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Abstrat

The usual derivation of the Lagrangian of a model for massive vetor bosons,

by spontaneous symmetry breaking of a gauge theory, implies that the prefators

of the various interation terms are uniquely determined funtions of the oupling

onstant(s) and the masses. Sine, under the renormalization group (RG) �ow, dif-

ferent interation terms get di�erent loop-orretions, it is unertain, whether these

funtions remain �xed under this �ow. We investigate this question for the U(1)-
Higgs-model to 1-loop order in the framework of Epstein-Glaser renormalization.

Our main result reads: hoosing the renormalization mass sale(s) in a way or-

responding to the minimal subtration sheme, the geometrial interpretation as a

spontaneously broken gauge theory gets lost under the RG-�ow. This holds also for

the learly stronger property of BRST-invariane of the Lagrangian. On the other

hand we prove that physial onsisteny, whih is a weak form of BRST-invariane

of the time-ordered produts, is maintained under the RG-�ow.
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1 Introdution

The lassial geometrial onepts of �bre bundles and group theory have been ruial

for the development of quantum gauge theories, and the Higgs mehanism was the key to

inorporate the eletroweak interation into the framework of renormalizable �eld theory.

However, to the best of our knowledge, the Higgs mehanism is not well understood

on a purely quantum level. And it is not needed: starting with massive BRST-invariant

free �elds, making a general renormalizable ansatz for the interation and requiring

physial onsisteny (PC) [KO79, DS00, Gri00℄ or perturbative gauge invariane (PGI)

[DS99, ADS99, Sh01, DGBSV10, Sh10℄

1

one obtains a onsistent perturbative quantum

theory of massive vetor bosons. (Some obvious properties as Poinaré invariane and

relevant disrete symmetries are also taken into aount.) PC is the ondition that the

free BRST-harge

2

ommutes with the �S-matrix� in the adiabati limit, in order that

the latter indues a well-de�ned operator on the physial subspae; PGI is a re�nement

of this ondition whih is formulated independently of the adiabati limit � a su�ient

(but in general not neessary) ondition for PC. If the ansatz for the interation ontains

only trilinear and quadrilinear �elds

3

the resulting Lagrangian is essentially unique and

agrees with what one obtains from spontaneous symmetry breaking of a gauge theory; in

partiular the presene of Higgs partiles and hirality of fermioni interations an be

understood in this way without reourse to any geometrial or group theoretial onepts

[Sto97, DS99℄. These derivations of the interation from basi QFT-priniples use PGI

(or PC) only on the level of tree diagrams (PGI-tree).

1

PGI was �rst introdued in [DHKS94℄; in [DGBSV10℄ it is alled 'ausal gauge invariane'.

2

That is the harge implementing the BRST-transformation of the asymptoti free �elds.

3

Throughout this paper we use the words bilinear, trilinear and quadrilinear in the sense of bi-, tri-

and quadrilinear in the basi �elds.

2



In the literature the geometrial interpretation of the Standard Model of eletroweak

interations as a spontaneously broken gauge theory is frequently used at several (or even

all) sales. This is evident for the osmologial models relying on the �eletroweak phase

transition�. Or, looking arefully at the geometrial derivations of a value for the Higgs

mass of Connes et al. ([CCM07℄ and referenes ited therein) and Tolksdorf [TT07℄, we

realized that in these papers the geometrial interpretation is used at two very distint

sales: at the Z-mass and at the uni�ation sale.

This paper was initiated by serious doubts about the geometrial interpretability at

all sales, whih rely on the following: this interpretation is possible i� the prefators

of the various interation terms (i.e. of the verties) are presribed funtions of the

oupling onstant(s) and masses. Sine di�erent verties get di�erent loop-orretions it

is unertain, whether these funtions remain �xed under the RG-�ow.

Similarly to the onventional literature [Sib℄, our RG-�ow depends strongly on the

renormalization sheme. Naively one might think that this is not so, beause we de�ne

the RG-�ow by a saling transformation [HW03, DF04, BDF09℄.

4

But the sheme de-

pendene omes in by the hoie of the renormalization mass sale(s) M : the saling

transformation may at on M or it may not, and di�erent hoies for di�erent Feynman

diagrams are possible.

An important result of this paper is that PC is maintained under the renormaliza-

tion group (RG) �ow (Set. 5). It is well known that also renormalizability (by power

ounting) is preserved. But, our original hope that these two properties yield enough

information about the running interation to answer the geometrial interpretability,

turned out to be too optimisti. Due to the presene of bilinear �elds, PC and renor-

malizability are muh less restritive than in the above mentioned alulations involving

only tri- and quadrilinear �elds.

For this reason we proeed in a less elegant way: we answer the geometrial inter-

pretability by means of a lot of expliit 1-loop omputations of the RG-�ow (Set. 6).

Sine, up to a few salar �eld examples in [DF04, BDF09℄, suh alulations have not

yet been done in the framework of Epstein-Glaser renormalization, we explain them in

detail (see Sets. 6.1-6.2 and Appendies A-B).

To get information about the important question whether PGI is maintained under

the RG-�ow, we analyze PGI-tree for the running interation (Se. 7).

BRST-invariane of the Lagrangian is a property whih is truly stronger than the

geometrial interpretabilty and also stronger than PGI-tree. We investigate whether it

an be preserved under the RG-�ow by a suitable renormalization presription (Sets. 3

and 6).

We assume that the reader is familiar with the formalism for Epstein-Glaser renor-

malization (also alled �ausal perturbation theory�) given in [DF04℄, in partiular we

will use the Main Theorem, whih is the basis for our de�nition of the RG-�ow, and the

4

This seems to be the obvious way to introdue the RG-�ow in the Epstein-Glaser framework [EG73℄.

Namely, in this framework renormalization is the extension of distributions (see footnote 8) and, as long

as the adiabati limit (17) is not performed, renormalization in this sense annot be interpreted as a

rede�nition of �elds, masses and oupling onstants depending on a mass sale.
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saling and mass expansion [HW02, Düt15℄.

2 Preise formulation of the question

The Lagrangian of the model: to simplify the alulations we study only one massive

vetor �eld Aµ
, the orresponding Stükelberg �eld B, a further real salar �eld ϕ (usually

alled �Higgs �eld�) and the Fadeev-Popov ghost �elds (u , ũ). We work with the free

Lagrangian

Lm,Λ
0 = −1

4
F 2 +

m2

2
(A ·A) + 1

2
(∂B · ∂B)− m2

B

2
B2 − Λ

2
(∂A)2

+
1

2
(∂ϕ · ∂ϕ)− m2

H

2
ϕ2 + ∂ũ · ∂u−m2

u ũu , (1)

where F 2 := (∂µAν − ∂νAµ)(∂µAν − ∂νAµ), m := (m,mB ,mu,mH) denotes the masses

of the various basi �elds and Λ is the gauge-�xing parameter.

For the moment we do not are about any notion of gauge symmetry and admit

interations of the form

Lm,Λ
κ,λ = κ

(

m(A ·A)ϕ− λ10 m
2
u

m
ũuϕ+ λ1B(A · ∂ϕ)

− λ2ϕ(A · ∂B)− λ3m
2
H

2m
ϕ3 − λ4m

2
H

2m
B2ϕ

)

+ κ2
(λ5

2
(A · A)ϕ2 +

λ6

2
(A · A)B2 − λ7m

2
H

8m2
ϕ4

− λ8m
2
H

4m2
ϕ2B2 − λ9m

2
H

8m2
B4 + λ11 (A · A)2

)

+ ((λ12 − 1)m+
√
ΛmB) (A · ∂B) , (2)

where κ is the oupling onstant and λ := (λ1, ..., λ12) are arbitrary real parameters.

Apart from the last, bilinear term, eah �eld monomial in Lm,Λ
κ,λ has its own, independent

oupling onstant κλj or κ2λj . The reason for the ompliated de�nition of λ12 will

beome lear below in (6)-(7). The free Lagrangian is parametrized by m and Λ; the
interation L has 13 additional parameters: κ and the dimensionless oupling parameters

λ. We point out that at the present stage we do not assume the usual mass relations

mB = mu = m√
Λ
, we onsider m, mB and mu as independent parameters.

The set of monomials appearing in Lm,Λ
κ,λ (2) is the minimal set with the following

properties:

• (Lm,Λ
0 +Lm,Λ

κ,λ ) ontains all monomials whih appear in the Lagrangian of the U(1)-
Higgs model;

• omputing the RG-�ow for the model given by (Lm,Λ
0 +Lm,Λ

κ,λ ), there do not appear
any new �eld monomials in the running interation, exept for a onstant �eld

k ∈ C (see (19)), i.e. the set of �eld monomials appearing in (Lm,Λ
0 + Lm,Λ

κ,λ ) is

stable under the RG-�ow.
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We point out that eah term in L0 and L is even under the �eld parity transformation

(A,B,ϕ, u, ũ) 7→ (−A,−B,ϕ, u, ũ) . (3)

Setting ũ := 0 and u := 0 and ignoring the A∂B-term, the set of monomials appearing

in (2) an be haraterized as follows: apart from Bϕ∂A = ∂(BϕA) − BA∂ϕ − ϕA∂B,

these are all trilinear and quadrilinear �eld monomials whih are Lorentz invariant, have

mass dimension ≤ 4 and respet the symmetry (3).

Geometrial interpretation: by the �lassial version� of the model L0 + L we

mean L0 + L− Lgf − Lghost, where

LmB ,Λ
gf := −Λ

2

(

∂ ·A+
mB√
Λ
B

)2

(4)

is the gauge-�xing term and

Lmu

ghost κλ10
:= ∂ũ · ∂u−m2

u ũu− κλ10 m
2
u

m
ũuϕ (5)

is the ghost term, whih is the sum of all terms in L0+L ontaining the ghost �elds ũ, u.
There is a distinguished hoie of the parameters λ: by straightforward alulation

we �nd that the lassial version of L0 + L an be geometrially interpreted as a spon-

taneously broken U(1)-gauge model i� the parameters λ have the values

λ1 = ... = λ9 = 1 , λ11 = λ12 = 0 . (6)

Expliitly, these values of the parameters are equivalent to

L0 + L− Lgf − Lghost −
√
ΛmB ∂µ(A

µB) = −1

4
F 2 +

1

2
(DµΦ)∗DµΦ− V (Φ) , (7)

where

Φ := iB +
m

κ
+ ϕ , Dµ := ∂µ − iκAµ

(8)

and

V (Φ) :=
κ2m2

H

8m2
(Φ∗Φ)2 − m2

H

4
(Φ∗Φ) +

m2
Hm2

8κ2
. (9)

The minima of the potential V (Φ) are on the irle Φ = m
κ eiα , α ∈ [0, 2π). The hoie

of a minima, usually one takes Φmin = m
κ , breaks the U(1) symmetry 'spontaneously'

and the �elds ϕ and B are the deviations from Φmin in radial and tangential diretion.

Besides m, mH , κ and Λ, also the parameters mB , mu and λ10 are not restrited by

the geometrial interpretation (7). The latter are usually �xed as follows:

• the bilinear mixed term ∼ A∂B in L0+L hampers the partile interpretation. For

λ12 = 0 (as required by the geometrial interpretation (6)), the ondition that the

A∂B-term vanishes is equivalent to the mass relation

mB =
m√
Λ

. (10)
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• In the next setion we will see that BRST-invariane of the total Lagrangian L0 +
L implies the geometrial interpretation (7), however it restrits also the ghost

parameters. Expliitly, BRST-invariane of the total Lagrangian is equivalent to

the parameter values (6) and

m2
u =

mB m√
Λ

and λ10 = 1 ; (11)

note that this holds also in the presene of an A∂B-term, i.e. the validity of (10)

is not assumed here.

