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Abstract. The recent construction and analysis of deformations of quantum field theories
by warped convolutions is extended to a class of curved spacetimes. These spacetimes carry
a family of wedge-like regions which share the essential causal properties of the Poincaré
transforms of the Rindler wedge in Minkowski space. In the setting of deformed quantum field
theories, they play the role of typical localization regions of quantum fields and observables.
As a concrete example of such a procedure, the deformation of the free Dirac field is studied.

1 Introduction

Deformations of quantum field theories arise in different contexts and have been studied
from different points of view in recent years. One motivation for considering such models
is a possible noncommutative structure of spacetime at small scales, as suggested by
combining classical gravity and the uncertainty principle of quantum physics [DFR95].
Quantum field theories on such noncommutative spaces can then be seen as deformations
of usual quantum field theories, and it is hoped that they might capture some aspects of
a still elusive theory of quantum gravity (cf. [Sza03] for a review). By now there exist
several different types of deformed quantum field theories, see [GW05, BPQV08, Sol08,
GL08, BGK+08, BDFP10] for some recent papers, and references cited therein.

Certain deformation techniques arising from such considerations can also be used as
a device for the construction of new models in the framework of usual quantum field
theory on commutative spaces [GL07, BS08, GL08, BLS10, LW10], independent of their
connection to the idea of noncommutative spaces. From this point of view, the deforma-
tion parameter plays the role of a coupling constant which changes the interaction of the
model under consideration, but leaves the classical structure of spacetime unchanged.

Deformations designed for either describing noncommutative spacetimes or for con-
structing new models on ordinary spacetimes have been studied mostly in the case of a
flat manifold, either with a Euclidean or Lorentzian signature. In fact, many approaches
rely on a preferred choice of Cartesian coordinates in their very formulation, and do not
generalize directly to curved spacetimes. The analysis of the interplay between space-
time curvature and deformations involving noncommutative structures thus presents a
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challenging problem. As a first step in this direction, we study in the present paper how
certain deformed quantum field theories can be formulated in the presence of external
gravitational fields (i.e., on curved spacetime manifolds), see also [ABD+05, OS09] for
other approaches to this question. We will not address here the fundamental question
of dynamically coupling the matter fields with a possible noncommutative geometry of
spacetime [PV04, Ste07], but rather consider as an intermediate step deformed quantum
field theories on a fixed Lorentzian background manifold M .

A deformation technique which is well suited for our purposes is that of warped convo-
lutions, see [BS08] and [GL07, GL08] for precursors and related work. Starting from a
Hilbert space H carrying a representation U of IRn, the warped convolution AQ of an
operator A on H is defined as

AQ = (2π)−n

∫
dnx dny e−ixy U(Qx)AU(y −Qx) . (1.1)

Here Q is an antisymmetric (n× n)-matrix playing the role of deformation parameter,
and the integral can be defined in an oscillatory sense if A and U meet certain regularity
requirements. For deformations of a single algebra, the mapping A → AQ has many
features in common with deformation quantization and the Weyl-Moyal product, and in
fact was recently shown [BLS10] to be equivalent to specific representations of Rieffel’s
deformed C∗-algebras with IRn-action [Rie92]. In application to field theory models,
however, one has to deform a whole family of algebras, corresponding to subsystems
localized in spacetime, and the parameter Q has to be replaced by a family of matrices
{Q} adapted to the geometry of the underlying spacetime.

To apply this scheme to quantum field theories on curved manifolds, we will consider
spacetimes with a sufficiently large isometry group containing two commuting Killing
fields, which give rise to a representation of IR2 as required in (1.1). This setting is wide
enough to encompass a number of cosmologically relevant manifolds such as Friedmann-
Robertson-Walker spacetimes, or Bianchi models. Making use of the algebraic frame-
work of quantum field theory [Haa96, Ara99], we can then formulate quantum field
theories in an operator-algebraic language and study their deformations. Despite the
fact that the warped convolution was invented for the deformation of Minkowski space
quantum field theories, it turns out that all reference to the particular structure of flat
spacetime, such as Poincaré transformations and a Poincaré invariant vacuum state, can
be avoided.

We are interested in understanding to what extent the familiar structure of quantum
field theories on curved spacetimes is preserved under such deformations, and investigate
in particular covariance and localization properties. Concerning locality, it is known that
in warped models on Minkowski space, point-like localization is weakened to localization
in certain infinitely extended, wedge-shaped regions [GL07, BS08, GL08, BLS10]. These
regions are defined as Poincaré transforms of the Rindler wedge

WR := {(x0, x1, x2, x3) ∈ IR4 : x1 > |x0|} . (1.2)

Because of their intimate relation to the Poincaré symmetry of Minkowski spacetime, it is
not obvious what a good replacement for such a collection of regions is in the presence
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of non-vanishing curvature. In fact, different definitions are possible, and wedges on
special manifolds have been studied by many authors in the literature [Kay85, BB99,
Reh00, BMS01, GLRV01, BS04, LR07, Str08, Bor09].

In Section 2, the first main part of our investigation, we show that on those four-
dimensional curved spacetimes which allow for the application of the deformation meth-
ods in [BLS10], and thus carry two commuting Killing fields, there also exists a family
of wedges with causal properties analogous to the Minkowski space wedges. Because of
the prominent role wedges play in many areas of Minkowski space quantum field the-
ory [BW75, Bor92, Bor00, BDFS00, BGL02], this geometric and manifestly covariant
construction is also of interest independently of its relation to deformations.

In Section 3, we then consider quantum field theories on curved spacetimes, and
deform them by warped convolution. We first show that these deformations can be
carried through in a model-independent, operator-algebraic framework, and that the
emerging models share many structural properties with deformations of field theories
on flat spacetime (Section 3.1). In particular, deformed quantum fields are localized in
the wedges of the considered spacetime. These and further aspects of deformed quantum
field theories are also discussed in the concrete example of a Dirac field in Section 3.2.
Section 4 contains our conclusions.

2 Geometric setup

To prepare the ground for our discussion of deformations of quantum field theories on
curved backgrounds, we introduce in this section a suitable class of spacetimes and
study their geometrical properties. In particular, we show how the concept of wedges,
known from Minkowski space, generalizes to these manifolds. Recall in preparation
that a wedge in four-dimensional Minkowski space is a region which is bounded by
two non-parallel characteristic hyperplanes [TW97], or, equivalently, a region which
is a connected component of the causal complement of a two-dimensional spacelike
plane. The latter definition has a natural analogue in the curved setting. Making use of
this observation, we construct corresponding wedge regions in Section 2.1, and analyse
their covariance, causality and inclusion properties. At the end of that section, we
compare our notion of wedges to other definitions which have been made in the literature
[BB99, BMS01, BS04, LR07, Bor09], and point out the similarities and differences.

In Section 2.2, the abstract analysis of wedge regions is complemented by a number
of concrete examples of spacetimes fulfilling our assumptions.

2.1 Edges and wedges in curved spacetimes

In the following, a spacetime (M, g) is understood to be a four-dimensional, Hausdorff,
(arcwise) connected, smooth manifold M endowed with a smooth, Lorentzian metric g
whose signature is (+,−,−,−). Notice that it is automatically guaranteed that M is
also paracompact and second countable [Ger68, Ger70]. The (open) causal complement
of a set O ⊂ M is defined as

O′ := M\
[
J+(O) ∪ J−(O)

]
, (2.1)
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where J±(O) is the causal future respectively past of O in M [Wal84, Section 8.1].
To avoid pathological geometric situations such as closed causal curves, and also to

define a full-fledged Cauchy problem for a free field theory whose dynamics is determined
by a second order hyperbolic partial differential equation, we will restrict ourselves to
globally hyperbolic spacetimes. So in particular, M is orientable and time-orientable,
and we fix both orientations. While this setting is standard in quantum field theory
on curved backgrounds, we will make additional assumptions regarding the structure of
the isometry group Iso(M, g) of (M, g), motivated by our desire to define wedges in M
which resemble those in Minkowski space.

Our most important assumption on the structure of (M, g) is that it admits two
linearly independent, spacelike, complete, commuting smooth Killing fields ξ1, ξ2, which
will later be essential in the context of deformed quantum field theories. We refer here
and in the following always to pointwise linear independence, which entails in particular
that these vector fields have no zeros. Denoting the flows of ξ1, ξ2 by ϕξ1 ,ϕξ2 , the orbit
of a point p ∈ M is a smooth two-dimensional spacelike embedded submanifold of M ,

E := {ϕξ1,s1(ϕξ2,s2(p)) ∈ M : s1, s2 ∈ IR} , (2.2)

where s1, s2 are the flow parameters of ξ1, ξ2.
Since M is globally hyperbolic, it is isometric to a smooth product manifold IR×Σ,

where Σ is a smooth, three-dimensional embedded Cauchy hypersurface. It is known
that the metric splits according to g = βdT 2−h with a temporal function T : IR×Σ → IR
and a positive function β ∈ C∞(IR× Σ, (0,∞)), while h induces a smooth Riemannian
metric on Σ [BS05, Thm. 2.1]. We assume that, with E as in (2.2), the Cauchy surface
Σ is smoothly homeomorphic to a product manifold I ×E, where I is an open interval
or the full real line. Thus M ∼= IR× I ×E, and we require in addition that there exists
a smooth embedding ι : IR× I → M . By our assumption on the topology of I, it follows
that (IR× I, ι∗g) is a globally hyperbolic spacetime without null focal points, a feature
that we will need in the subsequent construction of wedge regions.

Definition 2.1 A spacetime (M, g) is called admissible if it admits two linearly indepen-
dent, spacelike, complete, commuting, smooth Killing fields ξ1, ξ2 and the corresponding
split M ∼= IR× I × E, with E defined in (2.2), has the properties described above.

The set of all ordered pairs ξ := (ξ1, ξ2) satisfying these conditions for a given ad-
missible spacetime (M, g) is denoted Ξ(M, g). The elements of Ξ(M, g) will be referred
to as Killing pairs.

For the remainder of this section, we will work with an arbitrary but fixed admissible
spacetime (M, g), and usually drop the (M, g)-dependence of various objects in our
notation, e.g., write Ξ instead of Ξ(M, g) for the set of Killing pairs, and Iso in place
of Iso(M, g) for the isometry group. Concrete examples of admissible spacetimes, such
as Friedmann-Robertson-Walker-, Kasner- and Bianchi-spacetimes, will be discussed in
Section 2.2.

The flow of a Killing pair ξ ∈ Ξ is written as

ϕξ,s := ϕξ1,s1 ◦ ϕξ2,s2 = ϕξ2,s2 ◦ ϕξ1,s1 , ξ = (ξ1, ξ2) ∈ Ξ, s = (s1, s2) ∈ IR2, (2.3)
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where s1, s2 ∈ IR are the parameters of the (complete) flows ϕξ1 ,ϕξ2 of ξ1, ξ2. By
construction, each ϕξ is an isometric IR2-action by diffeomorphisms on (M, g), i.e.,
ϕξ,s ∈ Iso and ϕξ,sϕξ,u = ϕξ,s+u for all s, u ∈ IR2.

On the set Ξ, the isometry group Iso and the general linear group GL(2, IR) act in a
natural manner.

Lemma 2.2 Let h ∈ Iso, N ∈ GL(2, IR), and define, ξ = (ξ1, ξ2) ∈ Ξ,

h∗ξ := (h∗ξ1, h∗ξ2) , (2.4)

(Nξ)(p) := N(ξ1(p), ξ2(p)) , p ∈ M . (2.5)

These operations are commuting group actions of Iso and GL(2, IR) on Ξ, respectively.
The GL(2, IR)-action transforms the flow of ξ ∈ Ξ according to, s ∈ IR2,

ϕNξ,s = ϕξ,NT s . (2.6)

If h∗ξ = Nξ for some ξ ∈ Ξ, h ∈ Iso, N ∈ GL(2, IR), then detN = ±1.

