehren (1995)] (also known as Frobenius algebra) allows
to characterize extensions of a local net 𝐴 by local (or non-local) nets 𝐵 which contain 𝐴

as fixed points of a global conditional expectation – an abstract generalization of averages
over compact group actions. A 𝑄-system is a set of data within the DHR tensor category of
𝐴, which determines the vacuum Hilbert space of the extension 𝐵, its “field content” in an
algebraic sense, as well as the multiplication law of the new generators. 𝑄-systems can be
classified in terms of the (given) tensor category, but there is no unique or maximal extension
like the field algebra reconstructed in [Doplicher and Roberts (1990)]. The method can be
used both for “chiral extensions” where 𝐴 and 𝐵 are chiral theories, or for two-dimensional
extensions 𝐵 of subtheories 𝐴 = 𝐴+ ⊗ 𝐴− which are tensor products of left and right chiral
subtheories. This result “in principle” answers the quest for “generalized symmetries” that
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can be made responsible for the existence of superselection sectors. However, the resulting
notion of “symmetry” is very far from Hopf algebras or quantum groups, and essentially
resists a classification.
The fact that the tensor product of sectors is only braided-symmetric means that putative
fields of a field algebra that would create these sectors from the vacuum, are neither local
nor anti-local, but “anyonic” (with commutation relations controlled by complex phases or
matrices, rather than signs). A satisfactory general axiomatization of such fields is hardly
possible beyond the mere description of the structure of known models, see [Moore and
Seiberg (1989)] or [Fredenhagen et al. (1992)]. This is another instance where the traditional
Wightman axiomatization falls short.
Modular tensor categories are braided tensor categories with a maximal non-degeneracy of
the braiding, that allows to distinguish sectors only in terms of their braiding with other
sectors. [Kawahigashi et al. (2001)] discovered that the superselection category of a chiral
CQFT is in fact modular, if the failure of Haag duality for disconnected chiral intervals gives
rise to a subfactor of finite Jones index (and a strong additivity property holds). Modular tensor
categories share a new kind of symmetry, known before from models [Cardy (1986)], namely
a unitary representation of the noncompact discrete group 𝑆𝐿 (2,Z)/Z2 on the fusion algebra,
which in some cases can be realized as an action on the (complex) temperature parameter
of thermal partition functions associated with the sectors [Cappelli et al. (1987)]. This new
symmetry is also a necessary condition for the validity of certain glueing prescriptions in the
conformal wordsheet approach to (super-) String theory. By [Kawahigashi et al. (2001)], it is
automatic if the mentioned structural conditions are satisfied.
The study of modular tensor categories revealed many highly non-trivial mathematical struc-
tures [Fuchs et al. (2003), Fuchs et al. (2007)]. These structures could (not least) be iden-
tified [Bischof et al. (2016)] with constraints on the possibilities of “merging” one CQFT
algebra with another, i.e., the question whether and how the two algebras of their local fields
can be defined on a common Hilbert space where they are local relative to each other, and on
imposing boundary conditions on a given CQFT.
This is not the place to go into further details, or to relate all the many other branches of
CQFT. Suffice it to state that there exist not only large classes of “elementary” models like the
minimal models of [Belavin et al. (1984),Goddard et al. (1986)] and the non-Abelian current
algebra models of [Knizhnik and Zamolodchikov (1984)], but there is also a large tool box of
methods to construct new theories from given ones, including the coset construction [Goddard
et al. (1986)], the lattice construction [Buchholz et al. (1988), Dong and Xu (2006)], and
“braided products” of models [Bischof et al. (2016)]. These models can be used to explore
further general features of CQFT.

Acknowledgments. I thank D. Buchholz for a careful and critical reading of an earlier
version.
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