The main aim of this paper is the following: we will start with the U(1)-Higgs model,

i.e. with the parameter values (6), (10) and (11), and with that we will investigate whether

the parameter values (6) are stable under the RG-�ow generated by saling transforma-

tions, i.e. we study the question whether the geometrial interpretation (7) is possible 'at

all sales'.

De�nition of the RG-�ow: from now on we will use the just mentioned initial

values (6), (10) and (11). With that we have only two independent massesm := (m,mH),
and the interation L ≡ Lm ≡ Lm,Λ

κ is of the form

L = κL1 + κ2 L2 . (12)

In view of Epstein-Glaser renormalization [EG73℄, we introdue an adiabati swithing

of the oupling onstant by a test funtion g ∈ D(R4):

L(g) ≡ Lm(g) :=

∫

dx
(

κ g(x)L1(x) +
(

κ g(x)
)2

L2(x)
)

. (13)

Following [HW03, DF04, BDF09℄ we de�ne the RG-�ow by means of a saling trans-

formation of the �elds

σ−1
ρ (φ(x)) = ρφ(ρx) , φ = Aµ, B, ϕ, u, ũ , ρ > 0 , (14)

and a simultaneous saling of the masses m 7→ ρ−1
m = (ρ−1m,ρ−1mH); see [DF04℄ for

the preise de�nition of σρ. Under this transformation the lassial ation is invariant

(up to a saling of the swithing funtion g); namely, due to σ−1
ρ Lρm(x) = ρ4 Lm(ρx)

and the same for L0, we have

∫

dxLm

0 (x) + Lm(g) = σ−1
ρ

(

∫

dxLρm
0 (x) + Lρm(gρ)

)

, gρ(x) := g(ρx) , (15)

where the parameters Λ, κ are suppressed sine they are not a�eted by the saling

transformation.

In QFT saling invariane is broken by quantum e�ets. To explain this more in

detail, we introdue the generating funtional S(iL(g)) of the time ordered produts of

L(g), i.e.

Tn(L(g)
⊗n) =

dn

in dηn
|η=0 S(iη L(g)) or more generally Tn = S(n)(0) , (16)
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whih we onstrut indutively by Epstein-Glaser renormalization [EG73℄. We use that,

for a purely massive model and with a suitable (re)normalization of S(iL(g)), the adia-
bati limit

S[L] := lim
ε↓0

S(iL(gε)) , gε(x) := g(εx) , (17)

exists, where g(0) = 1 is assumed [EG73, EG76℄.

5

Now, omputing S[L] for the saled

�elds σ−1
ρ (φ(x)) (14) and transforming the result bak by σρ, we obtain a result whih

di�ers in general from S[L] by a hange of the renormalization presription. The Main

Theorem of perturbative renormalization [PS82, DF04, HW03℄ implies that the transfor-

mation Sm[Lm] 7→ σρ(Sρ−1
m
[σ−1

ρ (Lm)]) an equivalently be expressed by a renormaliza-

tion of the interation Lm 7→ zρ(L
m), expliitly

σρ(Sρ−1
m
[σ−1

ρ (Lm)]) = Sm[zρ(L
m)] , (18)

where the lower index m of Sm denotes the masses of the Feynman propagators. This is

explained more in detail in set. 5.

The form of the running interation: in Set. 5 we will see that, with a slight

restrition on the (re)normalization of S(iL(g)), the new interation zρ(L) has the form

zρ(L
m,Λ
κ ) ≃ ~

−1
[

kρ −
1

4
a0ρ F

2 +
m2

2
a1ρ(A ·A)− a2ρ

2
(∂A · ∂A)

+
1

2
b0ρ(∂B · ∂B)− m2

2Λ
b1ρ B

2 +
1

2
c0ρ (∂ϕ · ∂ϕ)− m2

H

2
c1ρ ϕ

2

− m2

Λ
c2ρ ũu+ b2ρ m (A · ∂B)

+ κ
(

(1 + l0ρ)m(A ·A)ϕ − m

Λ
ũuϕ+ (1 + l1ρ)B(A · ∂ϕ)

− (1 + l2ρ)ϕ(A · ∂B)− (1 + l3ρ)m
2
H

2m
ϕ3 − (1 + l4ρ)m

2
H

2m
B2ϕ

)

+ κ2
( (1 + l5ρ)

2
(A · A)ϕ2 +

(1 + l6ρ)

2
(A ·A)B2 − (1 + l7ρ)m

2
H

8m2
ϕ4

− (1 + l8ρ)m
2
H

4m2
ϕ2B2 − (1 + l9ρ)m

2
H

8m2
B4 + l11ρ (A ·A)2

)]

, (19)

where kρ ∈ ~C[[~]] is a onstant �eld (it is the ontribution of the vauum diagrams) and

≃ means 'equal up to the addition of terms of type ∂aA', where |a| ≥ 1 and A is a loal

�eld polynomial; suh a ∂aA-term vanishes in the adiabati limit. It is a peuliarity of

this model that a term ∼ ∂ũ∂u does not appear in zρ(L) (if not added �by hand� � see

Remark 6.3) and that there are also no trilinear and quadrilinear terms in (zρ(L) − L)
ontaining ũu.

5

In this paper we treat the adiabati limit on a heuristi level, for a rigorous treatment we refer to

the mentioned papers of Epstein and Glaser, in whih it is shown that for purely massive models the

adiabati limit (17) exists (in the strong operator sense) and is unique (i.e. independent of the hoie of

g).
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The dimensionless, ρ-dependent oe�ients kρ, ajρ, bjρ, cjρ and ljρ will olletively

be denoted by eρ. In priniple these oe�ients are omputable � at least to lowest

orders (see the 1-loop omputations in Sets. 6.1-6.2 and Appendies A-B); however,

at the present stage they are unknown. The eρ's are of order O(~) (i.e. they are loop

orretions), more preisely they are formal power series in κ2~ with vanishing term of

zeroth order,

eρ =

∞
∑

n=1

e(n)ρ (κ2~)n , e = k, aj , bj , cj , lj . (20)

Due to zρ=1(L) = L/~, all funtions ρ 7→ eρ have the initial value 0 at ρ = 1.
Proof of (20): That eρ is a formal power series of the form (20) an be seen as follows.

To every eρ there orresponds a lass of Feynman diagrams with external legs aording

to (19). For example, the diagrams ontributing to b0ρ have 2 external legs, both are

B-�elds with 0 or 1 partial derivative. The verties are given by L (2), i.e. we have

trilinear verties ∼ κ and quadrilinear verties ∼ κ2. For eah vertex there is a fator

~
−1

and for eah inner line a fator ~. A diagram with r trilinear verties, s quadrilinear
verties, p inner and q external lines satis�es

3r + 4s− 2p = q (21)

and, hene, its ontribution to zρ(L) (19) is

∼ κr+2s
~
r/2+s−q/2 . (22)

If q is odd, q = 2q0 +1, also r is odd, r = 2r0 + 1 (q0, r0 ∈ N0), and with that we obtain

the fator

κ~−q0 (κ2~)r0+s . (23)

If q is even, q = 2q0, also r is even, r = 2r0 (q0, r0 ∈ N0), and with that we get

~
−q0 (κ2~)r0+s . (24)

The ontributing diagrams satisfy n := r0 + s ≥ 1 for q = 2, 3 and n := r0 + s − 1 ≥ 1
for q = 4. With that we obtain (20) � the additional fators ~

−1
(for q = 2), ~−1κ (for

q = 3) and ~
−1κ2 (for q = 4) in (23)-(24) agree preisely with the prefators in zρ(L)

(19).

Renormalization of the wave funtions, masses, gauge-�xing parameter

and the oupling onstants: exept for the A∂B-term, all bilinear terms of zρ(L) do
not appear in L. However, introduing new �elds, whih are of the form

φρ(x) = fφ(ρ)φ(x) , φ = A, B, ϕ, (25)

where fφ : (0,∞) → C is a φ-dependent funtion, and introduing a running gauge-

�xing parameter Λρ, running masses mρ ≡ (mρ, mBρ, muρ, mHρ) and running oupling

onstants κρ, λjρ, we an ahieve that L0 + zρ(L)− kρ has the same form as L0 + L, in
partiular we absorb the novel bilinear interation terms in the free Lagrangian:

(

Lm,Λ
0 + zρ(L

m,Λ
κ,λ )− kρ

)

(A,B,ϕ, u, ũ) =
(

L
mρ,Λρ

0 + L
mρ,Λρ

κρ,λρ

)

(Aρ, Bρ, ϕρ, u, ũ) . (26)
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We will use the shorthand notation

L0 + zρ(L)− kρ = Lρ
0 + Lρ

for this equation. Sine every new �eld is of the form (25), the ondition (26) is an

equation for polynomials in the old �elds; equating the oe�ients the impliit de�nition

(26) of the running quantities turns into the following expliit equations:

- for the wave funtions

Aµ
ρ =

√

1 + a0ρ A
µ , Bρ =

√

1 + b0ρ B , ϕρ =
√

1 + c0ρ ϕ ; (27)

- for the gauge-�xing parameter

Λρ =
Λ+ a2ρ
1 + a0ρ

; (28)

- for the masses

mρ =

√

1 + a1ρ
1 + a0ρ

m , mHρ =

√

1 + c1ρ
1 + c0ρ

mH ,

mBρ =

√

1 + b1ρ
1 + b0ρ

m√
Λ

, muρ =
√

1 + c2ρ
m√
Λ

; (29)

- for the oupling onstant

κρ =
1 + l0ρ

√

(1 + a0ρ)(1 + a1ρ)(1 + c0ρ)
κ ; (30)

and the running oupling parameters λρ are impliitly determined by

κm

Λ
ũuϕ =

κρλ10ρ m
2
uρ

mρ
ũuϕρ ,

κ(1 + l1ρ)B(A · ∂ϕ) = κρλ1ρ Bρ(Aρ · ∂ϕρ) ,

........ = .......................

κ(1 + l4ρ)m
2
H

m
B2ϕ =

κρλ4ρm
2
Hρ

mρ
B2

ρϕρ ,

κ2(1 + l5ρ) (A ·A)ϕ2 = κ2ρλ5ρ (Aρ · Aρ)ϕ
2
ρ ,

........ = .......................

κ2 l11ρ (A · A)2 = κ2ρλ11ρ (Aρ · Aρ)
2 ,

b2ρ m (A · ∂B) =
(

(λ12ρ − 1)mρ +
√

Λρ mBρ

)

(Aρ · ∂Bρ) . (31)

The renormalizations (27)-(31) are not diagonal (as one naively might think): the

new �elds/parameters depend not only on the pertinent old �eld/parameter, beause the

oe�ients ajρ, bjρ, cjρ, ljρ are funtions of the whole set {m,Λ, κ} of old parameters.

The renormalization of the wave funtions an be interpreted as follows: the �eld mono-

mials appearing in L0+zρ(L) an be viewed as a basis of a vetor spae. The rede�nitions

(27) are then a hange of the �unit of lenght on the various oordinate axis�.
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Remark 2.1 (�Perturbative agreement�). By the renormalization of the wave funtions,

masses and gauge �xing-parameter, we hange the splitting of the total Lagrangian L0+
zρ(L) into a free and interating part, i.e. we hange the starting point for the perturbative
expansion. To justify this, one has to show that the two pertubative QFTs given by the

splittings L0 + zρ(L) and Lρ
0 + Lρ

, respetively, have the same physial ontent. This

statement an be viewed as an appliation of the �Priniple of Perturbative Agreement� of

Hollands and Wald, whih is used in [HW05℄ as an additional renormalization ondition.