Proof: Due to the standard properties of isometries, Iso acts on the Lie algebra of
Killing fields by the push-forward isomorphisms ξ1 *→ h∗ξ1 [O’N83]. Therefore, for
any (ξ1, ξ2) ∈ Ξ, also the vector fields h∗ξ1, h∗ξ2 are spacelike, complete, commuting,
linearly independent, smooth Killing fields. The demanded properties of the splitting
M ∼= IR × I × E directly carry over to the corresponding split with respect to h∗ξ. So
h∗ maps Ξ onto Ξ, and since h∗(k∗ξ1) = (hk)∗ξ1 for h, k ∈ Iso, we have an action of Iso.

The second map, ξ *→ Nξ, amounts to taking linear combinations of the Killing fields
ξ1, ξ2. The relation (2.6) holds because ξ1, ξ2 commute and are complete, which entails
that the respective flows can be constructed via the exponential map. Since detN += 0,
the two components of Nξ are still linearly independent, and since E (2.2) is invariant
under ξ *→ Nξ, the splitting M ∼= IR× I ×E is the same for ξ and Nξ. Hence Nξ ∈ Ξ,
i.e., ξ *→ Nξ is a GL(2, IR)-action on Ξ, and since the push-forward is linear, it is clear
that the two actions commute.

To prove the last statement, we consider the submanifold E (2.2) together with its
induced metric. Since the Killing fields ξ1, ξ2 are tangent to E, their flows are isometries
of E. Since h∗ξ = Nξ and E is two-dimensional, it follows that N acts as an isometry
on the tangent space TpE, p ∈ E. But as E is spacelike and two-dimensional, we can
assume without loss of generality that the metric of TpE is the Euclidean metric, and
therefore has the two-dimensional Euclidean group E(2) as its isometry group. Thus
N ∈ GL(2, IR) ∩ E(2) = O(2), i.e., detN = ±1. !

The GL(2, IR)-transformation given by the flip matrix Π :=
(
0 1
1 0

)
will play a special

role later on. We therefore reserve the name inverted Killing pair of ξ = (ξ1, ξ2) ∈ Ξ for

ξ′ := Πξ = (ξ2, ξ1) . (2.7)

Note that since we consider ordered tuples (ξ1, ξ2), the Killing pairs ξ and ξ′ are not
identical. Clearly, the map ξ *→ ξ′ is an involution on Ξ, i.e., (ξ′)′ = ξ.

After these preparations, we turn to the construction of wedge regions in M , and begin
by specifying their edges.
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Definition 2.3 An edge is a subset of M which has the form

Eξ,p := {ϕξ,s(p) ∈ M : s ∈ IR2} (2.8)

for some ξ ∈ Ξ, p ∈ M . Any spacelike vector nξ,p ∈ TpM which completes the gradient of
the chosen temporal function and the Killing vectors ξ1(p), ξ2(p) to a positively oriented
basis (∇T (p), ξ1(p), ξ2(p), nξ,p) of TpM is called an oriented normal of Eξ,p.

It is clear from this definition that each edge is a two-dimensional, spacelike, smooth
submanifold of M . Our definition of admissible spacetimes M ∼= IR × I × E explicitly
restricts the topology of I, but not of the edge (2.2), which can be homeomorphic to a
plane, cylinder, or torus.

Note also that the description of the edge Eξ,p in terms of ξ and p is somewhat redun-
dant: Replacing the Killing fields ξ1, ξ2 by linear combinations ξ̃ := Nξ, N ∈ GL(2, IR),
or replacing p by p̃ := ϕξ,u(p) with some u ∈ IR2, results in the same manifold Eξ̃,p̃ = Eξ,p.

Before we define wedges as connected components of causal complements of edges, we
have to prove the following key lemma, from which the relevant properties of wedges fol-
low. For its proof, it might be helpful to visualize the geometrical situation as sketched
in Figure 1.

Figure 1: Three-dimensional sketch of the wedge Wξ,p and its edge Eξ,p

Lemma 2.4 The causal complement E ′
ξ,p of an edge Eξ,p is the disjoint union of two

connected components, which are causal complements of each other.

Proof: We first show that any point q ∈ E ′
ξ,p is connected to the base point p by a smooth,

spacelike curve. Since M is globally hyperbolic, there exist Cauchy surfaces Σp,Σq

passing through p and q, respectively. We pick two compact subsetsKq ⊂ Σq, containing
q, andKp ⊂ Σp, containing p. IfKp, Kq are chosen sufficiently small, their unionKp∪Kq

is an acausal, compact, codimension one submanifold of M . It thus fulfils the hypothesis
of Thm. 1.1 in [BS06], which guarantees that there exists a spacelike Cauchy surface
Σ containing the said union. In particular, there exists a smooth, spacelike curve γ
connecting p = γ(0) and q = γ(1). Picking spacelike vectors v ∈ TpΣ and w ∈ TqΣ, we
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have the freedom of choosing γ in such a way that γ̇(0) = v and γ̇(1) = w. If v and
w are chosen linearly independent from ξ1(p), ξ2(p) and ξ1(q), ξ2(q), respectively, these
vectors are oriented normals of Eξ,p respectively Eξ,q, and we can select γ such that it
intersects the edge Eξ,p only in p.

Let us define the region

Wξ,p := {q ∈ E ′
ξ,p : ∃ γ ∈ C1([0, 1],M) with γ(0) = p, γ(1) = q, Eξ,p ∩ γ = {p},

γ̇(0) is an oriented normal of Eξ,p, γ̇(1) is an oriented normal of Eξ,q} , (2.9)

and, exchanging ξ with the inverted Killing pair ξ′, we correspondingly define the region
Wξ′,p. It is clear from the above argument that Wξ,p ∪ Wξ′,p = E ′

ξ,p, and that we can
prescribe arbitrary normals n,m of Eξ,p, Eξ,q as initial respectively final tangent vectors
of the curve γ connecting p to q ∈ Wξ,p.

The proof of the lemma consists in establishing that Wξ,p and Wξ′,p are disjoint, and
causal complements of each other. To prove disjointness of Wξ,p,Wξ′,p, assume there
exists a point q ∈ Wξ,p ∩Wξ′,p. Then q can be connected with the base point p by two
spacelike curves, whose tangent vectors satisfy the conditions in (2.9) with ξ respectively
ξ′. By joining these two curves, we have identified a continuous loop λ in E ′

ξ,p. As an

oriented normal, the tangent vector λ̇(0) at p is linearly independent of ξ1(p), ξ2(p), so
that λ intersects Eξ,p only in p.

Recall that according to Definition 2.1, M splits as the product M ∼= IR× I × Eξ,p,
with an open interval I which is smoothly embedded in M . Hence we can consider
the projection π(λ) of the loop λ onto I, which is a closed interval π(λ) ⊂ I because
the simple connectedness of I rules out the possibility that π(λ) forms a loop, and on
account of the linear independence of {ξ1(p), ξ2(p), nξ,p}, the projection cannot be just
a single point. Yet, as λ is a loop, there exists p′ ∈ λ such that π(p′) = π(p). We also
know that π−1({π(p)}) = IR× {π(p)}× Eξ,p is contained in J+(Eξ,p) ∪ Eξ,p ∪ J−(Eξ,p)
and, since p and p′ are causally separated, the only possibility left is that they both lie
on the same edge. Yet, per construction, we know that the loop intersects the edge only
once at p and, thus, p and p′ must coincide, which is the sought contradiction.

To verify the claim about causal complements, assume there exist points q ∈ Wξ,p,
q′ ∈ Wξ′,p and a causal curve γ connecting them, γ(0) = q, γ(1) = q′. By definition of the
causal complement, it is clear that γ does not intersect Eξ,p. In view of our restriction
on the topology of M , it follows that γ intersects either J+(Eξ,p) or J−(Eξ,p). These
two cases are completely analogous, and we consider the latter one, where there exists
a point q′′ ∈ γ ∩ J−(Eξ,p). In this situation, we have a causal curve connecting q ∈ Wξ,p

with q′′ ∈ J−(Eξ,p), and since q /∈ J−(q′′) ⊂ J−(Eξ,p), it follows that γ must be past
directed. As the time orientation of γ is the same for the whole curve, it follows that
also the part of γ connecting q′′ and q′ is past directed. Hence q′ ∈ J−(q′′) ⊂ J−(Eξ,p),
which is a contradiction to q′ ∈ Wξ′,p. Thus Wξ′,p ⊂ Wξ,p

′.

To show that Wξ′,p coincides with Wξ,p
′, let q ∈ Wξ,p

′ = Wξ,p
′ ⊂ E ′

ξ,p = Wξ,p /Wξ′,p.
Yet q ∈ Wξ,p is not possible since q ∈ Wξ,p

′ and Wξ,p is open. So q ∈ Wξ′,p, i.e., we have
shown Wξ,p

′ ⊂ Wξ′,p, and the claimed identity Wξ′,p = Wξ,p
′ follows. !
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E′
ξ,p in a Lorentz cylinder

Lemma 2.4 does not hold if the topological require-
ments on M are dropped. As an example, consider
a cylinder universe IR × S1 × IR2, the product of the
Lorentz cylinder IR × S1 [O’N83] and the Euclidean
plane IR2. The translations in the last factor IR2 de-
fine spacelike, complete, commuting, linearly indepen-
dent Killing fields ξ. Yet the causal complement of the
edge Eξ,p = {0} × {1} × IR2 has only a single con-
nected component, which has empty causal complement.
In this situation, wedges lose many of the useful prop-
erties which we establish below for admissible space-
times.

In view of Lemma 2.4, wedges in M can be defined as follows.

Definition 2.5 (Wedges)
A wedge is a subset of M which is a connected component of the causal complement of
an edge in M . Given ξ ∈ Ξ, p ∈ M , we denote by Wξ,p the component of E ′

ξ,p which
intersects the curves γ(t) := expp(t nξ,p), t > 0, for any oriented normal nξ,p of Eξ,p.
The family of all wedges is denoted

W := {Wξ,p : ξ ∈ Ξ, p ∈ M} . (2.10)

As explained in the proof of Lemma 2.4, the condition that the curve IR+ 0 t *→
expp(t nξ,p) intersects a connected component of E ′

ξ,p is independent of the chosen normal
nξ,p, and each such curve intersects precisely one of the two components of E ′

ξ,p.
Some properties of wedges which immediately follow from the construction carried

out in the proof of Lemma 2.4 are listed in the following proposition.

Proposition 2.6 (Properties of wedges)
Let W = Wξ,p be a wedge. Then

a) W is causally complete, i.e., W ′′ = W , and hence globally hyperbolic.

b) The causal complement of a wedge is given by inverting its Killing pair,

(Wξ,p)
′ = Wξ′,p . (2.11)

c) A wedge is invariant under the Killing flow generating its edge,

ϕξ,s(Wξ,p) = Wξ,p , s ∈ IR2 . (2.12)

Proof: a) By Lemma 2.4, W is the causal complement of another wedge V , and therefore
causally complete: W ′′ = V ′′′ = V ′ = W . Since M is globally hyperbolic, this implies
that W is globally hyperbolic, too [Key96, Prop. 12.5].

b) This statement has already been checked in the proof of Lemma 2.4.
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c) By definition of the edge Eξ,p (2.8), we have ϕξ,s(Eξ,p) = Eξ,p for any s ∈ IR2,
and since the ϕξ,s are isometries, it follows that ϕξ,s(E ′

ξ,p) = E ′
ξ,p. Continuity of the flow

implies that also the two connected components of this set are invariant. !

Corollary 2.7 (Properties of the family of wedge regions)
The family W of wedge regions is invariant under the isometry group Iso and under
taking causal complements. For h ∈ Iso, it holds

h(Wξ,p) = Wh∗ξ,h(p) . (2.13)

Proof: Since isometries preserve the causal structure of a spacetime, we only need to
look at the action of isometries on edges. We find

hEξ,p = {h ◦ ϕξ,s ◦ h−1(h(p)) : s ∈ IR2} = {ϕh∗ξ,s(h(p)) : s ∈ IR2} = Eh∗ξ,h(p) (2.14)

by using the well-known fact that conjugation of flows by isometries amounts to the
push-forward by the isometry of the associated vector field. Since h∗ξ ∈ Ξ for any
ξ ∈ Ξ, h ∈ Iso (Lemma 2.2), the family W is invariant under the action of the isometry
group. Closedness of W under causal complementation is clear from Prop. 2.6 b). !

In contrast to the situation in flat spacetime, the isometry group Iso does not act
transitively on W(M, g) for generic admissible M , and there is no isometry mapping a
given wedge onto its causal complement. This can be seen explicitly in the examples
discussed in Section 2.2. To keep track of this structure of W(M, g), we decompose
Ξ(M, g) into orbits under the Iso- and GL(2, IR)-actions.

Definition 2.8 Two Killing pairs ξ, ξ̃ ∈ Ξ are equivalent, written ξ ∼ ξ̃, if there exist
h ∈ Iso and N ∈ GL(2, IR) such that ξ̃ = Nh∗ξ.

As ξ *→ Nξ and ξ *→ h∗ξ are commuting group actions, ∼ is an equivalence relation.
According to Lemma 2.2 and Prop. 2.6 b), c), acting with N ∈ GL(2, IR) on ξ either
leaves WNξ,p = Wξ,p invariant (if detN > 0) or exchanges this wedge with its causal
complement, WNξ,p = W ′

ξ,p (if detN < 0). Therefore the “coherent”1 subfamilies arising
in the decomposition of the family of all wedges along the equivalence classes [ξ] ∈ Ξ/∼,

W =
⊔

[ξ]

W[ξ] , W[ξ] := {Wξ̃,p : ξ̃ ∼ ξ, p ∈ M} , (2.15)

take the form

W[ξ] = {Wh∗ξ,p, W
′
h∗ξ,p : h ∈ Iso, p ∈ M} . (2.16)

In particular, each subfamily W[ξ] is invariant under the action of the isometry group
and causal complementation.

1See [BS07] for a related notion on Minkowski space.

9



In our later applications to quantum field theory, it will be important to have control
over causal configurations W1 ⊂ W ′

2 and inclusions W1 ⊂ W2 of wedges W1,W2 ∈ W .
Since W is closed under taking causal complements, it is sufficient to consider inclusions.
Note that the following proposition states in particular that inclusions can only occur
between wedges from the same coherent subfamily W[ξ].

Proposition 2.9 (Inclusions of wedges).
Let ξ, ξ̃ ∈ Ξ, p, p̃ ∈ M . The wedges Wξ,p and Wξ̃,p̃ form an inclusion, Wξ,p ⊂ Wξ̃,p̃, if

and only if p ∈ Wξ̃,p̃ and there exists N ∈ GL(2, IR) with detN > 0, such that ξ̃ = Nξ.

Proof: (⇐) Let us assume that ξ̃ = Nξ holds for some N ∈ GL(2, IR) with detN > 0,
and p ∈ Wξ̃,p̃. In this case, the Killing fields in ξ̃ are linear combinations of those in ξ,
and consequently, the edges Eξ,p and Eξ̃,p̃ intersect if and only if they coincide, i.e. if
p̃ ∈ Eξ,p. If the edges coincide, we clearly have Wξ̃,p̃ = Wξ,p. If they do not coincide, it

follows from p ∈ Wξ̃,p̃ that Eξ,p and Eξ̃,p̃ are either spacelike separated or they can be
connected by a null geodesic.

Consider now the case that Eξ,p and Eξ̃,p̃ are spacelike separated, i.e. p ∈ Wξ̃,p̃. Pick
a point q ∈ Wξ,p and recall that Wξ,p can be characterized by equation (2.9). Since
p ∈ Wξ̃,p̃ and q ∈ Wξ,p, there exist curves γp and γq, which connect the pairs of points
(p̃, p) and (p, q), respectively, and comply with the conditions in (2.9). By joining γp
and γq we obtain a curve which connects p̃ and q. The tangent vectors γ̇p(1) and γ̇q(0)
are oriented normals of Eξ,p and we choose γp and γq in such a way that these tangent
vectors coincide. Due to the properties of γp and γq, the joint curve also complies with
the conditions in (2.9), from which we conclude q ∈ Wξ̃,p̃, and thus Wξ,p ⊂ Wξ̃,p̃.

Consider now the case that Eξ̃,p̃ and Eξ,p are connected by null geodesics, i.e. p ∈
∂Wξ̃,p̃. Let r be the point in Eξ,p which can be connected by a null geodesic with p̃ and

pick a point q ∈ Wξ,p. The intersection J−(r) ∩ ∂Wξ,p yields another null curve, say µ,
and the intersection µ ∩ J−(q) =: p′ is non-empty since r and q are spacelike separated
and q ∈ Wξ,p. The null curve µ is chosen future directed and parametrized in such a way
that µ(0) = p′ and µ(1) = r. By taking ε ∈ (0, 1) we find q ∈ Wξ,µ(ε) and µ(ε) ∈ Wξ̃,p̃

which entails q ∈ Wξ̃,p̃.
(⇒) Let us assume that we have an inclusion of wedges Wξ,p ⊂ Wξ̃,p̃. Then clearly

p ∈ Wξ̃,p̃. Since M is four-dimensional and ξ1, ξ2, ξ̃1, ξ̃2 are all spacelike, they cannot be
linearly independent. Let us first assume that three of them are linearly independent,
and without loss of generality, let ξ = (ξ1, ξ2) and ξ̃ = (ξ2, ξ3) with three linearly
independent spacelike Killing fields ξ1, ξ2, ξ3. Picking points q ∈ Eξ,p, q̃ ∈ Eξ̃,p̃ these can

be written as q = (t, x1, x2, x3) and q̃ = (t̃, x̃1, x̃2, x̃3) in the global coordinate system of
flow parameters constructed from ξ1, ξ2, ξ3 and the gradient of the temporal function.

For suitable flow parameters s1, s2, s3, we have ϕξ1,s1(q) = (t, x̃1, x2, x3) =: q′ ∈ Eξ,p

and ϕ(ξ2,ξ3),(s2,s3)(q̃) = (t̃, x̃1, x2, x3) =: q̃′ ∈ Eξ̃,p̃. Clearly, the points q′ and q̃′ are
connected by a timelike curve, e.g. the curve whose tangent vector field is given by
the gradient of the temporal function. But a timelike curve connecting the edges of
Wξ,p,Wξ̃,p̃ is a contradiction to these wedges forming an inclusion. So no three of the

vector fields ξ1, ξ2, ξ̃1, ξ̃2 can be linearly independent.

10



Hence ξ̃ = Nξ with an invertible matrix N . It remains to establish the correct sign
of detN , and to this end, we assume detN < 0. Then we have (Wξ,p)′ = Wξ′,p ⊂ Wξ̃,p̃,

by (Prop. 2.6 b)) and the (⇐) statement in this proof, since ξ̃ and ξ′ are related by a
positive determinant transformation and p ∈ Wξ̃,p̃. This yields that both, Wξ,p and its
causal complement, must be contained in Wξ̃,p̃, a contradiction. Hence detN > 0, and
the proof is finished. !

Having derived the structural properties of the set W of wedges needed later, we now
compare our wedge regions to the Minkowski wedges and to other definitions proposed
in the literature.

The flat Minkowski spacetime (IR4, η) clearly belongs to the class of admissible space-
times, with translations along spacelike directions and rotations in the standard time
zero Cauchy surface as its complete spacelike Killing fields. However, as Killing pairs
consist of non-vanishing vector fields, and each rotation leaves its rotation axis invariant,
the set Ξ(IR4, η) consists precisely of all pairs (ξ1, ξ2) such that the flows ϕξ1 , ϕξ2 are
translations along two linearly independent spacelike directions. Hence the set of all
edges in Minkowski space coincides with the set of all two-dimensional spacelike planes.
Consequently, each wedge W ∈ W(IR4, η) is bounded by two non-parallel characteristic
three-dimensional planes. This is precisely the family of wedges usually considered in
Minkowski space2 (see, for example, [TW97]).

Besides the features we established above in the general admissible setting, the family
of Minkowski wedges has the following well-known properties:

a) Each wedgeW ∈ W(IR4, η) is the causal completion of the world line of a uniformly
accelerated observer.

b) Each wedge W ∈ W(IR4, η) is the union of a family of double cones whose tips lie
on two fixed lightrays.

c) The isometry group (the Poincaré group) acts transitively on W(IR4, η).

d) W(IR4, η) is causally separating in the sense that given any two spacelike separated
double cones O1, O2 ⊂ IR4, then there exists a wedge W such that O1 ⊂ W ⊂ O′

2

[TW97]. W(IR4, η) is a subbase for the topology of IR4.

All these properties a)–d) do not hold for the class W(M, g) of wedges on a general
admissible spacetime, but some hold for certain subclasses, as can be seen from the
explicit examples in the subsequent section.

There exist a number of different constructions for wedges in curved spacetimes in the
literature, mostly for special manifolds. On de Sitter respectively anti de Sitter space
Borchers and Buchholz [BB99] respectively Buchholz and Summers [BS04] construct

2Note that we would get a “too large” family of wedges in Minkowski space if we would drop the
requirement that the vector fields generating edges are Killing. However, the assumption that edges
are generated by commuting Killing fields is motivated by the application to deformations of quantum
field theories, and one could generalize our framework to spacetimes with edges generated by complete,
linearly independent smooth Killing fields.
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wedges by taking property a) as their defining feature, see also the generalization by
Strich [Str08]. In the de Sitter case, this definition is equivalent to our definition of a
wedge as a connected component of the causal complement of an edge [BMS01]. But
as two-dimensional spheres, the de Sitter edges do not admit two linearly independent
commuting Killing fields. Apart from this difference due to our restriction to commuting,
linearly independent, Killing fields, the de Sitter wedges can be constructed in the same
way as presented here. Thanks to the maximal symmetry of the de Sitter and anti de
Sitter spacetimes, the respective isometry groups act transitively on the corresponding
wedge families (c), and causally separate in the sense of d).

A definition related to the previous examples has been given by Lauridsen-Ribeiro
for wedges in asymptotically anti de Sitter spacetimes (see Def. 1.5 in [LR07]). Note
that these spacetimes are not admissible in our sense since anti de Sitter space is not
globally hyperbolic.

Property b) has recently been taken by Borchers [Bor09] as a definition of wedges
in a quite general class of curved spacetimes which is closely related to the structure of
double cones. In that setting, wedges do not exhibit in general all of the features we
derived in our framework, and can for example have compact closure.

Wedges in a class of Friedmann-Robertson-Walker spacetimes with spherical spatial
sections have been constructed with the help of conformal embeddings into de Sitter
space [BMS01]. This construction also yields wedges defined as connected components
of causal complements of edges. Here a) does not, but c) and d) do hold, see also our
discussion of Friedmann-Robertson-Walker spacetimes with flat spatial sections in the
next section.

The idea of constructing wedges as connected components of causal complements
of specific two-dimensional submanifolds has also been used in the context of globally
hyperbolic spacetimes with a bifurcate Killing horizon [GLRV01], building on earlier
work in [Kay85]. Here the edge is given as the fixed point manifold of the Killing flow
associated with the horizon.

2.2 Concrete examples

In the previous section we provided a complete but abstract characterization of the
geometric structures of the class of spacetimes we are interested in. This analysis is now
complemented by presenting a number of explicit examples of admissible spacetimes.