The proof that the �old� perturbative QFT (given by L0 + zρ(L)) and the �new� one

(given by Lρ
0 + Lρ

) are physially equivalent is beyond the sope of this paper. For the

wave funtion and mass renormalization in a salar �eld theory, the following onjeture

has been formulated (by using the framework of algebrai QFT) and veri�ed for a few

examples [BDF℄: given a renormalization presription (i.e. an S-funtional (16)) for the
old perturbative QFT, there exists a renormalization presription for the new pertur-

bative QFT, suh that the pertinent nets of loal observables in the algebrai adiabati

limit (see [BF00℄ or [DF04, BDF09℄) are equivalent. The orresponding isomorphisms

an be hosen suh that loal �elds are identi�ed with loal �elds modulo the free �eld

equation.

For models with spin 1 �elds, the gauge-�xing parameter has also to be renormalized;

and there is the di�ulty that in general the new free theory (given by Lρ
0) is not BRST-

invariant, see Remark 7.2.

Geometrial interpretation at an arbitrary sale: sine we have written the

running Lagrangian L0 + zρ(L)− kρ in the form Lρ
0 +Lρ

, the equivalene of (7) and (6)

an be applied to it: Lρ
0 +Lρ

an be geometrially interpreted i� the λjρ have the values

λ1ρ = λ2ρ = ... = λ9ρ = 1 , λ11ρ = λ12ρ = 0 . (32)

To be preise: by 'geometrial interpretation' we mean here that

(

L
mρ,Λρ

0 + L
mρ,Λρ

κρ,λρ

)

(Aρ, Bρ, ϕρ, u, ũ) = −1

4
F 2
ρ +

1

2
(Dµ

ρΦρ)
∗DρµΦρ − Vρ(Φρ)

+ Lρ
gf + Lρ

ghost +
√

Λρ mBρ ∂µ(A
µ
ρBρ) , (33)

where Fµν
ρ := ∂µAν

ρ − ∂νAµ
ρ ,

Φρ := iBρ +
mρ

κρ
+ ϕρ , Dµ

ρ := ∂µ − iκρ A
µ
ρ

Vρ(Φρ) :=
κ2ρm

2
Hρ

8m2
ρ

(Φ∗
ρΦρ)

2 −
m2

Hρ

4
(Φ∗

ρΦρ) +
m2

Hρ
m2

ρ

8κ2ρ
(34)

and

Lρ
gf := −Λρ

2

(

∂ · Aρ +
mBρ
√

Λρ

Bρ

)2

,

Lρ
ghost := ∂ũ · ∂u−m2

uρ ũu−
κρ λ10ρ m

2
uρ

mρ
ũuϕρ . (35)
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Our main question is whether (32) holds true when starting with the U(1)-Higgs-
model; for simpliity we also assume that initially we are in Feynman gauge: Λρ=1 = 1.

With these initial values, the geometrial interpretability (32) is equivalent to the

following relations among the oe�ients eρ:

λ1ρ = 1 gives

1 + l1ρ
1 + l0ρ

=

√

1 + b0ρ
1 + a1ρ

, (36)

λ2ρ = 1 gives l2ρ = l1ρ , (37)

λ3ρ = 1 gives

1 + l3ρ
1 + l0ρ

=
1 + c1ρ
1 + a1ρ

, (38)

λ4ρ = 1 gives

1 + l4ρ
1 + l3ρ

=
1 + b0ρ
1 + c0ρ

, (39)

λ5ρ = 1 gives

1 + l5ρ
(1 + l0ρ)2

=
1

1 + a1ρ
, (40)

λ6ρ = 1 gives

1 + l6ρ
1 + l5ρ

=
1 + b0ρ
1 + c0ρ

, (41)

λ7ρ = 1 gives

1 + l7ρ
(1 + l0ρ)2

=
1 + c1ρ

(1 + a1ρ)2
, (42)

λ8ρ = 1 gives

1 + l8ρ
1 + l7ρ

=
1 + b0ρ
1 + c0ρ

, (43)

λ9ρ = 1 gives

1 + l9ρ
1 + l7ρ

=
(1 + b0ρ
1 + c0ρ

)2
, (44)

λ11ρ = 0 gives l11ρ = 0 , (45)

λ12ρ = 0 gives b2ρ =
√

(1 + a2ρ)(1 + b1ρ)−
√

(1 + a1ρ)(1 + b0ρ) . (46)

Searhing all values for the oe�ients eρ whih solve this system of equations, we

�nd that this is quite a large set: negleting kρ, 9 oe�ients an freely be hosen

(e.g. a0ρ, a1ρ, a2ρ, b0ρ, b1ρ, c0ρ, c1ρ, c2ρ and l0ρ), the other 11 oe�ients are then uniquely

determined by the 11 equations (36)-(46).

Combining the equations (38), (40) and (42) we obtain

1 + l7ρ
1 + l3ρ

=
1 + l5ρ
1 + l0ρ

. (47)

It will turn out that the onditions (46) and (47) are ruial for the geometrial inter-

pretability.

For later purpose we mention that, with the onsidered initial values, the expliit

formula for λ10ρ reads

λ10ρ =
1 + a1ρ

(1 + c2ρ)(1 + l0ρ)
. (48)

11



3 BRST-invariane of the Lagrangian

The main result of this Setion is that BRST-invariane of the Lagrangian is a su�ient

(but not neessary) ondition for the geometrial interpretation � for both, the initial

Lagrangian L0 + L and the running Lagrangian L0 + zρ(L).
The BRST-transformation s ≡ sβ = s0+κβ s1 is a graded derivation whih ommutes

with partial derivatives and is given on the basi �elds by

sAµ = ∂µu , sB = mu+ κβ uϕ , s ϕ = −κβ Bu ,

s u = 0 , s ũ = −Λ (∂A+
mB√
Λ
B) . (49)

Sine it is a priory not lear whih of the oupling onstant κ, κλj in L (2) is equal to

the κ in the BRST-transformation, we have introdued the parameter β in s.
BRST-invariane of the initial Lagrangian: expliitly this property reads

sβ(L0 + L) ≃ 0 (50)

(where again ≃ means 'equal up to the addition of derivatives of loal �eld polynomials');

it is equivalent to

β = 1 and the parameter values (6) and (11). (51)

That the parameter values (51) imply (50) an be seen by formally interpreting the

BRST-transformation of Aµ
and (ϕ,B) as an in�nitesimal gauge transformation,

s(Aµ,Φ) =
d

dα
|α=0 (A

µ + α∂µu, eiακuΦ) , (52)

and by taking into aount that Dµ
is a pertinent ovariant derivative. With that we

immediately see that s(F 2) = 0 , s((DµΦ)∗DµΦ) = 0 , s(V (Φ)) = 0, and by using (7)

and a simple alulation we obtain

s(L0+L) =
√
ΛmB s∂(AB)+s(Lgf +Lghost) = ∂µ

(
√
ΛmB s(AµB)+(sũ)(sAµ)

)

. (53)

The proof that (50) is also su�ient for the parameter values (51), is a straightforward

alulation: inserting (1) and (2) into (50) one obtains (after some work) these parameter

values. The relations (11) are preisely the ondition that s(Lgf +Lghost) ≃ 0, where we
assume that β = 1 is already obtained from other parts of the alulation.

BRST-invariane of the running Lagrangian (L0 + zρ(L)): the property

sβ(L0 + zρ(L)) ≃ 0 , (54)

where sβ ≡ s is given by (49), determines zρ(L) − kρ uniquely in terms of the three

oe�ients

aρ := a0ρ , bρ := b0ρ , lρ := c1ρ , (55)

12



whih an freely be hosen. More expliitly, the ondition (54) is equivalent to β = 1
and the following form of zρ(L):

zρ(L
m,Λ
κ ) ≃ kρ −

1

4
aρ F

2 + bρ
(m2

2
A2 −mA∂B +

1

2
(∂B)2 +

1

2
(∂ϕ)2

)

− lρ
m2

H

2
ϕ2

+ κ
(

−m

Λ
ũuϕ+ (1 + bρ)

(

mA2ϕ+BA∂ϕ− ϕA∂B
)

− (1 + lρ)m
2
H

2m
(ϕ3 +B2ϕ)

)

+ κ2
((1 + bρ)

2
(A2 ϕ2 +A2 B2)− (1 + lρ)m

2
H

8m2
(ϕ4 + 2ϕ2B2 +B4)

)

. (56)

One veri�es easily that with these relations among the oe�ients eρ, the equations

(36)-(46) are satis�ed, that is, (54) implies indeed the geometrial interpretation (33).

However, due to the presene of bilinear terms in zρ(L), the di�erene between BRST-

invariane of the Lagrangian (54) and the geometrial interpretation (33) does not only

onern the ghost setor, as for L0+L (see (11)), it is learly bigger � the number of free

oe�ients eρ is 3 versus 9.
The proof that the set of solutions of the ondition (54) is given by β = 1 and (56), is

a somewhat lengthy and straightforward alulation, whih is quite boring. More instru-

tive is the following understanding of the parameter values (56): the above derivation

(52)-(53) of BRST-invariane of L0 + L, by using the geometrial interpretation, an

only be applied to Lρ
0 + Lρ(= L0 + zρ(L) − kρ) , if the BRST transformation s (49)

expressed in terms of the ρ-�elds, has the same form as for the original �elds, up to a

global prefator γ. Expliitly this requirement reads

sAµ
ρ =

√

1 + a0ρ sAµ = γ ∂µu ,

sBρ =
√

1 + b0ρ sB = γ (mρu+ κρ uϕρ) ,

s ϕρ =
√

1 + c0ρ s ϕ = −γ (κρ Bρu)

s ũ = −γ Λρ (∂Aρ +
mBρ
√

Λρ

Bρ) (57)

and s u = γ 0 = 0 is trivially satis�ed. From the �rst equation we obtain

γ =
√

1 + a0ρ (58)

and with that the further equations are equivalent to

bρ := b0ρ = a1ρ = c0ρ = l0ρ and b1ρ = 0 = a2ρ . (59)

To take the demand for validity of the geometrial interpretation into aount, we insert

(59) into (36)-(46), this yields

bρ = l1ρ = l2ρ = l5ρ = l6ρ = −b2ρ

lρ := c1ρ = l3ρ = l4ρ = l7ρ = l8ρ = l9ρ

l11ρ = 0 . (60)
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In addition, the derivation (52)-(53) needs BRST-invariane of (Lρ
gf +Lρ

ghost) (35), whih

is equivalent to m2
uρ =

mBρ mρ√
Λρ

and λ10ρ = 1 (similarly to (11)); both equations give

c2ρ = 0 (61)

by using (59) (and the formulas (28), (29), (48) for the running quantities). The param-

eter relations (59), (60) and (61) agree preisely with (56).

As usual, the BRST-transformation s (49) is nilpotent modulo the �eld equations

of L0 + L; we point out that this holds also for s expressed in terms of the ρ-�elds
(i.e. (57)-(58)) w.r.t. the �eld equations of the new Lagrangian Lρ

0 + Lρ
:

s2ũ = −Λρ(1 + aρ)
(

�u+
mBρ
√

Λρ

(mρu+ κρ uϕρ)
)

= Λρ(1 + aρ)
δ
∫

dx (Lρ
0 + Lρ)

δũ
, (62)

where we use the preeding relations, i.e. we assume that (54) holds true.

4 Perturbative gauge invariane (PGI)

For the initial model S(iL(g)) we admit all renormalization presriptions whih ful�ll the

Epstein-Glaser axioms [EG73, DF04℄ and a suitable version of BRST-invariane. The

latter should be well adapted to the indutive Epstein-Glaser onstrution of the time-

ordered produts and to our de�nition of the RG-�ow. We will see that PGI [DHKS94,

DS99℄ ful�lls these riteria.