The easiest way to construct an admissble spacetime is to take the warped product
[O’N83, Chap. 7] of an edge with another manifold. Let (E, gE) be a two-dimensional
Riemannian manifold endowed with two complete, commuting, linearly independent,
smooth Killing fields, and let (X, gX) be a two-dimensional, globally hyperbolic space-
time diffeomorphic to IR× I, with I an open interval or the full real line. Then, given a
positive smooth function f on X, consider the warped product M := X ×f E, i.e., the
product manifold X × E endowed with the metric tensor field

g := π∗
X(gX) + (f ◦ πX) · π∗

E(gE),

where πX : M → X and πE : M → E are the projections on X and E. It readily follows
that (M, g) is admissible in the sense of Definition 2.1.
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The following proposition describes an explicit class of admissible spacetimes in terms
of their metrics.

Proposition 2.10 Let (M, g) be a spacetime diffeomorphic to IR× I × IR2, where I ⊆
IR is open and simply connected, endowed with a global coordinate system (t, x, y, z)
according to which the metric reads

ds2 = e2f0dt2 − e2f1dx2 − e2f2dy2 − e2f3(dz − q dy)2. (2.17)

Here t runs over the whole IR, fi, q ∈ C∞(M) for i = 0, ..., 3 and fi, q do not depend on
y and z. Then (M, g) is an admissible spacetime in the sense of Definition 2.1.

Proof: Per direct inspection of (2.17), M is isometric to IR× Σ with Σ ∼= I × IR2 with
ds2 = β dt2−hijdxidxj, where β is smooth and positive, and h is a metric which depends
smoothly on t. Furthermore, on the hypersurfaces at constant t, deth = e2(f1+f2+f3) > 0
and h is block-diagonal. If we consider the sub-matrix with i, j = y, z, this has a positive
determinant and a positive trace. Hence we can conclude that the induced metric on Σ is
Riemannian, or, in other words, Σ is a spacelike, smooth, three-dimensional Riemannian
hypersurface. Therefore we can apply Theorem 1.1 in [BS05] to conclude that M is
globally hyperbolic.

Since the metric coefficients are independent from y and z, the vector fields ξ1 = ∂y
and ξ2 = ∂z are smooth Killing fields which commute and, as they lie tangent to the
Riemannian hypersurfaces at constant time, they are also spacelike. Furthermore, since
per definition of spacetime, M and thus also Σ is connected, we can invoke the Hopf-
Rinow-Theorem [O’N83, § 5, Thm. 21] to conclude that Σ is complete and, thus, all
its Killing fields are complete. As I is simply connected by assumption, it follows that
(M, g) is admissible. !

Under an additional assumption, also a partial converse of Proposition 2.10 is true.
Namely, let (M, g) be a globally hyperbolic spacetime with two complete, spacelike, com-
muting, smooth Killing fields, and pick a local coordinate system (t, x, y, z), where y and
z are the flow parameters of the Killing fields. Then, if the reflection map r : M → M ,
r(t, x, y, z) = (t, x,−y,−z), is an isometry, the metric is locally of the form (2.17), as
was proven in [Cha83, CF84]. The reflection r is used to guarantee the vanishing of
the unwanted off-diagonal metric coefficients, namely those associated to “dx dy” and
“dx dz”. Notice that the cited papers allow only to establish a result on the local struc-
ture of M and no a priori condition is imposed on the topology of I, in distinction to
Proposition 2.10.

Some of the metrics (2.17) are used in cosmology. For the description of a spatially
homogeneous but in general anisotropic universe M ∼= J × IR3 where J ⊆ IR (see §5 in
[Wal84] and [FPH74]), one puts f0 = q = 0 in (2.17) and takes f1, f2, f3 to depend only
on t. This yields the metric of Kasner spacetimes respectively Bianchi I models3

ds2 = dt2 − e2f1dx2 − e2f2dy2 − e2f3dz2 . (2.18)

3 The Bianchi models I–IX [Ell06] arise from the classification of three-dimensional real Lie algebras,
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Clearly here the isometry group contains three smooth Killing fields, locally given by
∂x, ∂y, ∂z, which are everywhere linearly independent, complete and commuting. In par-
ticular, (∂x, ∂y), (∂x, ∂z) and (∂y, ∂z) are Killing pairs.

A case of great physical relevance arises when specializing the metric further by taking
all the functions fi in (2.18) to coincide. In this case, the metric assumes the so-called
Friedmann-Robertson-Walker form

ds2 = dt2 − a(t)2 [dx2 + dy2 + dz2] = a(t(τ))2
[
dτ 2 − dx2 − dy2 − dz2

]
. (2.19)

Here the scale factor a(t) := ef1(t) is defined on some interval J ⊆ IR, and in the
second equality, we have introduced the conformal time τ , which is implicitely defined
by dτ = a−1(t)dt. Notice that, as in the Bianchi I model, the manifold is M ∼= J × IR3,
i.e., the variable t does not need to range over the whole real axis. (This does not affect
the property of global hyperbolicity.)

By inspection of (2.19), it is clear that the isometry group of this spacetime contains
the three-dimensional Euclidean group E(3) = O(3)! IR3. Disregarding the Minkowski
case, where J = IR and a is constant, the isometry group in fact coincides with E(3).
Edges in such a Friedmann-Robertson-Walker universe are of the form {τ}×S, where S is
a two-dimensional plane in IR3 and t(τ) ∈ J . HereW consists of a single coherent family,
and the Iso-orbits inW are labelled by the time parameter τ for the corresponding edges.
Also note that the family of Friedmann-Robertson-Walker wedges is causally separating
in the sense discussed on page 11.

The second form of the metric in (2.19) is manifestly a conformal rescaling of the
flat Minkowski metric. Interpreting the coordinates (τ, x, y, z) as coordinates of a point
in IR4 therefore gives rise to a conformal embedding ι : M → IR4.

Two wedges in FRW spacetime

In this situation, it is interesting to note that the
set of all images ι(E) of edges E in the Friedmann-
Robertson-Walker spacetime coincides with the set
of all Minkowski space edges which lie completely
in ι(M) = J × IR3, provided that J does not co-
incide with IR. These are just the edges parallel
to the standard Cauchy surfaces of constant τ in
IR4. So Friedmann-Robertson-Walker edges can
also be characterized in terms of Minkowski space
edges and the conformal embedding ι, analogous
to the construction of wedges in Friedmann-Robertson-Walker spacetimes with spherical
spatial sections in [BMS01].

thought of as Lie subalgebras of the Lie algebra of Killing fields. Only the cases Bianchi I–VII, in which
the three-dimensional Lie algebra contains IR2 as a subalgebra, are of direct interest here, since only in
these cases Killing pairs exist.
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3 Quantum field theories on admissible spacetimes

Having discussed the relevant geometric structures, we now fix an admissible spacetime
(M, g) and discuss warped convolution deformations of quantum field theories on it. For
models on flat Minkowski space, it is known that this deformation procedure weakens
point-like localization to localization in wedges [BLS10], and we will show here that
the same holds true for admissible curved spacetimes. For a convenient description of
this weakened form of localization, and for a straightforward application of the warped
convolution technique, we will work in the framework of local quantum physics [Haa96].

In this setting, a model theory is defined by a net of field algebras, and here we
consider algebras F(W ) of quantum fields supported in wedges W ∈ W(M, g). The
main idea underlying the deformation is to apply the formalism developed in [BS08,
BLS10], but with the global translation symmetries of Minkowski space replaced by
the Killing flow ϕξ corresponding to the wedge W = Wξ,p under consideration. In the
case of Minkowski spacetime, these deformations reduce to the familiar structure of a
noncommutative Minkowski space with commuting time.

The details of the model under consideration will not be important in Section 3.1,
since our construction relies only on a few structural properties satisfied in any well-
behaved quantum field theory. In Section 3.2, the deformed Dirac quantum field is
presented as a particular example.

3.1 Deformations of nets with Killing symmetries

Proceeding to the standard mathematical formalism [Haa96, Ara99], we consider a C∗-
algebra F, whose elements are interpreted as (bounded functions of) quantum fields on
the spacetime M . The field algebra F has a local structure, and in the present context,
we focus on localization in wedges W ∈ W , since this form of localization turns out
to be stable under the deformation. Therefore, corresponding to each wedge W ∈ W ,
we consider the C∗-subalgebra F(W ) ⊂ F of fields supported in W . Furthermore, we
assume a strongly continuous action α of the isometry group Iso of (M, g) on F, and
a Bose/Fermi automorphism γ whose square is the identity automorphism, and which
commutes with α. This automorphism will be used to separate the Bose/Fermi parts of
fields F ∈ F; in the model theory of a free Dirac field discussed later, it can be chosen
as a rotation by 2π in the Dirac bundle.

To allow for a straightforward application of the results of [BLS10], we will also
assume in the following that the field algebra is concretely realized on a separable Hilbert
space H, which carries a unitary representation U of Iso implementing the action α, i.e.,

U(h)FU(h)−1 = αh(F ) , h ∈ Iso, F ∈ F .

We emphasize that despite working on a Hilbert space, we do not select a state, since
we do not make any assumptions regarding U -invariant vectors in H or the spectrum
of subgroups of the representation U .4 The subsequent analysis will be carried out in a
C∗-setting, without using the weak closures of the field algebras F(W ) in B(H).

4Note that every C∗-dynamical system (A, G,α), where A ⊂B (H) is a concrete C∗-algebra on a
separable Hilbert space H and α : G → Aut(A) is a strongly continuous representation of the locally
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For convenience, we also require the Bose/Fermi automorphism γ to be unitarily
implemented on H, i.e., there exists a unitary V = V ∗ = V −1 ∈ B(H) such that
γ(F ) = V FV . We will also use the associated unitary twist operator

Z :=
1√
2
(1− iV ) . (3.1)

Clearly, the unitarily implemented α and γ can be continued to all of B(H). By a slight
abuse of notation, these extensions will be denoted by the same symbols.

In terms of the data {F(W )}W∈W ,α, γ, the structural properties of a quantum field
theory on M can be summarized as follows [Haa96, Ara99].

a) Isotony: F(W ) ⊂ F(W̃ ) whenever W ⊂ W̃ .

b) Covariance under Iso:

αh(F(W )) = F(hW ) , h ∈ Iso, W ∈ W . (3.2)

c) Twisted Locality: With the unitary Z (3.1), there holds

[ZFZ∗, G] = 0 for F ∈ F(W ), G ∈ F(W ′), W ∈ W . (3.3)

The twisted locality condition (3.3) is equivalent to normal commutation relations
between the Bose/Fermi parts F± := 1

2(F±γ(F )) of fields in spacelike separated wedges,
[F+, G±] = [F±, G+] = {F−, G−} = 0 for F ∈ F(W ), G ∈ F(W ′) [DHR69].

The covariance requirement (3.2) entails that for any Killing pair ξ ∈ Ξ, the algebra
F carries a corresponding IR2-action τξ, defined by

τξ,s := αϕξ,s
= adUξ(s) , s ∈ IR2 ,

where Uξ(s) is shorthand for U(ϕξ,s). Since a wedge of the form Wξ,p with some p ∈ M
is invariant under the flows ϕNξ,s for any N ∈ GL(2, IR) (see Prop. 2.6 c) and Lemma
2.2), we have in view of isotony

τNξ,s(F(Wξ,p)) = F(Wξ,p) , N ∈ GL(2, IR), s ∈ IR2 .