Physial onsisteny (PC). To motivate PGI we start with PC, whih is a some-

what weaker ondition [KO79, DS00, Gri00℄. Let Q be the harge implementing the free

BRST-transformation s0 := s|κ=0, expliitly

[Q,φ]∓⋆ ≈ i~ s0φ , φ = Aµ , B , ϕ , u , ũ , (63)

where [· , ·]∓⋆ denotes the graded ommutator w.r.t. the ⋆-produt and ≈ means 'equal

modulo the free �eld equations'. The nilpoteny Q2 ≈ 0 re�ets s20 ≈ 0. For our model

with Feynman gauge Λ = 1, the harge Q is given by the somewhat heuristi formula

6

Q =

∫

x0=constant
d3x

(

(∂A+mB) ∂0u− ∂0(∂A +mB)u
)

. (64)

For the asymptoti free �elds, the �subspae� of physial states an be desribed as

Hphys :=
kerQ

ranQ
.

The operator S[L] (17) indues a well de�ned operator from Hphys into itself i�

[Q,S[L]]⋆|kerQ ≈ 0 ,

6

A rigorous de�nition of Q is given in [DF99℄.
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see e.g. [DS00℄. This is the reason to require

physial onsisteny (PC): 0 ≈ [Q,S[L]]⋆ ≡ lim
ε↓0

[Q,S(iL(gε)/~)]⋆ . (65)

Perturbative gauge invariane (PGI): to ful�ll PC in the indutive Epstein-

Glaser onstrution of time-ordered produts, we need a version of PC before the adia-

bati limit g → 1 is taken: preisely for this purpose PGI was introdued in [DHKS94℄.

PGI is the ondition that to a given loal interation

L(g) := ~
−1

∞
∑

k=1

κk
∫

dx (g(x))k L(k)(x) , (66)

there exists a �Q-vertex�

P
ν(g; f) :=

∞
∑

k=1

κk
∫

dx (g(x))(k−1)
P
ν
(k)(x) f(x) (67)

(where g, f ∈ D(R4) and L(k), P(k) are loal �eld polynomials) and a renormalization of

the time-ordered produts suh that

[Q,S
(

iL(g)
)

]⋆ ≈
d

dη
|η=0 S

(

iL(g) + η Pν(g; ∂νg)
)

. (68)

That PGI implies PC, is easy to see (on the heuristi level on whih we treat the

adiabati limit in this paper): the r.h.s. of (68) vanishes in the adiabati limit, sine it

is linear in the Q-vertex, the latter is linear in ∂νg and ∂νgε ∼ ε.
For time-ordered produts Tn of order n ≥ 2, PGI is a renormalization ondition � it

is a partiular ase of the 'Master BRST Identity', whih is the appliation of the 'Master

Ward Identity' to the onservation of the free BRST-urrent, see [DB02, DF03℄.

It is well-known that the U(1)-Higgs model is anomaly-free. Hene, our initial model

an be renormalized suh that PGI (68) holds to all orders in κ, where L(g) := L(g) is
given by (13) and

P
ν(g; f) :=

∫

dx
(

κP ν
1 (x) + κ2g(x)P ν

2 (x)
)

f(x), (69)

with

P ν
1 = mAνuϕ− ∂νB uϕ+Bu∂νϕ , P ν

2 = Aνuϕ2 +AνuB2 , (70)

where Lk (13) and P ν
k are (k + 2)-linear in the basi �elds and Feynman gauge Λ = 1 is

hosen.

To apply PGI to the running interation zρ(L), we insert the power series (20) for

the oe�ients eρ into zρ(L) (19), to write the latter as a power series in κ,

zρ(L) = ~
−1

∞
∑

k=1

zρ k(L) κ
k . (71)

15



So, for this interation, L(g) (66) is given by

L(g) = zρ(L)(g) := ~
−1

∞
∑

k=1

∫

dx zρ k(L)(x) (κ g(x))
k . (72)

Expliitly, with Λρ=1 = 1 we have

L(1) = L1 , L(2) = L2 + ~L
(1)
0 , L(3) = ~L

(1)
1 , L(4) = ~L

(1)
2 + ~

2L
(2)
0 (73)

et., where L
(j)
k is (k + 2)-linear in the basi �elds and the upper index j denotes the

order in ~; expliitly

L
(j)
0 =− 1

4
a
(j)
0ρ F 2 +

m2

2
a
(j)
1ρ A2 −

a
(j)
2ρ

2
(∂A)2 +

1

2
b
(j)
0ρ (∂B)2 − m2

2
b
(j)
1ρ B2

+
1

2
c
(j)
0ρ (∂ϕ)2 − m2

H

2
c
(j)
1ρ ϕ2 −m2 c

(j)
2ρ ũu+mb

(j)
2ρ A∂B ,

L
(j)
1 =ml

(j)
0ρ A2ϕ+ l

(j)
1ρ B(A∂ϕ) − l

(j)
2ρ ϕ(A∂B) − m2

H

2m
(l
(j)
3ρ ϕ3 + l

(j)
4ρ B2ϕ) ,

L
(j)
2 =

1

2

(

l
(j)
5ρ A2ϕ2 + l

(j)
6ρ A2B2

)

− m2
H

8m2
(l
(j)
7ρ ϕ4 + 2 l

(j)
8ρ ϕ2B2 + l

(j)
9ρ B4) + l

(j)
11ρ (A

2)2 (74)

for j ≥ 1. The pertinent P(k) in (67) must have a similar struture

P(1) = P1 , P(2) = P2 + ~P
(1)
0 , P(2) = ~P

(1)
1 , P(2) = ~P

(1)
2 + ~

2P
(2)
0 (75)

et., where the indies of P
(j)
k have the same meaning as for L

(j)
k .

5 Stability of physial onsisteny under the renormaliza-

tion group �ow

Stability of PC: it is hard to �nd out whether PGI is maintained under the RG-

�ow, i.e. whether PGI for L(g) = L(g) (13) implies PGI for L(g) = zρ(L)(g) (72). In

Set. 7 we show that PGI for S
(

izρ(L)(g)
)

an be ful�lled on the level of tree diagrams

(with verties zρ(L)(g)), if one takes only the 1-loop ontributions e
(1)
ρ (20) to zρ(L) into

aount. But this depends on the renormalization presription for S
(

iL(g)
)

: using a

presription orresponding to the minimal subtration sheme, PGI gets lost under the

RG-�ow, already at the level of tree diagrams.

However, the somewhat weaker property of PC is maintained under the RG-�ow;

more preisely we will prove that

[

Q,S[L]
]

⋆
≈ 0 ⇒

[

Q,S[zρ(L)]
]

⋆
≈ 0 . (76)

Hene, at least in this weak form, BRST-invariane of the time-ordered produts is stable

under the RG-�ow. We point out that (76) is a model-independent result; only rather

weak assumptions are needed, whih will be given in the ourse of the proof.
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Constrution of zρ(L): to prove (76), we need to understand preisely how zρ(L)
is onstruted. We use the formalism of [DF04℄ (see also [BDF09℄), in partiular we

apply the Main Theorem [DF04, HW03℄: assuming that S ful�lls the axioms of Epstein-

Glaser renormalization, this holds also for the saled time-ordered produts σρ ◦S ◦σ−1
ρ ;

therefore, there exists a unique map Zρ ≡ Zρ,m from the spae of loal interations into

itself suh that

7

σρ ◦ Sρ−1
m

◦ σ−1
ρ = Sm ◦ Zρ,m (77)

(the lower index m on S and Zρ denotes the masses of the underlying ⋆-produt, i.e. the
masses of the Feynman propagators).

In addition Zρ is of the following form [DF04, Prop. 4.3℄: let P be the spae of loal

�eld polynomials, h ∈ D(R4) and A(h) =
∫

dx A(x)h(x) for A ∈ P. Given Zρ, there

exist linear and symmetri maps dρn,a : P⊗n → P for n ≥ 2, a ≡ (a1, . . . , an) ∈ (N4
0)

n
,

suh that

Zρ(A(h)) = A(h) +

∞
∑

n=2

1

n!

∑

a

∫

dx dρn,a(A
⊗n)(x)

n
∏

l=1

(∂alh(x)) . (78)

The expressions dρn,a(A⊗n) are uniquely determined if one requires dρn,a(A⊗n) ∈ Pbal,

where Pbal ⊂ P is the subspae of �balaned �elds�, de�ned in [DF04℄.

Applying (78) to A(h) = iL(g)/~ = (i/~)
∑

j=1,2

∫

dx (κg(x))j Lj(x) (13), we get

Zρ(iL(g)/~) = iL(g)/~+

∞
∑

n=2

in

n! ~n

∑

a

∑

j1,...,jn=1,2

κj1+···+jn

·
∫

dx dρn,a(Lj1 ⊗ · · · ⊗ Ljn)(x)
n
∏

l=1

∂al(g(x))jl . (79)

In view of the adiabati limit and ∂gε(x) = O(ε), we ut o� the terms with derivatives

of g:
Zρ(iL(gε)/~) = i zρ(L)(gε) + O(ε) , (80)

where

zρ(L)(g) =
1

~

(

L(g) +
∞
∑

n=2

in−1

n! ~n−1

∑

jl=1,2

∫

dx dρn,0(Lj1 ⊗ · · · ⊗ Ljn)(x) (κg(x))
j1+···+jn

)

.

(81)

Hene, zρ(L)(g) is indeed of the form (72) with

zρ k(L) = Lk +

k
∑

n=2

in−1

n! ~n−1

∑

j1+···+jn=k

dρn,0(Lj1 ⊗ · · · ⊗ Ljn) , (82)

7

We use the onvention for Zρ given in [BDF09℄, whih di�ers by fators i from the de�nition Z̃ρ(F ) :=
Dρ(e

F
⊗) in [DF04℄, namely: Zρ(iF ) = i Z̃ρ(F ) .

17



where Lk := 0 for k ≥ 3. Finally, zρ(L) is obtained from (82) by means of (71). From

(72) and (80) we see that zρ k(L) is uniquely determined up to the addition of terms

∂aA, |a| ≥ 1, A ∈ P � as laimed in (19).

From (80) and (multi-)linearity of the time-ordered produts, we onlude that the

adiabati limit of (77) applied to iL(g) gives indeed (18):

σρ(Sρ−1
m
[σ−1

ρ (Lm)]) := lim
ε↓0

σρ ◦ Sρ−1
m

◦ σ−1
ρ (iLm(gε)) = lim

ε↓0
Sm

(

Zρ(iL
m(gε))

)

= lim
ε↓0

Sm

(

i zρ(L
m)(gε)

)

=: Sm[zρ(L
m)] . (83)

Here we assume that Sm(iL(g)) is renormalized suh that the adiabati limit ε ↓ 0 exists

and is unique for σρ ◦ Sρ−1
m

◦ σ−1
ρ (iL(gε)) for all ρ > 0; hene, this limit exists also for

S
(

i zρ(L)(gε)
)

.

Proof of stability of PC (76): by using the Main Theorem, the relations

σ−1
ρ (Lm(g)) = Lρ−1

m(g1/ρ) ( again gλ(x) := g(λx) ) (84)

and

σρ(F ⋆ρ−1
m

G) = σρ(F ) ⋆m σρ(G) , ρ σρ ◦Qρ−1
m

= Qm , (85)

we obtain

[Qm, Sm(Zρ(iL
m(gε)))]⋆m = [Qm, σρ ◦ Sρ−1

m
(iLρ−1

m(gε/ρ))]⋆m

= ρ σρ

(

[Qρ−1
m
, Sρ−1

m
(iLρ−1

m(gε/ρ))]⋆ρ−1
m

)

. (86)

Now, assuming that Sm(iLm(g)) ful�lls PC (65) for all values m,mH > 0 of the masses,

we onlude that the adiabati limit ε ↓ 0 of the last expression in (86) vanishes. (Here

we use that it does not matter whether we perform the adiabati limit with g or g1/ρ,
sine it is unique.) With that and with (80) we obtain the assertion (76):

0 ≈ lim
ε↓0

[Q,S(Zρ(iL(gε)))]⋆ = lim
ε↓0

[Q,S(i zρ(L)(gε))]⋆ =
[

Q,S[zρ(L)]
]

⋆
. (87)

Completion of the derivation of the form of zρ(L): having given the onstru-

tion of zρ(L) (82) (see also Set. 5 of [DF04℄), we are able to explain why on the r.h.s. of

(19) preisely these �eld monomials appear and no others:

• eah term appearing in zρ(L) is Lorentz invariant, has ghost number = 0 and its

mass dimension is ≤ 4 (see formula (5.5) in [DF04℄).