In this setting, all structural elements necessary for the application of warped con-
volution deformations [BLS10] are present, and we will use this technique to define a
deformed net W *−→ F(W )λ of C∗-algebras on M , depending on a deformation param-
eter λ ∈ IR. For λ = 0, we will recover the original theory, F(W )0 = F(W ), and for
each λ ∈ IR, the three basic properties a)–c) listed above will remain valid. To achieve
this, the elements of F(W ) will be deformed with the help of the Killing flow leaving W
invariant. We begin by recalling some definitions and results from [BLS10], adapted to
the situation at hand.

compact group G, has a covariant representation [Ped79, Prop. 7.4.7, Lemma 7.4.9], build out of the
left-regular representation on the Hilbert space L2(G)⊗H.
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Similar to the Weyl product appearing in the quantization of classical systems, the
warped convolution deformation is defined in terms of oscillatory integrals of F-valued
functions, and we have to introduce the appropriate smooth elements first. The action α
is a strongly continuous representation of the Lie group Iso, which acts automorphically
and thus isometrically on the C∗-algebra F. In view of these properties, the smooth
elements F∞ := {F ∈ F : Iso 0 h *→ αh(F ) is ‖ · ‖F-smooth} form a norm-dense ∗-
subalgebra F∞ ⊂ F (see, for example, [Tay86]). However, the subalgebras F(Wξ,p) ⊂ F
are in general only invariant under the IR2-action τξ, and we therefore also introduce a
weakened form of smoothness. An operator F ∈ F will be called ξ-smooth if

IR2 0 s *→ τξ,s(F ) ∈ F (3.4)

is smooth in the norm topology of F. On the Hilbert space level, we have a dense domain
H∞ := {Ψ ∈ H : Iso 0 h *→ U(h)Ψ is ‖ · ‖H-smooth} of smooth vectors in H.

As further ingredients for the definition of the oscillatory integrals, we pick a smooth,
compactly supported “cutoff” function χ ∈ C∞

0 (IR2 × IR2) with χ(0, 0) = 1, and the
standard antisymmetric (2× 2)-matrix

Q :=

(
0 1
−1 0

)
. (3.5)

With these data, we associate to a ξ-smooth F ∈ F the deformed operator (warped
convolution) [BLS10]

Fξ,λ :=
1

4π2
lim
ε→0

∫
ds ds′ e−iss′χ(εs, εs′)Uξ(λQs)FUξ(s

′ − λQs) , (3.6)

where λ is a real parameter, and ss′ denotes the standard Euclidean inner product of
s, s′ ∈ IR2. The above limit exists in the strong operator topology of B(H) on the dense
subspace H∞, and is independent of the chosen cutoff function χ within the specified
class. The thus (densely) defined operator Fξ,λ can be shown to extend to a bounded
ξ-smooth operator on all of H, which we denote by the same symbol [BLS10]. As can
be seen from the above formula, setting λ = 0 yields the undeformed operator Fξ,0 = F ,
for any ξ ∈ Ξ.

The deformation F → Fξ,λ is closely related to Rieffel’s deformation of C∗-algebras
[Rie92], where one introduces the deformed product

F ×ξ,λ G :=
1

4π2
lim
ε→0

∫
ds ds′ e−iss′χ(εs, εs′) τξ,λQs(F )τξ,s′(G) . (3.7)

This limit exists in the norm topology of F for any ξ-smooth F,G ∈ F, and F ×ξ,λ G is
ξ-smooth as well.

As is well known, this procedure applies in particular to the deformation of classical
theories in terms of star products. As field algebra, one would then take a suitable
commutative ∗-algebra of functions on M , endowed with the usual pointwise operations.
The isometry group acts on this algebra automorphically by pullback, and in particular,
the flow ϕξ of any Killing pair ξ ∈ Ξ induces automorphisms. The Rieffel product
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therefore defines a star product on the subalgebra of smooth elements f, g for this
action,

(f .ξ,λ g)(p) =
1

4π2
lim
ε→0

∫
d2s d2s′e−iss′ χ(εs, εs′) f(ϕξ,λQs(p))g(ϕξ,s′(p)) . (3.8)

The function algebra endowed with this star product can be interpreted as a noncom-
mutative version of the manifold M , similar to the flat case [GGBI+04]. Note that since
we are using a two-dimensional spacelike flow on a four-dimensional spacetime, the de-
formation corresponds to a noncommutative Minkowski space with “commuting time”
in the flat case.

The properties of the deformation map F → Fξ,λ which will be relevant here are the
following.

Lemma 3.1 [BLS10]:
Let ξ ∈ Ξ, λ ∈ IR, and consider ξ-smooth operators F,G ∈ F. Then

a) Fξ,λ
∗ = F ∗

ξ,λ.

b) Fξ,λGξ,λ = (F ×ξ,λ G)ξ,λ.

c) If 5 [τξ,s(F ), G] = 0 for all s ∈ IR2, then [Fξ,λ, Gξ,−λ] = 0.

d) If a unitary Y ∈ B(H) commutes with Uξ(s), s ∈ IR2, then Y Fξ,λY −1 = (Y FY −1)ξ,λ,
and Y Fξ,λY −1 is ξ-smooth.

Since we are dealing here with a field algebra obeying twisted locality, we also point
out that statement c) of the above lemma carries over to the twisted local case.

Lemma 3.2 Let ξ ∈ Ξ and F,G ∈ F be ξ-smooth such that [Zτξ,s(F )Z∗, G] = 0. Then

[ZFξ,λZ
∗, Gξ,−λ] = 0 . (3.9)

Proof: The Bose/Fermi operator V commutes with the representation of the isometry
group, and thus the same holds true for the twist Z (3.1). So in view of Lemma 3.1 d),
the assumption implies that ZFZ∗ is ξ-smooth, and [τξ,s(ZFZ∗), G] = 0 for all s ∈ IR2.
In view of Lemma 3.1 c), we thus have [(ZFZ∗)ξ,λ, Gξ,−λ] = 0. But as Z and Uξ(s)
commute, (ZFZ∗)ξ,λ = ZFξ,λZ∗, and the claim follows. !

The results summarized in Lemma 3.1 and Lemma 3.2 will be essential for estab-
lishing the isotony and twisted locality properties of the deformed quantum field theory.
To also control the covariance properties relating different Killing pairs, we need an
additional lemma, closely related to [BLS10, Prop. 2.9].

5In [BS08, BLS10], this statement is shown to hold under the weaker assumption that the commu-
tator [τξ,s(F ), G] vanishes only for all s ∈ S+S, where S is the joint spectrum of the generators of the
IR2-representation Uξ implementing τξ. But since usually S = IR2 in the present setting, we refer here
only to the weaker statement, where S + S ⊂ IR2 has been replaced by IR2.
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Lemma 3.3 Let ξ ∈ Ξ, λ ∈ IR, and F ∈ F be ξ-smooth.

a) Let h ∈ Iso. Then αh(F ) is h∗ξ-smooth, and

αh(Fξ,λ) = αh(F )h∗ξ,λ . (3.10)

b) For N ∈ GL(2, IR), it holds

FNξ,λ = Fξ,detN ·λ . (3.11)

In particular,

Fξ′,λ = Fξ,−λ . (3.12)

Proof: a) The flow of ξ transforms under h according to hϕξ,s = ϕh∗ξ,sh, so that
αh(τξ,s(F )) = τh∗ξ,s(αh(F )). Since F is ξ-smooth, and αh is isometric, the smoothness
of s *→ τh∗ξ,s(αh(F )) follows. Using the strong convergence of the oscillatory integrals
(3.6), we compute on a smooth vector Ψ ∈ H∞

αh(Fξ,λ)Ψ =
1

4π2
lim
ε→0

∫
ds ds′ e−iss′ χ(εs, εs′)U(hϕξ,λQsh

−1)αh(F )U(hϕξ,s′−λQsh
−1)Ψ

=
1

4π2
lim
ε→0

∫
ds ds′ e−iss′ χ(εs, εs′)U(ϕh∗ξ,λQs)αh(F )U(ϕh∗ξ,s′−λQs)Ψ

= αh(F )h∗ξ,λΨ ,

which entails (3.10) since H∞ ⊂ H is dense.
b) In view of the transformation law ϕNξ,s = ϕξ,NT s (2.6), we get, Ψ ∈ H∞,

FNξ,λΨ =
1

4π2
lim
ε→0

∫
ds ds′ e−iss′ χ(εs, εs′)U(ϕNξ,λQs)FU(ϕNξ,s′−λQs)Ψ

=
1

4π2| detN | limε→0

∫
ds ds′ e−i(N−1s,s′) χ(εs, ε(NT )−1s′)Uξ(λN

TQs)FUξ(s
′ − λNTQs)Ψ

=
1

4π2
lim
ε→0

∫
ds ds′ e−iss′ χ(εNs, ε(NT )−1s′)Uξ(λN

TQNs)FUξ(s
′ − λNTQNs)Ψ

= Fξ,detN ·λΨ .

In the last line, we used the fact that the value of the oscillatory integral does not
depend on the choice of cutoff function χ or χN(s, s′) := χ(Ns, (NT )−1s′), and the
equation NTQN = detN ·Q, which holds for any (2× 2)-matrix N .

This proves (3.11), and since ξ′ = Πξ, with the flip matrix Π =
(
0 1
1 0

)
which has

detΠ = −1, also (3.12) follows. !

Having established these properties of individual deformed operators, we now set out
to deform the net W *→ F(W ) of wedge algebras. In contrast to the Minkowski space
setting [BLS10], we are here in a situation where the set Ξ of all Killing pairs is not a
single orbit of one reference pair under the isometry group. Whereas the deformation
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of a net of wedge algebras on Minkowski space amounts to deforming a single algebra
associated with a fixed reference wedge (Borchers triple), we have to specify here more
data, related to the coherent subfamilies W[ξ] in the decomposition W =

⊔
[ξ] W[ξ] of W

(2.15). For each equivalence class [ξ], we choose a representative ξ. In case there exists
only a single equivalence class, this simply amounts to fixing a reference wedge together
with a length scale for the Killing flow. With this choice of representatives ξ ∈ [ξ] made,
we introduce the sets, p ∈ M ,

F(Wξ,p)λ := {Fξ,λ : F ∈ F(Wξ,p) ξ-smooth }‖·‖ , (3.13)

F(Wξ′,p)λ := {Fξ′,λ : F ∈ F(W ′
ξ,p) ξ′-smooth }‖·‖ . (3.14)

Here λ ∈ IR is the deformation parameter, and the superscript denotes norm closure in
B(H). Note that the deformed operators in F(Wξ′,p)λ have the form Fξ′,λ = Fξ,−λ (3.12),
i.e., the sign of the deformation parameter depends on the choice of reference Killing
pair.

The definitions (3.13, 3.14) are extended to arbitrary wedges by setting

F(hWξ,p)λ := αh(F(Wξ,p)λ) , F(hW ′
ξ,p)λ := αh(F(W

′
ξ,p)λ) . (3.15)

Recall that as h, p and [ξ] vary over Iso, M and Ξ/∼, respectively, this defines F(W )λ
for all W ∈ W (cf. (2.16)). It has to be proven that this assignment is well-defined,
e.g. that (3.15) is independent of the way the wedge hWξ,p = h̃Wξ,p̃ is represented. This
will be done below. However, note that the definition of F(W )λ does depend on our
choice of representatives ξ ∈ [ξ], since rescaling ξ amounts to rescaling the deformation
parameter (Lemma 3.3 b)).

Before establishing the main properties of the assignment W → F(W )λ, we check that
the sets (3.13, 3.14) are C∗-algebras. As the C∗-algebra F(Wξ,p) is τξ-invariant and τξ
acts strongly continuously, the ξ-smooth operators in F(Wξ,p) which appear in the defini-
tion (3.13) form a norm-dense ∗-subalgebra. Now the deformation F *→ Fξ,λ is evidently
linear and commutes with taking adjoints (Lemma 3.1 a)); so the sets F(Wξ,p)λ are
∗-invariant norm-closed subspaces of B(H). To check that these spaces are also closed
under taking products, we again use the invariance of F(Wξ,p) under τξ: By inspection
of the Rieffel product (3.7), it follows that for any two ξ-smooth F,G ∈ F(Wξ,p), also
the product F ×ξ,λ G lies in this algebra (and is ξ-smooth, see [Rie92]). Hence the
multiplication formula from Lemma 3.1 b) entails that the above defined F(W )λ are
actually C∗-algebras in B(H).

The map W *→ F(W )λ defines the wedge-local field algebras of the deformed quan-
tum field theory. Their basic properties are collected in the following theorem.