• Sine the only interation term ontaining ũu is mũuϕ, eah term in (zρ(L) − L)
whih is bilinear in the ghost �elds has a fator m2

and, hene, its mass dimension

is ≤ 2. This exludes a ∂ũ ∂u-term and non-trivial trilinear and quadrilinear terms

ontaining ũu.

• The property that L is even under the �eld parity transformation (3) goes over to

eah diagram ontributing to S(iL(g)) and, hene, eah term appearing in zρ(L)
has also this property. This redues the number of possible terms in zρ(L) quite
strongly.
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• To disuss the appearane of one-leg terms

∑

a ca ∂
aφ in zρ(L) (where φ = Aµ, B, ϕ

and ca ∈ C), we write (77) to n-th order, by using the hain rule:

Z
(n)
ρ,m

(

L(gε)
⊗n

)

=σρ ◦ Tnm/ρ

(

(σ−1
ρ L(gε))

⊗n
)

− Tnm

(

L(gε)
⊗n

)

−
∑

P∈Part({1,...,n}, n>|P |>1

T|P |m
(

⊗I∈PZ
|I|
ρ,m(L(gε)

⊗|I|)
)

, (88)

where Z
(n)
ρ := Z

(n)
ρ (0) is the n-th derivative of Zρ(F ) at F = 0 and the two terms

with |P | = n and |P | = 1, resp., are expliitly written out. Taking (79) into

aount, we see that eah one-leg term appearing on the r.h.s. of (88) is a sum of

terms of the form

∫

dx1 . . . dxk G1(εx1) . . . Gk(εxk)
∑

b

∂bφ(xk)tb(x1 − xk, . . . , xk−1 − xk) , (89)

where k = n or k = |P |, the testfuntions Gj are of the form Gj(x) =
∏nj

l=1 ∂
ajlg(x)

and ta = ω0

(

Tk(. . .)
)

is the vauum expetation value of a time-ordered produt.

The expression (89) an be written as an integral in momentum spae: up to a

power of (2π) as prefator it is equal to

∫

dp1 . . . dpk Ĝ1(p1) . . . Ĝk(pk) φ̂(−ε(p1 + . . .+ pk))

·
∑

b

(−iε(p1 + · · · + pk))
b t̂b(−εp1, . . . ,−εpk−1) . (90)

From [EG73℄ we know that t̂b(p) is analyti in a neighbourhood of p = 0, sine all
�elds are massive. Hene, in the adiabati limit ε ↓ 0 of (90), the (|b| > 0)-terms

vanish and, hene, do not ontribute to zρ(L).

To avoid the appearane of a (b = 0)-term in zρ(L), we �rst mention that we only

have to onsider the ase in whih the singular order of t := tb=0 is ω(t) ≥ 0;8 for

the following reason: a term with ω(t) < 0 is non-loal, i.e. supp(t) 6⊂ {0}. But

the l.h.s. of (88) is loal; hene, the (ω(t) < 0)-terms appearing on the r.h.s. of

(88) must anel, when restrited to D(R4k \ ∆k) (where ∆k := {(x1, . . . , xk) ∈
R

4k |x1 = . . . = xk}). Sine for these terms, the extension to D(R4k) is unique,

they anel also on D(R4k).

Obviously, the �nite renormalization

t̂(p) 7→ t̂(p)− t̂(0) , t ≡ tb=0 , (91)

8

For t ∈ D
′(Rl) or t ∈ D

′(Rl \ {0}), the singular order is de�ned as ω(t) := sd(t) − l, where

sd(t) is Steinmann's saling degree of t, whih measures the UV-behaviour of t [Ste71℄. In the Epstein-

Glaser framework, renormalization is the extension of a distribution t◦ ∈ D
′(Rl \ {0}) to a distribution

t ∈ D
′(Rl), with the ondition that sd(t) = sd(t◦). In the ase sd(t◦) < l, the extension is unique, due

to the saling degree requirement, and obtained by �diret extension�, see [BF00, Theorem 5.2℄, [DF04,

Appendix B℄ and [DFKR14, Theorem 4.1℄.
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whih is admitted due to ω(t) ≥ 0, removes the possible one-leg terms in zρ(L).
This renormalization preserves PGI, beause of

[Q,φ] ≈ i ∂µφ
µ
1 , where φµ

1 = 0, −∂µu
m , gµνu for φ = ϕ, B, Aν , resp.; (92)

in detail:

[Q , t̂(0)φ(xk) δ(x1−xk, . . . , xk−1−xk)] ≈ i

k
∑

l=1

∂xl
µ

(

t̂(0)φµ
1 (xk) δ(x1−xk, . . . , xk−1−xk)

)

.

(93)

We point out that when we perform the �nite renormalization (91) for a t belonging
to Tnm, then the orresponding t belonging to σρ◦Tnm/ρ◦(σ−1

ρ )⊗n
is automatially

modi�ed by preisely the same �nite renormalization, beause the renormalization

ondition t̂(0) = 0 is saling invariant.

If one does not perform the �nite renormalization (91), one-leg terms may appear

in zρ(L); however, only in seond and higher loop orders. Namely, they ful�ll (23)

with q0 = 0 and n := r0 + s ≥ 1, hene they appear in (19) as

zρ(L) = ~
−1

(

κ−1
∞
∑

n=2

e(n)ρ (κ2~)n φ+ . . .
)

. (94)

6 Geometrial interpretation at all sales to 1-loop order

In this setion we explain, how one an ful�ll the geometrial interpretation at all sales,

i.e. the equations (36)-(46), on 1-loop level. For this purpose we derive a lot of results

about the 1-loop oe�ients e
(1)
ρ (20) of the running interation zρ(L) (19). Throughout

we hoose Feynman gauge Λ = 1 for the initial U(1)-Higgs model. The onventions for

the signs and fators i, 2π are �xed in (207).

6.1 The two ways to renormalize

Renormalizing a 1-loop Feynman diagram, there are two ruially di�erent methods to

hoose the renormalization mass sale. We explain this in terms of the omputation of

the 1-loop oe�ient c
(1)
2ρ , whih is the one that is most easily to ompute.

Computation of c
(1)
2ρ : we reall that Zρ

(

i L(g)/~
)

is a formal Taylor series,

Zρ

(

i L(g)/~
)

= i L(g)/~ +

∞
∑

n=2

in

~n n!
Z(n)
ρ (L(g)⊗n) ; (95)

aording to (88) the (n = 2)-term is obtained by

Z(2)
ρ (Lm(g)⊗2) = σρ ◦ T2 ρ−1

m

(

σ−1
ρ (Lm(g))⊗2

)

− T2m

(

Lm(g)⊗2
)

. (96)

20



To ompute c
(1)
2ρ we selet the term with external legs ũu, whih is ∼ κ2:

T2m

(

L1(x1)⊗ L1(x2)
)

= m2
(

tũu
m
(x1 − x2) ũ(x1)u(x2) + (x1 ↔ x2) + ...

)

, (97)

where

tũu
m
(x1 − x2) := ω0

(

T2m(u(x1)ϕ(x1)⊗ ũ(x2)ϕ(x2))
)

(98)

and ω0 denotes the vauum state. The orresponding ontribution to Zρ(~
−1i L(g)) reads

Zρ(i L(g)/~) =~
−1i L(g) − κ2 m2

~2

∫

dx1 dx2 g(x1)g(x2)

·
(

ρ4 tũuρ−1
m
(ρ(x1 − x2))− tũu

m
(x1 − x2)

)

ũ(x1)u(x2) + . . . . (99)

We will see that

ρ4 tũuρ−1
m
(ρy)− tũu

m
(y) = ~

2 Cfish log ρ δ(y) (100)

with a onstant Cfish ∈ iR. Inserting (100) into (99) and using (79), (82), we end up

with

c
(1)
2ρ = −iCfish log ρ . (101)

To derive (100) and to ompute the number Cfish, we start with the unrenormalized

version of tũu
m
: the restrition of tũu

m
(y) to D(R4 \ {0}) agrees with

tũu ◦
m

(y) := ~
2 tm,mH

(y) tm,mH
(y) := ∆F

m(y)∆F
mH

(y) ∈ D
′(R4 \ {0}) , (102)

where ∆F
m is the Feynman propagator to the mass m. Due to ρ2 ∆F

ρ−1m(ρy) = ∆F
m(y),

the unrenormalized distribution tũu ◦
m

sales homogeneously,

ρ4 tũu ◦
ρ−1

m
(ρy) = tũu ◦

m
(y) . (103)

The question is, whether this property an be maintained in the proess of renormaliza-

tion (i.e. extension, see footnote 8).

To onstrut the extension tũu
m

∈ D′(R4) we use the saling and mass expansion

(shortly 'sm-expansion') [Düt15℄; in the present ase this means that we split tũu ◦
m

(y)
into the orresponding massless distribution −~

2t◦fish(y) and a remainder r◦
m
(y), whih is

of order r◦
m

= O(m2,m2
H):

tũu ◦
m

(y) = ~
2t◦fish(y) + r◦

m
(y) , t◦fish(y) := (DF (y))2 , sd(t◦fish) = sd(t◦

m
) = 4 , (104)

where DF := ∆F
m=0 is the massless Feynman propagator. The remainder r◦

m
has a unique

extension rm ∈ D′(R4) with sd(rm) = sd(r◦
m
) = 2, whih is obtained by diret extension;

it preserves the homogeneous saling (103).

The unrenormalized massless part t◦fish sales homogeneously in y, but this property
annot be preserved: the extension needs a mass saleM > 0 and with that homogeneous

saling in y is broken at least by a logarithmi term. All extensions with suh a minimal

breaking an be obtained by di�erential renormalization:

tMfish(y) =
−1

64π4
�y

( log(−M2(y2 − i0))

y2 − i0

)

∈ D
′(R4) , M > 0 arbitrary, (105)
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see e.g. appendix B in [DF04℄.

The two methods to hoose the renormalization mass sale. Whether ho-

mogeneous saling in y and (m−1,m−1
H ) (103) is maintained depends on the following

hoie:

(A) If we hoose forM a �xed mass sale, whih is independent ofm,mH , homogeneous

saling is broken:

ρ4 tũuρ−1
m
(ρy)− tũu

m
(y) =~

2
(

ρ4 tMfish(ρy)− tMfish(y)
)

=~
2 Cfish log ρ δ(y) , Cfish :=

−i

8π2
, (106)

by using �( 1
y2−i0

) = i 4π2 δ(y) . The breaking term is unique, i.e. independent

of M ; therefore, we may admit di�erent values of M for di�erent t-distributions,
however, all M 's must be independent of m,mH .

(B) Homogeneous saling (103) an be maintained by hoosing M := α1m + α2mH ,

where (α1, α2) ∈ (R2 \ {(0, 0)}) may be funtions of

m
mH

:

ρ4 tũuρ−1
m
(ρy)− tũu

m
(y) = −~

2
(

ρ4 tρ
−1M

fish (ρy)− tMfish(y)
)

= 0 . (107)

With that, tũu
m

does not ontribute to the RG-�ow: c
(1)
2ρ = 0.

Remark 6.1. When using the renormalization method (B), we have to weaken a bit

the sm-expansion axiom given in [Düt15℄. In detail: among other onditions, this axiom

requires that the term l = 0 in the sm-expansion

9

tm(y) =
L
∑

l=0

∑

l1,l2≥0, l1+l2=l

m2l1m2l2
H u

(m)
l1,l2

(y) + r
(m)
2L+2(y) ,

i.e. u
(m)
0,0 , is independent of m. Only the distributions u

(m)
l1,l2

with l1 + l2 ≥ 1 may be

polynomials in (log m
M1

, log mH

M1
), where M1 > 0 is a �xed mass sale. From (104)-(105)

we expliitly see that this ondition is violated by the method (B); e.g. for M := m we

have

�y

( log(−m2(y2 − i0))

y2 − i0

)

= �y

( log(−M2
1 (y

2 − i0))

y2 − i0

)

+ 8iπ δ(y) log m
M1

.

So, when using method (A), we keep the original version of the sm-expansion axiom; but,

when using method (B), we admit that also u
(m)
0,0 is a polynomial in (log m

M1
, log mH

M1
).

Proeeding analogously to [Düt15℄, one veri�es that using method (B) and the indutive

Epstein-Glaser onstrution of time-ordered produts, this weakened version of the sm-

expansion axiom an be ful�lled to all orders of perturbation theory.

9

In 4 dimensions only even powers of m and mH appear.
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Conjeture: If we renormalize all t-distributions in all indutive steps of the Epstein-
Glaser onstrution by the hoie (B), i.e. we use as renormalization mass sale through-

out M := α1m + α2mH (where (α1, α2) are as above, di�erent values of (α1, α2) for

di�erent diagrams are admitted), then the RG-�ow is trivial:

zρ(L) = L/~ ∀ρ > 0. (108)

Proof. We prove this Conjeture for massless, primitive divergent diagrams.

10

This ov-

ers all massive 1-loop diagrams with singular order ω = 0 or 1, beause for these dia-

grams, only the leading term of the sm-expansion, whih is the orresponding massless

distribution, ontributes to the RG-�ow. However, note that also the (ω = 2)-diagrams

(181)-(182) are overed, beause their saling behaviour an be traed bak to the saling

behaviour of the massless �sh-diagram, see Appendix A.

Let y := (y1, . . . , yl), Yj := y2j − i0; for the onsidered diagrams the unrenormalized

distribution t◦ ∈ D′(R4l \ {0}) sales homogeneously:

ρω+4l t◦(ρy) = t◦(y) . (109)

We work with an analyti regularization [Hol08℄:

tζ◦(y) := t◦(y) (M2lY1 . . . Yl)
ζ , (110)

where ζ ∈ C \ {0} with |ζ| su�iently small, and M > 0 is a renormalization mass sale.

tζ◦ sales also homogeneously � by the regularization we gain that the degree (of the

saling) is (ω+4l− 2lζ), whih is not an integer. Therefore, the homogeneous extension

tζ ∈ D′(R4l) is unique and an be obtained by di�erential renormalization [DFKR14,

Set. IV.D℄:

tζ(y) =
1

∏ω
j=0(j − ω + 2lζ)

∑

r1...rω+1

∂yrω+1
. . . ∂yr1

(

yr1 . . . yrω+1 t
ζ◦(y)

)

, (111)

where

∑

r ∂yr(yr . . .) :=
∑

r ∂
yr
µ (yµr . . .) and the overline denotes the diret extension. In

order that the limit ζ → 0 exists, we subtrat from the Laurent series tζ its priniple

part. Aording to [DFKR14, Corollary 4.4℄ the term ∼ ζ0 (�minimal subtration�) is an

admissible extension tM of t◦:

tM (y) =
(−1)ω

ω!

∑

r1...rω+1

∂yrω+1
. . . ∂yr1

[ 1

2l

(

yr1 . . . yrω+1 t
◦(y) log(M2lY1 . . . Yl)

)

+ (
ω
∑

j=1

1

j
)
(

yr1 . . . yrω+1 t
◦(y)

)]

, (112)

10

That is, massless diagrams Γ with singular order ω(Γ) ≥ 0 (see footnote 8) whih do not ontain

any subdiagram Γ1 ⊂ Γ with less verties and with ω(Γ1) ≥ 0. For example, the setting sun diagram is

a primitive divergent 2-loop diagram.
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see [DFKR14, formula (104)℄. The seond term is of the form

∑

|a|=ω Ca ∂
aδ(y). The

�rst term breaks homogeneous saling in y logarithmially, but we expliitly see that

ρω+4l tρ
−1M (ρy) = tM (y) ; (113)

this proves the Conjeture.

Remark 6.2. We only admit renormalizations of the initial U(1)-Higgs model whih

ful�ll PGI. This requirement is neither in on�it with method (A) nor with method

(B), for the following reason: we require PGI only for the initial model, i.e. only at one

�xed sale. Now, working at one �xed sale, the renormalization onstant M appearing

in (105) may have any value M > 0 for both methods (A) and (B) and, hene, one may

hoose it suh that PGI is satis�ed. These methods only presribe how M behaves under

a saling transformation: using (A) it remains unhanged, using (B) it is also saled:

M 7→ ρ−1M .

Computation of b
(1)
0ρ : The purpose of this omputation is to illustrate the methods

(A) and (B) for a 1-loop oe�ient having ontributions from more than one Feynman

diagram; in addition this omputation is also a preparation for the following Subsetion.

To ompute b
(1)
0ρ we have to take the following terms of T2m

(

L1(x1) ⊗ L1(x2)
)

into

aount:

t∂B∂B
mλν (x1 − x2) ∂

λB(x1)∂
νB(x2) +

(

tB∂B
m ν (x1 − x2)B(x1)∂

νB(x2) + (x1 ↔ x2)
)

, (114)

where (x1 ↔ x2) refers only to the tB∂B
-term and

t∂B∂B
mλν (x1 − x2) := ω0

(

T2m(ϕAλ(x1)⊗ ϕAν(x2))
)

,

tB∂B
m ν (x1 − x2) := −ω0

(

T2m(∂λϕAλ(x1)⊗ ϕAν(x2))
)

. (115)

The unrenormalized t-distributions read

t∂B∂B ◦
mλν (y) = −~

2 gλν ∆
F
m(y)∆F

mH
(y) ∈ D

′(R4 \ {0}) ,
tB∂B ◦
m ν (y) = ~

2∆F
m(y) ∂ν∆

F
mH

(y) ∈ D
′(R4 \ {0}) ; (116)

both sale homogeneously, e.g. ρ5 tB∂B ◦
ρ−1

m ν(ρy) = tB∂B ◦
m ν (y).

We renormalize both diagrams by using method (A). Sine t∂B∂B ◦
essentially agrees

with tũu ◦
, we know from (106) that

ρ4 t∂B∂B
ρ−1

mλν(ρy)− t∂B∂B
mλν (y) = −~

2 gλν Cfish log ρ δ(y) . (117)

To extend tB∂B ◦
m ν , we use again the sm-expansion

tB∂B ◦
m ν (y) = v◦ν(y) + r◦

m ν(y) , v◦ν(y) := ~
2 DF (y) ∂νD

F (y) =
~
2

2
∂νt

◦
fish(y) , (118)
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the statements in the preeding example about the remainder r◦
m ν and its extension

rm ν ∈ D′(R4) hold true also in the present ase, with the exeption that now sd(r◦
m ν) =

3. All extensions of v◦ν with a minimal (i.e. logarithmi) breaking of homogeneous saling

in y an be obtained by di�erential renormalization:

vMν (y) =
~
2

2
∂νt

M
fish(y) ∈ D

′(R4) , M > 0 arbitrary. (119)

Choosing M aording to method (A) we get

ρ5 tB∂B ◦
ρ−1

m ν(ρy)− tB∂B ◦
m ν (y) = ρ5 vMν (ρy)− vMν (y) =

~
2

2
Cfish log ρ ∂νδ(y) . (120)

Taking (96) into aount we see that the terms (114) give

Z(2)
ρ (L(g)⊗2) = Cfish κ

2
~
2 log ρ

∫

dx1dx2 g(x1)g(x2)

·
(

∂νδ(x1 − x2)B(x1)∂
νB(x2)− gλν δ(x1 − x2) ∂

λB(x1)∂
νB(x2) + . . .

)

+ . . . ,

(121)

whih yields

zρ(L) = ~
−1

(

L− iCfish ~κ
2

2
log ρ (1 + 1) (∂B)2 + . . .

)

(122)

by using (95) and (82). We end up with

b
(1)
0ρ = −2i Cfish log ρ =

−1

4π2
log ρ . (123)

The onjeture an expliitly be veri�ed: renormalizing tB∂B ◦
or t∂B∂B ◦

by means of

method (B) the pertinent expressions (117) and (120), respetively, vanish. Hene, also

the values b
(1)
0ρ = −1

8π2 log ρ and b
(1)
0ρ = 0 an appear.

Note that

ω0

(

T2m(A∂ϕ(x1)⊗A∂ϕ(x2))
)

B(x1)B(x2)

ontributes only to b
(1)
1ρ and not to b

(1)
0ρ , see (212) and (217).

6.2 Equality of ertain oe�ients

In this subsetion we explain how some of the equations (36)-(46) (whih express the

geometrial interpretability at all sales) an be ful�lled on 1-loop level, by renormalizing

suh that ertain Feynman diagrams, whih go over into eah other by exhanging B ↔
ϕ for some lines, give the same ontribution to the RG-�ow (up to possibly di�erent

ombinatorial fators).

How to obtain c
(1)
0ρ = b

(1)
0ρ : The terms ontributing to c

(1)
0ρ are obtained from (114)-

(115) by exhanging B ↔ ϕ throughout. The orresponding unrenormalized distributions
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t∂ϕ∂ϕ ◦
and tϕ∂ϕ ◦

are given by (116) with ∆F
mH

replaed by ∆F
m. However, this modi-

�ation does not show up in the pertinent massless parts −gλν t
◦
fish (104) and v◦ν (118),

respetively. Sine only the latter ontribute to the RG-�ow, we onlude that

c
(1)
0ρ = b

(1)
0ρ (124)

an be obtained in the following way:

(⋆) Corresponding t-distributions (or more preisely their massless parts) have to be

renormalized all with method (A) or all with method (B). For the various t-distributions
we may hoose di�erent renormalization mass sales M when using method (A);

or di�erent linear ombinations M = α1m+ α2mH when using method (B).

Taking Remark 6.2 into aount, we see that this renormalization presription is

ompatible with PGI of the initial U(1)-Higgs model.

Having obtained (124), the equations (39), (41) and (43)-(44) simplify to

l
(1)
3ρ = l

(1)
4ρ , l

(1)
5ρ = l

(1)
6ρ , l

(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ (125)

on 1-loop level.

Obtaining analogously l
(1)
1ρ = l

(1)
2ρ (37): There are ontributions to l

(1)
1ρ oming

from T2(L1 ⊗L2), more preisely only the part L1
1 := BA∂ϕ−ϕA∂B of L1 ontributes.

These terms read

2
(

ω0

(

T2

(

AλB(x1)⊗AνB(x2)
)

)

∂λϕ(x1)A
ν(x2)B(x2)

− ω0

(

T2

(

A∂B(x1)⊗AνB(x2)
)

)

ϕ(x1)A
ν(x2)B(x2)

)

+ (x1 ↔ x2) . (126)

The orresponding ontributions to l
(1)
2ρ are obtained by exhanging B ↔ ϕ through-

out. Proeeding similarly to the derivation of (124) (in partiular the renormalization

presription (⋆) is used), we �nd that the ontributions of these terms to l
(1)
1ρ and l

(1)
2ρ

agree.