Theorem 3.4 The above constructed map W *−→ F(W )λ, W ∈ W, is a well-defined,
isotonous, twisted wedge-local, Iso-covariant net of C∗-algebras on H, i.e., W, W̃ ∈ W,

F(W )λ ⊂ F(W̃ )λ for W ⊂ W̃ , (3.16)

[ZFλZ
∗, Gλ] = 0 for Fλ ∈ F(W )λ, Gλ ∈ F(W ′)λ , (3.17)

αh(F(W )λ) = F(hW )λ , h ∈ Iso . (3.18)
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For λ = 0, this net coincides with the original net, F(W )0 = F(W ), W ∈ W.

Proof: It is important to note from the beginning that all claimed properties relate only
wedges in the same coherent subfamily W[ξ]. This can be seen from the form (2.16) of
W[ξ], which is manifestly invariant under isometries and causal complementation, and
the structure of the inclusions (Proposition 2.9). So in the following proof, it is sufficient
to consider a fixed but arbitrary equivalence class [ξ], with selected representative ξ.

We begin with establishing the isotony of the deformed net, and therefore consider
inclusions of wedges of the form hWξ,p, hW ′

ξ,p, with h ∈ Iso, p ∈ M arbitrary, and ξ ∈ Ξ

fixed. Starting with the inclusions hWξ,p ⊆ h̃Wξ,p̃, we note that according to (2.13) and
Prop. 2.9, there exists N ∈ GL(2, IR) with positive determinant such that h∗ξ = Nh̃∗ξ.
Equivalently, (h̃−1h)∗ξ = Nξ, which by Lemma 2.2 implies detN = 1. By definition, a
generic ξ-smooth element of F(hWξ,p)λ is of the form αh(Fξ,λ) = αh(F )h∗ξ,λ with some
ξ-smooth F ∈ F(Wξ,p). But according to the above observation, this can be rewritten
as

αh(Fξ,λ) = αh(F )h∗ξ,λ = αh(F )Nh̃∗ξ,λ
= αh(F )h̃∗ξ,λ

, (3.19)

where in the last equation we used detN = 1 and Lemma 3.3 b). Taking into account
that hWξ,p ⊆ h̃Wξ,p̃, and that the undeformed net is covariant and isotonous, we have
αh(F ) ∈ F(hWξ,p) ⊂ F(h̃Wξ,p), and so the very right hand side of (3.19) is an element
of F(h̃Wξ,p)λ. Going to the norm closures, the inclusion F(hWξ,p)λ ⊂ F(h̃Wξ,p)λ of
C∗-algebras follows.

Analogously, an inclusion of causal complements, hW ′
ξ,p ⊆ h̃W ′

ξ,p̃, leads to the inclu-

sion of C∗-algebras F(hW ′
ξ,p)λ ⊂ F(h̃W ′

ξ,p)λ, the only difference to the previous argument

consisting in an exchange of h,h̃ and p, p̃.
To complete the investigation of inclusions of wedges in W[ξ], we must also consider

the case hWξ,p ⊆ h̃W ′
ξ,p̃ = Wh̃∗ξ′,p̃

. By the same reasoning as before, there exists a

matrix N with detN = 1 such that (h̃−1h)∗ξ = Nξ′ = NΠξ with the flip matrix Π. So
N ′ := NΠ has determinant detN ′ = −1, and h∗ξ = N ′h̃∗ξ′. Using (3.12), we find for
ξ-smooth F ∈ F(hWξ,p),

αh(Fξ,λ) = αh(F )h∗ξ,λ = αh(F )N ′h̃∗ξ′,λ
= αh(F )h̃∗ξ′,−λ . (3.20)

By isotony and covariance of the undeformed net, this deformed operator is an element
of F(h̃W ′

ξ,p̃)λ (3.14), and taking the norm closure in (3.14) yields F(hWξ,p)λ ⊂ F(h̃W ′
ξ,p̃)λ.

So the isotony (3.16) of the net is established. This implies in particular that the net
Fλ is well-defined, since in case hWξ,p equals h̃Wξ,p̃ or its causal complement, the same
arguments yield the equality of F(hWξ,p)λ and F(h̃Wξ,p̃)λ respectively F(h̃W ′

ξ,p̃)λ.
The covariance of W *→ F(W )λ is evident from the definition. To check twisted

locality, it is thus sufficient to consider the pair of wedges Wξ,p, W ′
ξ,p. In view of the

definition of the C∗-algebras F(W )λ (3.13) as norm closures of algebras of deformed
smooth operators, it suffices to show that any ξ-smooth F ∈ F(Wξ,p), G ∈ F(Wξ′,p̃)
fulfill the commutation relation

[ZFξ,λZ
∗, Gξ′,λ] = 0 . (3.21)
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But Gξ′,λ = Gξ,−λ (3.12), and since the undeformed net is twisted local and covariant,
we have [τξ,s(F ), G] = 0, for all s ∈ IR2, which implies [ZFξ,λZ∗, Gξ,−λ] = 0 by Lemma
3.2.

The fact that setting λ = 0 reproduces the undeformed net is a straightforward
consequence of Fξ,0 = F for any ξ-smooth operator, ξ ∈ Ξ. !

Theorem 3.4 is our main result concerning the structure of deformed quantum field
theories on admissible spacetimes: It states that the same covariance and localization
properties as on flat spacetime can be maintained in the curved setting. Whereas the
action of the isometry group and the chosen representation space of F are the same for all
values of the deformation parameter λ, the concrete C∗-algebras F(W )λ depend in a non-
trivial and continuous way on λ: For a fixed wedge W , the collection {F(W )λ : λ ∈ IR}
forms a continuous field of C∗-algebras [Dix77]; this follows from Rieffel’s results [Rie92]
and the fact that F(W )λ forms a faithful representation of Rieffel’s deformed C∗-algebra
(F(W ),×λ) [BLS10].

For deformed nets on Minkowski space, there also exist proofs showing that the
net W *→ F(W )λ depends on λ, for example by working in a vacuum representation
and calculating the corresponding collision operators [BS08]. There one finds as a
striking effect of the deformation that the interaction depends on λ, i.e. that defor-
mations of interaction-free models have non-trivial S-matrices. However, on generic
curved spacetimes, a distinguished invariant state like the vacuum state with its posi-
tive energy representation of the translations does not exist. Consequently, the result
concerning scattering theory cannot be reproduced here. Instead we will establish the
non-equivalence of the undeformed net W *→ F(W ) and the deformed net W *→ F(W )λ,
λ += 0, in a concrete example model in Section 3.2.

As mentioned earlier, the family of wedge regions W(M, g) is causally separating in a
subclass of admissible spacetimes, including the Friedmann-Robertson-Walker universes.
In this case, the extension of the net Fλ to double cones or similar regions O ⊂ M via

F(O)λ :=
⋂

W⊃O

F(W )λ (3.22)

is still twisted local. These algebras contain all operators localized in the region O in
the deformed theory. On other spacetimes (M, g), such an extension is possible only for
special regions, intersections of wedges, whose shape and size depend on the structure
of W(M, g).

Because of the relation of warped convolution to noncommutative spaces, where
sharp localization is impossible, it is expected that F(O) contains only multiples of the
identity if O has compact closure. We will study this question in the context of the
deformed Dirac field in Section 3.2.

We conclude this section with a remark concerning the relation between the field and
observable net structure of deformed quantum field theories. The field net F is com-
posed of Bose and Fermi fields, and therefore contains observable as well as unobserv-
able quantities. The former give rise to the observable net A which consists of the
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subalgebras invariant under the grading automorphism γ. In terms of the projection
v(F ) := 1

2(F + γ(F )), the observable wedge algebras are

A(W ) := {F ∈ F(W ) : F = γ(F )} = v(F(W )) , W ∈ W , (3.23)

so that A(W ), A(W̃ ) commute (without twist) if W and W̃ are spacelike separated.
Since the observables are the physically relevant objects, we could have considered

a deformation A(W ) → A(W )λ of the observable wedge algebras along the same lines
as we did for the field algebras. This approach would have resulted precisely in the
γ-invariant subalgebras of the deformed field algebras F(W )λ, i.e., the diagram

F(W )
deformation−−−−−−−→ F(W )λ

v

.
.v

A(W )
deformation−−−−−−−→ A(W )λ

commutes. This claim can quickly be verified by noting that the projection v commutes
with the deformation map F *→ Fξ,λ.

3.2 The Dirac field and its deformation

After the model-independent description of deformed quantum field theories carried out
in the previous section, we now consider the theory of a free Dirac quantum field as a
concrete example model. We first briefly recall the notion of Dirac (co)spinors and the
classical Dirac equation, following largely [DHP09, San08] and partly [Dim82, FV02],
where the proofs of all the statements below are presented and an extensive description
of the relevant concepts is available. Afterwards, we consider the quantum Dirac field
using Araki’s self-dual CAR algebra formulation [Ara71].

As before, we work on a fixed but arbitrary admissible spacetime (M, g) in the sense of
Definition 2.1 and we fix its orientation. Therefore, as a four-dimensional, time oriented
and oriented, globally hyperbolic spacetime, M admits a spin structure (SM, ρ), con-
sisting of a principle bundle SM over M with structure group SL(2,C), and a smooth
bundle homomorphism ρ projecting SM onto the frame bundle FM , which is a principal
bundle over M with SO0(3, 1) as structure group. The map ρ preserves base points and
is equivariant in the sense that it intertwines the natural right actions R of SL(2,C) on
SM and of SO0(3, 1) on FM , respectively,

ρ ◦RΛ̃ = RΛ ◦ ρ, Λ ∈ SO0(3, 1) , (3.24)

with the covering homomorphism Λ *→ Λ̃ from SL(2,C) to SO0(3, 1).
Although each spacetime of the type considered here has a spin structure [DHP09,

Thm. 2.1, Lemma 2.1], this is only unique if the underlying manifold is simply con-
nected [Ger68, Ger70], i.e., if all edges are simply connected in the case of an admissible
spacetime. In the following, it is understood that a fixed choice of spin structure has
been made.
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The main object we shall be interested in is the Dirac bundle, that is the associated
vector bundle

DM := SM ×T C4 (3.25)

with the representation T := D( 12 ,0) ⊕ D(0, 12 ) of SL(2,C) on C4. Dirac spinors ψ are
smooth global sections of DM , and the space they span will be denoted E(DM). The
dual bundle D∗M is called the dual Dirac bundle, and its smooth global sections ψ′ ∈
E(D∗M) are referred to as Dirac cospinors.

For the formulation of the Dirac equation, we need two more ingredients. The
first are the so-called gamma-matrices, which are the coefficients of a global tensor
γ ∈ E(T ∗M ⊗ DM ⊗ D∗M) such that γ = γA

aBe
a ⊗ EA ⊗ EB. Here EA and EB

with A,B = 1, ..., 4 are four global sections of DM and D∗M respectively, such that
(EA, EB) = δBA , with (, ) the natural pairing between dual elements. Notice that EA

descends also from a global section E of SM since we can define EA(x) := [(E(x), zA)]
where zA is the standard basis of C4. At the same time, out of E, we can construct ea,
with a = 1, ..., 4, as a set of four global sections of TM once we define e := ρ ◦ E as a
global section of the frame bundle, which, in turn, can be read as a vector bundle over
TM with IR4 as typical fibre. The set of all ea is often referred to as the non-holonomic
basis of the base manifold. In this case upper indices are defined via the natural pairing
over IR4, that is (eb, ea) = δba. Furthermore we choose the gamma-matrices to be of the
following form:

γ0 =

(
I2 0
0 −I2

)
, γa =

(
0 σa

−σa 0

)
, a = 1, 2, 3, (3.26)

where the σa are the Pauli matrices, and In will henceforth denote the (n× n) identity
matrix. These matrices fulfil the anticommutation relation {γa, γb} = 2ηabI4, with the
flat Minkowski metric η. They therefore depend on the sign convention in the metric
signature, and differ from those introduced in [DHP09], where a different convention
was used.