Note that similarly to (214)-(215), there is neither a ontribution to l
(1)
1ρ nor to l

(1)
2ρ

oming from the following T2(L
1
1 ⊗ L2)-term:

− m2
H

m2
ω0

(

T2

(

(B∂λϕ− ϕ∂λB)(x1)⊗Bϕ(x2)
)

)

Aλ(x1)B(x2)ϕ(x2) + (x1 ↔ x2) . (127)

The ontributions to l
(1)
1ρ , l

(1)
2ρ oming from T3(L

⊗3
1 ) use only the part L1

1 of L1, the

relevant terms of T3(L
1
1
⊗3

) are triangle diagrams with 2 or 3 derivatives, they are of the

form

(

(

vλν11 (y1, y2) + rλν11 (y1, y2)
)

Aλ(x1)∂νϕ(x2)B(x3)

−
(

vλν12 (y1, y2) + rλν12 (y1, y2)
)

Aλ(x1)∂νB(x2)ϕ(x3)

+
(

vλ21(y1, y2) + rλ21(y1, y2)
)

Aλ(x3)B(x1)ϕ(x2)

−
(

vλ22(y1, y2) + rλ22(y1, y2)
)

Aλ(x3)ϕ(x1)B(x2)
)

+
(

5permutations ofx1, x2, x3

)

,

(128)
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where yj := xj − x3 and the �rst two lines are obtained from eah other by exhanging

B ↔ ϕ throughout and the same for the third and fourth lines. Moreover, we have

inserted the sm-expansion. The remainders rkl (k, l ∈ {1, 2}) do not ontribute to the

RG-�ow, sine they are renormalized by diret extension. The unrenormalized versions

of the massless parts vkl agree pairwise: v◦k := v◦k1 = v◦k2 ∈ D′(R8 \ {0}); expliitly they

read

vλν ◦
1 (y1, y2) = ~

3
(

−∂νDF (y1)D
F (y2) ∂

λDF (y1 − y2) + ∂λ∂νDF (y1)D
F (y2)D

F (y1 − y2)
)

,

vλ ◦
2 (y1, y2) = −2~3 ∂λ∂νD

F (y1) ∂
νDF (y2)D

F (y1 − y2) . (129)

Obviously these v◦-distributions sale homogeneously in (y1, y2). Renormalization breaks

this symmetry by terms of the form

ρ8 vλν1l (ρy1, ρy2)− vλν1l (y1, y2) = ~
3 log ρ C1 g

λν δ(y1, y2) ,

ρ9 vλ2l(ρy1, ρy2)− vλ2l(y1, y2) = ~
3 log ρ (C21∂

λ
y1 + C22∂

λ
y2)δ(y1, y2) , (130)

where Lorentz ovariane is taken into aount.

11

Aording to the presription (⋆) we
have to hoose the renormalization mass sales for vk1 and vk2 by the same method.

Inserting these results into

Z(3)
ρ (Lm

1 (g)⊗3) = σρ ◦ T3 ρ−1
m

(

σ−1
ρ (Lm

1 (g))⊗3
)

− T3m

(

Lm

1 (g)⊗3
)

+ . . . , (131)

where Lm

1 (g) :=
∫

dx Lm

1 (x) g(x), we obtain the following ontributions to l
(1)
1ρ and l

(1)
2ρ ,

respetively: using method (A) throughout, we get

l
(1)
1ρ = (−C1 − C21 + C22 − 3i Cfish) log ρ = l

(1)
2ρ , (132)

where the Cfish-term is the ontribution from (126). When using (B) for v◦1 or v◦2 (or for

both), the onstant C1 or (−C21 + C22), resp., (or both) is/are replaed by zero, and

analogously for the ontribution from (126). In all these ases l
(1)
1ρ = l

(1)
2ρ remains true.

Obtaining analogously l
(1)
5ρ = l

(1)
6ρ and l

(1)
7ρ = l

(1)
9ρ (125): the terms ontributing to

l
(1)
5ρ and l

(1)
7ρ are listed in Appendix B. The orresponding terms ontributing to l

(1)
6ρ and

l
(1)
9ρ , respetively, are obtained by replaing B ↔ ϕ throughout. Proeeding as above, the

renormalization presription (⋆) implies l
(1)
5ρ = l

(1)
6ρ and l

(1)
7ρ = l

(1)
9ρ .

Obtaining analogously l
(1)
3ρ = l

(1)
4ρ and l

(1)
7ρ = l

(1)
8ρ (125): here, the ombinatoris

is somewhat involved � there is not a (1 : 1)-orrespondene of terms. In Appendix

B these two equations are veri�ed by expliit omputation of the pertinent oe�ients,

under the assumption that all ontributing terms are renormalized by method (A). From

the alulations given there, we see that l
(1)
3ρ = l

(1)
4ρ and l

(1)
7ρ = l

(1)
8ρ hold true, also if the

method (B) is used for orresponding terms. For example, if we swith to method (B) in

(226) and (231), C1△ is replaed by zero in (228) and (233), but l
(1)
3ρ = l

(1)
4ρ remains true.

11

In terms of the invariants Cj△ omputed in Appendix A, we have C1 = −C1△ + C2△ = −2C1△.

The omputation of the invariants C21 and C22 is a more di�ult task � for our purposes, we do not

need to know these numbers.
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6.3 Vanishing of the A
4
-term due to maintenane of PC

In this short subsetion we explain, why the identity (45) holds true to 1-loop order.

A byprodut of the alulations in Appendix C is the following (see Remark C.2):

working out stability of PC under the RG-�ow,

lim
ε↓0

[Q,S(i zρ(L)(gε))]⋆ ≈ 0 , (133)

to order κ4, we obtain � among other relations � the equation

0 ≈ l
(1)
11ρ lim

ε↓0

∫

dx (gε(x))
2 [Q, (A2)2(x)] = l

(1)
11ρ 4i lim

ε↓0

∫

dx (gε(x))
2 A2A∂u(x) . (134)

Using results of Appendix A of [DS00℄ we may argue as follows: sine there does not

exist a loal �eld polynomial W µ
suh that A2A∂u = ∂µW

µ
, the equation (134) implies

l
(1)
11ρ = 0 . (135)

6.4 Changing the running interation by �nite renormalizations

To ontinue the ful�llment of the identities (36)-(46) on 1-loop level, we take into a-

ount that the following �nite renormalizations are admitted by the axioms of ausal

perturbation theory [EG73, DF04℄ and that they preserve PGI of the initial model: to

T2

(

L1(x1)⊗ L1(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M

(

α1 (∂ϕ)
2(x1) + α2 m

2
H ϕ2(x1) + α3 F

2(x1) + α4 (∂A +mB)2

+ α5

(

−m2B2(x1) + (∂B)2(x1)
)

+ α6

(

m2A2(x1)− (∂A)2(x1)
)

+ α7 m
2
(

−2 ũu(x1) +A2(x1)−B2(x1)
)

)

, (136)

where α1, . . . , α7 ∈ C are arbitrary.

The ompatibility with PGI is obvious for the α1-, α2-, α3- and α4-term, beause the

ommutator of Q with the pertinent �eld polynomials is ≈ 0. For the other terms, the

PGI-relation

[Q,T2

(

L1(x1)⊗ L1(x2)
)

]⋆ ≈ i∂x1
ν T2

(

P ν
1 (x1)⊗ L1(x2)

)

+ (x1 ↔ x2) (137)

is maintained, if we simultaneously renormalize T2

(

P ν
1 (x1)⊗ L1(x2)

)

by adding

~
2 δ(x1 − x2) log

m
M

(

α5 2mu∂νB(x1) + (α6 + α7) 2m
2 Aνu(x1)

)

. (138)

Proeeding analogously to the omputation (95)-(101) of c
(1)
2ρ , we �nd that the renor-
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malizations (136) modify the 1-loop oe�ients e
(1)
ρ appearing in zρ(L) (19) as follows:

a
(1)
0ρ 7→ a

(1)
0ρ + 2i α3 log ρ , (139)

a
(1)
1ρ 7→ a

(1)
1ρ − i (α6 + α7) log ρ , (140)

a
(1)
2ρ 7→ a

(1)
2ρ + i (α4 − α6) log ρ , (141)

b
(1)
0ρ 7→ b

(1)
0ρ − i α5 log ρ , (142)

b
(1)
1ρ 7→ b

(1)
1ρ + i (α4 − α5 − α7) log ρ , (143)

b
(1)
2ρ 7→ b

(1)
2ρ + i α4 log ρ , (144)

c
(1)
0ρ 7→ c

(1)
0ρ − i α1 log ρ , (145)

c
(1)
1ρ 7→ c

(1)
1ρ + i α2 log ρ , (146)

c
(1)
2ρ 7→ c

(1)
2ρ − i α7 log ρ , (147)

the other oe�ients remain unhanged.

Remark 6.3. There are further, linearly independent (w.r.t. ≃) possibilities for �nite
renormalization whih preserves PGI:

• to T2

(

L1(x1)⊗ L1(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M β1

(

2 ∂ũ∂u(x1)− (∂A)2(x1) + (∂B)2(x1)
)

, (148)

sine [Q, (2 ∂ũ∂u− (∂A)2 + (∂B)2)]⋆ ≈ −2i ∂µ(∂A∂µu);

• to T2

(

L2(x1)⊗ L1(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M

(

β2
m2

H

2m
ϕ3(x1)

+ β3

[

mA2ϕ−mũuϕ+B(A∂ϕ)− ϕ(A∂B)− m2
H

2m
ϕ3 − m2

H

2m
B2ϕ

]

(x1)
)

,

(149)

sine [. . .] = L1 and [Q,L1]⋆ ≈ i ∂νP
ν
1 (P ν

1 is given in (70));

• to T2

(

L2(x1)⊗ L2(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M β4

m2
H

4m2
ϕ4(x1) . (150)

However, the β1- and β3-renormalization add �by hand� novel kind of terms ∼ ∂ũ∂u
and ∼ mũuϕ, respetively, to (zρ(L) − L) (19) � therefore, we do not take them into

aount. And, even if we would admit a ∂ũ∂u- and a (mũuϕ)-term in (zρ(L) − L), the
β1- and β3-renormalization annot be used to ful�ll the ruial identities (155) or (151),

beause they do not hange a
(1)
2ρ − b

(1)
0ρ or l

(1)
3ρ − l

(1)
0ρ , respetively.

We may not use the β2- and β4-renormalization: they would destroy the relations

l
(1)
3ρ = l

(1)
4ρ and l

(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ sine they would modify only l

(1)
3ρ and l

(1)
7ρ , respetively.
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6.5 Geometrial interpretation at all sales

There are two neessary onditions for the geometrial interpretation at all sales, whih

are ruial, sine they annot be ful�lled by �nite renormalizations.

Veri�ation of the �rst ruial neessary ondition: The ondition (47) reads

to 1-loop level

l
(1)
7ρ − l

(1)
3ρ = l

(1)
5ρ − l

(1)
0ρ . (151)

As disussed in Remark 6.3, there is no possibility to ful�ll this equation by �nite renor-

malizations. Therefore, we investigate its validity by expliit alulation: using the

renormalization method (A) for all ontributing terms, the results of Appendix B yield:

l
(1)
7ρ − l

(1)
3ρ

log ρ
= 4C1△ +

m2

m2
H

8 (iC2� −C2△) , (152)

l
(1)
5ρ − l

(1)
0ρ

log ρ
= 8C1△ − 4i C1� ; (153)

where anellations of �sh- with triangle-, �sh- with square- and triangle- with square-

diagrams are not used so far. Using now relations among the invariants Cj△ and Cj�

(derived in Appendix A), we �nd that (151) holds indeed true:

l
(1)
7ρ − l

(1)
3ρ = 4C1△ = l

(1)
5ρ − l

(1)
0ρ . (154)

The fat that we need anellations of square- and triangle-ontributions shows that

(151) is of a deeper kind than the equalities derived in Set. 6.2.

The identity (151) holds also if ertain terms are renormalized by method (B), e.g. all

ontributing triangle and square-diagrams with (B) and all ontributing �sh diagrams

with (A), or vie versa.

A further example, for whih both sides of (151) vanish, is given below under the

subtitle �How to ful�ll BRST-invariane of the running Lagrangian�.