The last ingredient we need to specify is the covariant derivative (spin connection)
on the space of smooth sections of the Dirac bundle, that is

∇ : E(DM) → E(T ∗M ⊗DM), (3.27)

whose action on the sections EA is given as ∇EA = σB
aAe

aEB. The connection coeffi-
cients can be expressed as σB

aA = 1
4Γ

b
adγ

B
bCγ

dC
A , where Γb

ad are the coefficients arising from
the Levi-Civita connection expressed in terms of non-holonomic basis [DHP09, Lemma
2.2].

We can now introduce the Dirac equation for spinors ψ ∈ E(DM) and cospinors
ψ′ ∈ E(D∗M) as

Dψ := (−iγµ∇µ +mI)ψ = 0 (3.28)

D′ψ′ := (+iγµ∇µ +mI)ψ′ = 0 , (3.29)
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where m ≥ 0 is a constant while I is the identity on the respective space.
The Dirac equation has unique advanced and retarded fundamental solutions [DHP09]:

Denoting the smooth and compactly supported sections of the Dirac bundle by D(DM),
there exist two continuous linear maps

S± : D(DM) → E(DM),

such that S±D = DS± = I and supp (S±f) ⊆ J±(supp (f)) for all f ∈ D(DM), where
J± stands for the causal future/past. In the case of cospinors, we shall instead talk
about S±

∗ : D(D∗M) → E(D∗M) and they have the same properties of S±, except that
S±
∗ D

′ = D′S±
∗ = I. In analogy with the theory of real scalar fields, the causal propagators

for Dirac spinors and cospinors are defined as S := S+ − S− and S∗ := S+
∗ − S−

∗ ,
respectively.

For the formulation of a quantized Dirac field, it is advantageous to collect spinors
and cospinors in a single object. We therefore introduce the space

D := D(DM ⊕D∗M) , (3.30)

on which we have the conjugation

Γ(f1 ⊕ f2) := f ∗
1β ⊕ β−1f ∗

2 , (3.31)

defined in terms of the adjoint f *→ f ∗ on C4 and the Dirac conjugation matrix β.
This matrix is the unique selfadjoint element of SL(4,C) with the properties that γ∗

a =
−βγaβ−1, a = 0, ..., 3, and iβnaγa is a positive definite matrix, for any timelike future-
directed vector n.

Due to these properties, the sesquilinear form on D defined as

(f1 ⊕ f2, h1 ⊕ h2) := −i〈f ∗
1β, Sh1〉+ i〈S∗h2, β

−1f ∗
2 〉, (3.32)

where 〈, 〉 is the global pairing between E(DM) and D(D∗M) or between E(D∗M) and
D(DM), is positive semi-definite. Therefore the quotient

K := D/(kerS ⊕ kerS∗) . (3.33)

has the structure of a pre-Hilbert space, and we denote the corresponding scalar product
and norm by 〈 . , . 〉S and ‖f‖S := 〈f, f〉1/2S . The conjugation Γ descends to the quotient
K, and we denote its action on K by the same symbol. Moreover, Γ is compatible with
the sesquilinear form (3.32) in such a way that it extends to an antiunitary involution
Γ =Γ ∗ = Γ−1 on the Hilbert space K [San08, Lemma 4.2.4].

Regarding covariance, the isometry group Iso of (M, g) naturally acts on the sections
in D by pullback. In view of the geometrical nature of the causal propagator, this action
descends to the quotientK and extends to a unitary representation u of Iso on the Hilbert
space K.

Given the pre-Hilbert space K, the conjugation Γ, and the representation u as above,
the quantized Dirac field can be conveniently described as follows [Ara71]. We consider
the C∗-algebra CAR (K,Γ), that is, the unique unital C∗-algebra generated by the sym-
bols B(f), f ∈ K, such that, for all f, h ∈ K,
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a) f *−→ B(f) is complex linear,

b) B(f)∗ = B(Γf),

c) {B(f), B(h)} = 〈Γf, h〉S · 1.

The field equation is implicit here since we took the quotient with respect to the ker-
nels of S, S∗. The standard picture of spinors and cospinors can be recovered via the
identifications ψ(h) = B(0⊕ h) and ψ†(f) = B(f ⊕ 0).

As is well known, the Dirac field satisfies the standard assumptions of quantum field
theory, and we briefly point out how this model fits into the general framework used
in Section 3.1. The global field algebra F := CAR (K,Γ) carries a natural Iso-action α
by Bogoliubov transformations: Since the unitaries u(h), h ∈ Iso, commute with the
conjugation Γ, the maps

αh(B(f)) := B(u(h)f) , f ∈ K,

extend to automorphisms of F. Similarly, the grading automorphism γ is fixed by

γ(B(f)) := −B(f) ,

and clearly commutes with αh. The field algebra is faithfully represented on the Fermi
Fock space H over K, where the field operators take the form

B(f) =
1√
2
(a(f)∗ + a(Γf)) , (3.34)

with the usual Fermi Fock space creation/annihilation operators a#(f), f ∈ K. In
this representation, the second quantization U of u implements the action α. The
Bose/Fermi-grading can be implemented by V = (−1)N , where N ∈ B(H) is the Fock
space number operator [Foi83].

Regarding the regularity assumptions on the symmetries, recall that the anticommu-
tation relations of the CAR algebra imply that ‖a(f)‖ = ‖f‖S, and thus f *→ B(f) is a
linear continuous map from K to F. As s *→ uξ(s)f is smooth in the norm topology of
K for any ξ ∈ Ξ, f ∈ K, this implies that the field operators B(f) transform smoothly
under the action α. Furthermore, the unitarity of u yields strong continuity of α on all
of F, as required in Section 3.1.

The field algebra F(W ) ⊂ F associated with a wedge W ∈ W is defined as the unital
C∗-algebra generated by all B(f), f ∈ K(W ), where K(W ) is the set of (equivalence
classes of) smooth and compactly supported sections of DM⊕D∗M with support in W .
Since 〈Γf, g〉S = 0 for f ∈ K(W ), g ∈ K(W ′), we have {B(f), B(g)} = 0 for f ∈ K(W ),
g ∈ K(W ′), which implies the twisted locality condition (3.3). Isotony is clear from the
definition, and covariance under the isometry group follows from u(h)K(W ) = K(hW ).

The model of the Dirac field therefore fits into the framework of Section 3.1, and the
warped convolution deformation defines a one-parameter family of deformed nets Fλ.
Besides the properties which were established in the general setting in Section 3.1, we
can here consider the explicit deformed field B(f)ξ,λ. A nice characterization of these
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operators can be given in terms of their n-point functions associated with a quasifree
state ω on F.

Let ω be an α-invariant quasifree state on F, and let (Hω, πω,Ωω) denote the as-
sociated GNS triple. As a consequence of invariance of ω, the GNS space Hω carries
a unitary representation Uω of Iso which leaves Ωω invariant. In this situation, the
warping map

Fξ,λ *→ F ω
ξ,λ :=

1

4π2
lim
ε→0

∫
ds ds′ e−iss′ χ(εs, εs′)Uω

ξ (λQs)πω(F )Uω
ξ (s

′ − λQs) , (3.35)

defined for ξ-smooth F ∈ F as before, extends continuously to a representation of the
Rieffel-deformed C∗-algebra (F,×ξ,λ) on Hω [BLS10, Thm. 2.8]. Moreover, the Uω-
invariance of Ωω implies

F ω
ξ,λΩ

ω = πω(F )Ωω , ξ ∈ Ξ,λ ∈ IR, F ∈ F ξ-smooth. (3.36)

Since the CAR algebra is simple, all its representations are faithful [BR97]. We will
therefore identify F with its representation πω(F) in the following, and drop the ω-
dependence of Hω,Ωω, Uω and the warped convolutions F ω

ξ,λ from our notation.
To characterize the deformed field operators B(f)ξ,λ, we will consider the n-point

functions

ωn(f1, ... , fn) := ω(B(f1) · · ·B(fn)) = 〈Ω, B(f1) · · ·B(fn)Ω〉 , f1, ... , fn ∈ K ,

and the corresponding deformed expectation values of the deformed fields, called de-
formed n-point functions,

ωξ,λ
n (f1, ... , fn) := 〈Ω, B(f1)ξ,λ · · ·B(fn)ξ,λΩ〉 , f1, ... , fn ∈ K .

Of particular interest are the quasifree states, where ωn vanishes if n is odd, and ωn is a
linear combination of products of two-point functions ω2 if n is even. In particular, the
undeformed four-point function of a quasifree state reads

ω4(f1, f2, f3, f4) = ω2(f1, f2)ω2(f3, f4) + ω2(f1, f4)ω2(f2, f3)− ω2(f1, f3)ω2(f2, f4) . (3.37)

Proposition 3.5 The deformed n-point functions of a quasifree and Iso-invariant state
vanish for odd n. The lowest deformed even n-point functions are, f1, ..., f4 ∈ K,

ωξ,λ
2 (f1, f2) = ω2(f1, f2) , (3.38)

ωξ,λ
4 (f1, f2, f3, f4) = ω2(f1, f2)ω2(f3, f4) + ω2(f1, f4)ω2(f2, f3) (3.39)

− 1

4π2
lim
ε→0

∫
ds ds′ e−iss′χ(εs, εs′)ω2(f1, uξ(s)f3) · ω2(f2, uξ(2λQs′)f4) .

Proof: The covariant transformation behaviour of the Dirac field, Uξ(s)B(f)Uξ(s)−1 =
B(uξ(s)f), the invariance of Ω and the form (3.35) of the warped convolution imply that
any deformed n-point function can be written as an integral over undeformed n-point
functions with transformed arguments. As the latter functions vanish for odd n, we also
have ωξ,λ

n = 0 for odd n.
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Taking into account (3.36), we obtain for the deformed two-point function

ωξ,λ
2 (f1, f2) = 〈Ω, B(f1)ξ,λB(f2)ξ,λΩ〉

= 〈(B(f1)
∗)ξ,λΩ, B(f2)ξ,λΩ〉 = 〈B(f1)

∗Ω, B(f2)Ω〉 = ω2(f1, f2) ,

proving (3.38).
To compute the four-point function, we use again B(f)ξ,λΩ = B(f)Ω and Uξ(s)Ω =

Ω. Inserting the definition of the warped convolution (3.6), and using the transformation
law Uξ(s)B(f)Uξ(s)−1 = B(uξ(s)f) and the shorthand f(s) := uξ(s)f , we obtain

ωξ,λ
4 (f1, f2, f3, f4) = 〈Ω, B(f1)B(f2)ξ,λB(f3)ξ,λB(f4)Ω〉

= (2π)−4 lim
ε1,ε2→0

∫
ds e−i(s1s′1+s2s′2)χε(s)ω4(f1, f2(λQs1), f3(λQs2 + s′1), f4(s

′
1 + s′2)) ,

where ds = ds1 ds′1 ds2 ds
′
2 and χε(s) = χ(ε1s1, ε1s′1)χ(ε2s2, ε2s

′
2). After the substitu-

tions s′2 → s′2 − s′1 and s′1 → s′1 −λQs2, the integrations over s2, s′2 and the limit ε2 → 0
can be carried out. The result is

(2π)−2 lim
ε1→0

∫
ds1 ds

′
1 e

−is1s′1χ̂(ε1s1, ε1s
′
1)ω4(f1, f2(λQs1), f3(s

′
1), f4(s

′
1 − λQs1)) ,

with a smooth, compactly supported cutoff function χ̂ with χ̂(0, 0) = 1.
We now use the fact that ω is quasi-free and write ω4 as a sum of products of two-

point functions (3.37). Considering the term where f1, f2 and f3, f4 are contracted, in
the second factor ω2(f3(s′1), f4(s

′
1 − λQs1)) the s′1-dependence drops out because ω is

invariant under isometries. So the integral over s′1 can be performed, and yields a factor
δ(s1) in the limit ε1 → 0. Hence all λ-dependence drops out in this term, as claimed in
(3.39).

Similarly, in the term where f1, f4 and f2, f3 are contracted, all integrations disappear
after using the invariance of ω and making the substitution s′1 → s′1 + λQs1. Also this
term does not depend on λ.

Finally, we compute the term containing the contractions f1, f3 and f2, f4,

(2π)−2 lim
ε1→0

∫
ds1 ds

′
1 e

−is1s′1χ̂(ε1s1, ε1s
′
1)ω2(f1, f3(s

′
1)) · ω2(f2(λQs1), f4(s

′
1 − λQs1))

= (2π)−2 lim
ε1→0

∫
ds1 ds

′
1 e

−is1s′1χ̂(ε1s1, ε1s
′
1)ω2(f1, f3(s

′
1)) · ω2(f2, f4(s

′
1 − 2λQs1))

= (2π)−2 lim
ε1→0

∫
ds1 ds

′
1 e

−is1s′1χ̃(ε1s1, ε1s
′
1)ω2(f1, f3(s

′
1)) · ω2(f2, f4(2λQs1)) .

In the last step, we substituted s1 → s1 +
1
2λQ

−1s′1, used the antisymmetry of Q and
absorbed the new variables in χ̂ in a redefinition of this function. Since the oscillatory
integrals are independent of the particular choice of cutoff function, comparison with
(3.39) shows that the proof is finished. !

The structure of the deformed n-point functions build from a quasifree state ω is quite
different from the undeformed case. In particular, the two-point function is undeformed,
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but the four-point function depends on the deformation parameter. For even n > 4, a
structure similar to the n-point functions on noncommutative Minkowski space [GL08]
is expected, which are all λ-dependent. These features clearly show that the deformed
field B(f)ξ,λ, λ += 0, differs from the undeformed field. Considering the commutation
relations of the deformed field operators, it is also straightforward to check that the
deformed field is not unitarily equivalent to the undeformed one.

However, this structure does not yet imply that the deformed and undeformed Dirac
quantum field theories are inequivalent. For there could exist a unitary V onH satisfying
V U(h)V ∗ = U(h), h ∈ Iso, V Ω = Ω, which does not interpolate the deformed and
undeformed fields, but the C∗-algebras according to V F(W )λV ∗ = F(W ), W ∈ W . If
such a unitary exists, the two theories would be physically indistinguishable.

On flat spacetime, an indirect way of ruling out the existence of such an intertwiner
V , and thus establishing the non-equivalence of deformed and undeformed theories, is
to compute their S-matrices and show that these depend on λ in a non-trivial manner.
However, on curved spacetimes, collision theory is not available and we will therefore
follow the more direct non-equivalence proof of [BLS10, Lemma 4.6], adapted to our
setting. This proof aims at showing that the local observable content of warped theories
is restricted in comparison to the undeformed setting, as one would expect because
of the connection ot noncommutative spacetime. However, the argument requires a
certain amount of symmetry, and we therefore restrict here to the case of a Friedmann-
Robertson-Walker spacetime M .

As discussed in Section 2.2, M can then be viewed as J × IR3 ⊂ IR4 via a conformal
embedding, where J ⊂ IR is an interval. Recall that in this case, we have the Euclidean
group E(3) contained in Iso(M, g), and can work in global coordinates (τ, x, y, z), where
τ ∈ J and x, y, z ∈ IR are the flow parameters of Killing fields. As reference Killing
pair, we pick ζ := (∂y, ∂z), and as reference wedge, the “right wedge” W 0 := Wζ,0 =
{(τ, x, y, z) : τ ∈ J, x > |τ |}.

In this geometric context, consider the rotation rϕ about angle ϕ in the x-y-plane,
and the cone

C := rϕW 0 ∩ r−ϕW 0 , (3.40)

with some fixed angle |ϕ| < π
2 . Clearly C ⊂ W 0, and the reflected cone jxC, where

jx(t, x, y, z) = (t,−x, y, z), lies spacelike to W 0 and rϕW 0.
Moreover, we will work in the GNS-representation of a particular state ω on F for

the subsequent proposition, which besides the properties mentioned above also has the
Reeh-Schlieder property. That is, the von Neumann algebra F(C)′′ ⊂ B(Hω) has Ωω as
a cyclic vector.

Since the Dirac field theory is a locally covariant quantum field theory satisfying
the time slice axiom [San10], the existence of such states can be deduced by spacetime
deformation arguments [San09, Thm. 4.1]. As M and the Minkowski space have unique
spin structures, and M can be deformed to Minkowski spacetime in such a way that its
E(3) symmetry is preserved, the state obtained from deforming the Poincaré invariant
vacuum state on IR4 is still invariant under the action of the Euclidean group.

In the GNS representation of such a Reeh-Schlieder state on a Friedmann-Robertson-
Walker spacetime, we find the following non-equivalence result.
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Proposition 3.6 Consider the net Fλ generated by the deformed Dirac field on a Fried-
mann-Robertson-Walker spacetime with flat spatial sections in the GNS representation
of an invariant state with the Reeh-Schlieder property. Then the implementing vector Ω
is cyclic for the field algebra F(C)λ′′ associated with the cone (3.40) if and only if λ = 0.
In particular, the nets F0 and Fλ are inequivalent for λ += 0.

Proof: Let f ∈ K(C), so that f, u(r−ϕ)f ∈ K(W 0), and both field operators, B(f)ζ,λ
and B(u(r−ϕ)f)ζ,λ, are contained in F(W 0)λ. Taking into account the covariance of the
deformed net, it follows that U(rϕ)B(u(r−ϕ)f)ζ,λU(r−ϕ) = B(f)rϕ∗ ζ,λ lies in F(rϕW 0)λ.

Now the cone C is defined in such a way that the two wedges W 0 and rϕW 0 lie
spacelike to jxC. Let us assume that Ω is cyclic for F(C)λ′′, which by the unitarity
of U(jx) is equivalent to Ω being cyclic for F(jxC)λ′′. Hence Ω is separating for the
commutant F(jxC)λ′, which by locality contains F(W 0)λ and F(rϕW 0)λ. But in view of
(3.36), B(f)ζ,λ and B(f)rϕ∗ ζ,λ coincide on Ω,

B(f)rϕ∗ ζ,λΩ = B(f)Ω = B(f)ζ,λΩ ,

so that the separation property implies B(f)ζ,λ = B(f)rϕ∗ ζ,λ.
To produce a contradiction, we now show that these two operators are actually

not equal. To this end, we consider a difference of four-point functions (3.39), with
smooth vectors f1, f2 := f, f3 := f, f4, and Killing pairs ζ respectively rϕ∗ ζ. With the
abbreviations wϕ

ij(s) := ω2(fi, urϕ∗ ζ(s)fj), we obtain

〈Ω, B(f1)
(
B(f)ζ,λB(f)ζ,λ − B(f)rϕ∗ ζ,λB(f)rϕ∗ ζ,λ

)
B(f4)Ω〉

= ωζ,λ
4 (f1, f, f, f4)− ωrϕ∗ ζ,λ

4 (f1, f, f, f4)

= (w0
13 .λ w

0
24)(0)− (wϕ

13 .λ w
ϕ
24)(0) ,

where .λ denotes the Weyl-Moyal star product on smooth bounded functions on IR2,
with the standard Poisson bracket given by the matrix (3.5) in the basis {ζ1, ζ2}. Now
the asymptotic expansion of this expression for λ → 0 gives in first order the difference
of Poisson brackets [EGBV89]

{w0
13, w

0
24}(0)− {wϕ

13, w
ϕ
24}(0) = 〈f1, P ζ

1 f〉〈f, P
ζ
2 f4〉 − 〈f1, P ζ

2 f〉〈f, P
ζ
1 f4〉

− 〈f1, P rϕ∗ ζ
1 f〉〈f, P rϕ∗ ζ

2 f4〉+ 〈f1, P rϕ∗ ζ
2 f〉〈f, P rϕ∗ ζ

1 f4〉 ,

where all scalar products are in K and P rϕ∗ ζ
1 , P rϕ∗ ζ

1 denote the generators of s *→ urϕ∗ ζ(s).

By considering f4 orthogonal to P ζ
1 f and P rϕ∗ ζ

1 f , we see that for B(f)ζ,λ = B(f)rϕ∗ ζ,λ
it is necessary that 〈f1, (P ζ

j − P rϕ∗ ζ
j )f〉 = 0. But varying f, f1 within the specified

limitations gives dense subspaces in K, i.e. we must have P ζ
j = P rϕ∗ ζ

j . This implies that
translations in a spacelike direction are represented trivially on the Dirac field, which is
not compatible with its locality and covariance properties.

So we conclude that the deformed field operator B(f)rϕ∗ ζ,λ is not independent of ϕ
for λ += 0, and hence the cyclicity assumption is not valid for λ += 0. Since on the
other hand Ω is cyclic for F(C)0′′ by the Reeh-Schlieder property of ω, and a unitary
V leaving Ω invariant and mapping F(C)0 onto F(C)λ would preserve this property, we
have established that the nets F0 and Fλ, λ += 0, are not equivalent. !
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4 Conclusions

In this paper we have shown how to apply the warped convolution deformation to
quantum field theories on a large class of globally hyperbolic spacetimes. Under the
requirement that the group of isometries contains a two-dimensional Abelian subgroup
generated by two commuting spacelike Killing fields, many results known for Minkowski
space theories were shown to carry over to the curved setting by formulating concepts
like edges, wedges and translations in a geometrical language. In particular, it has been
demonstrated in a model-independent framework that the basic covariance and wedge-
localization properties we started from are preserved for all values of the deformation
parameter λ. As a concrete example we considered a warped Dirac field on a Friedmann-
Robertson-Walker spacetime in the GNS representation of a quasifree and Iso-invariant
state with Reeh-Schlieder property. It was shown that the deformed models depend in
a non-trivial way on λ, and violate the Reeh-Schlieder property for regions smaller than
wedges. In view of the picture that the deformed models can be regarded as effective
theories on a noncommutative spacetime, where strictly local quantities do not exist
because of space-time uncertainty relations, it is actually expected that they do not
contain operators sharply localized in bounded spacetime regions for λ += 0.

At the current stage, it is difficult to give a clear-cut physical interpretation to the
models constructed here since scattering theory is not available for quantum field theo-
ries on generic curved spacetimes. Nonetheless, it is interesting to note that in a field
theoretic context the deformation often leaves invariant the two-point function (Prop.
3.5), the quantity which is most frequently used for deriving observable quantum effects
in cosmology (for the example of quantised cosmological perturbations, see [MFB92]).
So when searching for concrete scenarios where deformed quantum field theories can
be matched to measurable effects, one has to look for phenomena involving the higher
n-point functions.

There exist a number of interesting directions in which this research could be extended.
As far as our geometrical construction of wedge regions in curved spacetimes is con-
cerned, we limited ourselves here to edges generated by commuting Killing fields. This
assumption rules out many physically interesting spacetimes, such as de Sitter, Kerr or
Friedmann-Robertson-Walker spacetimes with compact spatial sections. An extension
of the geometric construction of edges and wedges to such spaces seems to be straight-
forward and is expected to coincide with the notions which are already available. For
example, in the case of four-dimensional de Sitter spacetime, edges have the topology of
a two-sphere. Viewing the two-sphere as an SO(3) orbit, a generalization of the warped
convolution deformation formula could involve an integration over this group instead of
IR2. A deformation scheme of C∗-algebras which is based on an action of this group
is currently not yet available (see however [Bie07] for certain non-Abelian group ac-
tion). In the de Sitter case, a different possibility is to base the deformation formula on
the flow of a spacelike and commuting timelike Killing field leaving a wedge invariant.
The covariance properties of the nets which arise from such a procedure are somewhat
different and require an adaption of the kernel in the warped convolution [Mo10].
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It is desireable to find more examples of adequate deformation formulas compatible
with the basic covariance and (wedge-) localization properties of quantum field theory.
A systematic exploration of the space of all deformations is expected to yield many
new models and a better understanding of the structure of interacting quantum field
theories.
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