How to ful�ll the seond ruial neessary ondition: the ondition (46) reads

to 1-loop order

b
(1)
2ρ = 1

2

(

a
(1)
2ρ + b

(1)
1ρ − a

(1)
1ρ − b

(1)
0ρ

)

. (155)

Performing the �nite renormalizations (136), i.e. inserting (139)-(147) into (155), we �nd

that all αj drop out � that is, the ondition (155) annot be ful�lled by means of these

�nite renormalizations.

Inserting the expliit values (123), (216) and (217) for the oe�ients a
(1)
jρ , b

(1)
jρ , om-

puted by using method (A), we obtain

1

log ρ

(

1
2(a

(1)
2ρ + b

(1)
1ρ − a

(1)
1ρ − b

(1)
0ρ )− b

(1)
2ρ

)

= iCfish

(

(2− 1
4 + 1− 3) +

m2
H

m2
(12 − 1

4 ) +
m4

H

m4
(−1

2)
)

. (156)

Hene, using method (A) throughout, we have λ12ρ 6= 0, i.e. the geometrial interpreta-

tion is violated by terms ∼ A∂B.

To ful�ll the ondition (155), we may proeed as follows: we use
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• method (B) for the terms (211)-(212) [i.e. b
(1)
1ρ ℄ and (208) [i.e. a

(1)
0ρ and part of a

(1)
1ρ ℄;

• and method (A) for (115) [i.e. b
(1)
0ρ ℄, (210) [i.e. part of a

(1)
1ρ ℄ and (213) [i.e. b

(1)
2ρ ℄.

With that the values (216)-(217) are modi�ed:

a
(1)
0ρ = 0 , a

(1)
1ρ = −4i Cfish log ρ and b

(1)
1ρ = 0 , (157)

and a
(1)
2ρ , b

(1)
0ρ , b

(1)
2ρ remain unhanged.

Ful�lling the remaining onditions by �nite renormalizations: to omplete

the ful�llment of the identities (36)-(46) to 1-loop order, we show that we an reah by

�nite renormalizations that the numbers D1,D2,D3, de�ned by

D1 log ρ := l
(1)
1ρ − l

(1)
0ρ − 1

2

(

b
(1)
0ρ − a

(1)
1ρ

)

, (158)

D2 log ρ := l
(1)
3ρ − l

(1)
0ρ −

(

c
(1)
1ρ − a

(1)
1ρ

)

, (159)

D3 log ρ := l
(1)
5ρ − 2 l

(1)
0ρ + a

(1)
1ρ , (160)

vanish. For the oe�ients e
(1)
ρ appearing in these de�nitions we use values whih ful�ll

the equations (37), (124), (125), (135), (151) and (155).

If c
(1)
1ρ , l

(1)
0ρ , l

(1)
3ρ and l

(1)
5ρ are renormalized by method (A) (see Appendix B) and a

(1)
1ρ

as in (157), we have D3 = 0 and D2 = 0.12 However, to be as general as possible, we

admit arbitrary values of D1,D2,D3 in the following.

Using (139)-(147), we see that we have to solve the following system of linear equa-

tions:

D1 +
i

2
(α5 − (α6 + α7)) = 0

D2 − i(α2 + (α6 + α7)) = 0

D3 − i(α6 + α7) = 0 . (161)

There is a unique solution for (α2, α5, (α6+α7)). To preserve b
(1)
0ρ = c

(1)
0ρ we have to hoose

α1 = α5 (145). There remains a 3-dimensional freedom of renormalization: α3, α4 and

(α6 − α7) are unrestrited.

As a summary we expliitly give a partiular solution for the oe�ients e
(1)
ρ , whih

ful�lls the geometrial interpretation at all sales: using the method (B) only for the

terms spei�ed before (157) (in order that we have the values (157)) and renormalizing

all other terms with method (A), and then performing the α5-renormalization with α5 =
2iD1 = 2i l1 − 4Cfish (161) and the pertinent α1-renormalization with α1 = α5, we end

12

Sine we have not omputed l
(1)
1ρ (see footnote 11), we annot make a orresponding statement about

the value of D1.
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up with:

a
(1)
0ρ = a

(1)
2ρ = l

(1)
11ρ = 0 , a

(1)
1ρ = −4i Cfish log ρ ,

b
(1)
0ρ = c

(1)
0ρ = (2i Cfish + 2 l1) log ρ , b

(1)
1ρ = (4i Cfish + 2 l1) log ρ ,

b
(1)
2ρ = 3i Cfish log ρ , c

(1)
1ρ = −i

(

6
m2

m2
H

+ 5
m2

H

m2

)

Cfish log ρ , c
(1)
2ρ = −i Cfish log ρ ,

l
(1)
0ρ = −3i Cfish log ρ , l

(1)
1ρ = l

(1)
2ρ =: l1 log ρ ,

l
(1)
3ρ = l

(1)
4ρ = i

(

1− 6
m2

m2
H

− 5
m2

H

m2

)

Cfish log ρ , l
(1)
5ρ = l

(1)
6ρ = −2i Cfish log ρ ,

l
(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ = i

(

2− 6
m2

m2
H

− 5
m2

H

m2

)

Cfish log ρ , (162)

where l1 is the number whih one obtains on omputing l
(1)
1ρ =: l1 log ρ by method (A) �

from (132) and footnote 11 we have

l1 = −3i Cfish + 2C1△ − C21 + C22 = −5i

2
Cfish − C21 +C22 . (163)

How to ful�ll BRST-invariane of the running Lagrangian (54): we start

with the values (162), exept that we do not perform the �nite renormalization with

α1 = α5 = −4Cfish + 2i l1, with that we have b
(1)
1ρ = 0 and b

(1)
0ρ = c

(1)
0ρ = −2i Cfish.

To ful�ll the BRST-ondition

b(1)ρ := b
(1)
0ρ = c

(1)
0ρ = a

(1)
1ρ = −b

(1)
2ρ = l

(1)
0ρ = l

(1)
1ρ = l

(1)
2ρ = l

(1)
5ρ = l

(1)
6ρ (164)

(see (59)-(60)), there is the trivial possibility b
(1)
ρ = 0, whih is obtained by renor-

malizing all ontributing terms by method (B). However, there is also the solution

b
(1)
ρ = −3i Cfish log ρ whih an be obtained from our starting values as follows: we

perform �nite renormalizations with α1 = α5 = Cfish and α7 = −Cfish; this yields

b
(1)
0ρ = c

(1)
0ρ = a

(1)
1ρ = −b

(1)
2ρ = l

(1)
0ρ = −3i Cfish log ρ and c

(1)
2ρ = 0 (61), and does not hange

c
(1)
1ρ and b

(1)
1ρ = 0 = a

(1)
2ρ . In order that l

(1)
1ρ = l

(1)
2ρ and l

(1)
5ρ = l

(1)
6ρ also get the value

−3i Cfish log ρ we swith the method from (A) to (B) in the triangle terms of l
(1)
1ρ = l

(1)
2ρ

(i.e. in (128)) and in the term(s) (236) (or alternatively (237) and (239)) of l
(1)
5ρ = l

(1)
6ρ .

The ondition l
(1)
ρ := c

(1)
1ρ = l

(1)
3ρ = l

(1)
4ρ = l

(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ (60) an non-trivially be

satis�ed by replaing the terms O
(

( m2

m2
H

)0
)

by zero in the expressions (162) for l
(1)
3ρ = l

(1)
4ρ

and l
(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ ; that is, we swith the method from (A) to (B) in the terms (226),

(231), (243) and (248).

Taking into aount that a
(1)
0ρ is not restrited by BRST-invariane (i.e. the �nite

renormalization parameter α3 an freely be hosen), we get the following partiular so-
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lution for the parameters (55):

a
(1)
0ρ

log ρ
∈ C arbitrary , b(1)ρ = −3i Cfish log ρ , l(1)ρ = −i

(

6
m2

m2
H

+ 5
m2

H

m2

)

Cfish log ρ .

(165)

Remark 6.4. We disuss whether there is a non-trivial renormalization of the gauge-

�xing parameter to 1-loop order (28):

• if we ful�ll the geometrial interpretation as desribed (i.e. (157) and (161) are

satis�ed) and hoose α3 = 0 and α4 = α6, we have a
(1)
0ρ = 0 and a

(1)
2ρ = 0 whih

yields

Λρ = 1 + O(~2κ4) . (166)

• In ontrast, if we use the renormalization method (A) throughout and do not

perform any �nite renormalization, the values (216) give

Λρ = 1− 1

24π2
log ρ ~κ2 + O(~2κ4) . (167)

However, we reall that even BRST-invariane of L0 + zρ(L) (54) does not restrit a
(1)
0ρ

in any way; hene, we are free to modify a
(1)
0ρ by a �nite renormalization (139) and this

hanges Λρ to 1-loop order.

7 PGI for tree diagrams for the running interation

Besides the geometrial interpretability at all sales and BRST-invariane, there is a

further property whih we will investigate for the running Lagrangian: PGI-tree. Its re-

stritive power for a general renormalizable ansatz for the interation and the importane

of that are pointed out in the Introdution. In [Düt05℄ it is generally proved that BRST-

invariane of the Lagrangian (that is (54) in our ase) implies PGI-tree. For interations

whih are only tri- and quadrilinear in the �elds, it has turned out that PGI-tree restrits

the interation as strong as BRST-invariane of the Lagrangian; however, we will see that

for zρ(L), whih ontains also bilinear terms, PGI-tree is muh less restritive.

De�nition of PGI-tree: to study PGI-tree, it su�es to onsider the onneted tree

diagrams. To selet the latter from the S-funtionals appearing in the PGI-ondition (68),

we �rst introdue the onneted time-ordered produts (T c
n)n∈N, by the (usual) reursive

de�nition

T c
n(F1 ⊗ ...⊗ Fn) := Tn(F1 ⊗ . . .⊗ Fn)−

∑

|P |≥2

∏

J∈P
T c
|J |(Fj1 ⊗ . . .⊗ Fj|J|

) , (168)

where {j1, . . . , j|J |} = J , j1 < . . . < j|J |, the sum runs over all partitions P of {1, ..., n}
in at least two subsets and

∏

means the lassial produt. Analogously to (16), let Sc
be
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the generating funtional of the onneted time-ordered produts. PGI (68) is equivalent

to PGI for Sc
, i.e.

[Q,Sc
(

iL(g)
)

]⋆ ≈
d

dη
|η=0 S

c
(

iL(g) + ηPν(g; ∂νg)
)

; (169)

this an be veri�ed straightforwardly by using that [Q, · ]⋆ is a graded derivation w.r.t. las-
sial produt, see [Düt05, Lemma 1℄.

For a onneted time ordered produt T c
n

(

L(g)⊗n
)

, the tree diagrams are the terms of

lowest order in ~, if the interation L(g) is homogeneous in ~, see e.g. [DF01℄. If, as usual,

L(g) ∼ ~
−1

and P(g; ∂g) ∼ ~
0
, the tree diagrams of Sc

(

iL(g)
)

[or

d
dη |η=0 S

c
(

i zρ(L)(g)+

η P(g; ∂g)
)

℄ are preisely the terms∼ ~
−1

[or∼ ~
0
, resp.℄, and all onneted loop diagrams

are of higher orders in ~. Taking into aount that [Q,F ]⋆ ∼ ~ if F ∼ ~
0
(see again

[Düt05, Lemma 1℄), we de�ne: PGI-tree is the equation (169) to lowest order in ~, whih

is ~
0
.

But zρ(L) is by itself a formal power series in ~. Therefore, we use a trik to selet the

tree diagrams from Sc
(

izρ(L)(g)
)

and

d
dη |η=0 S

c
(

i zρ(L)(g) + η Pν(g; ∂νg)
)

. Namely, in

all oe�ients eρ (20) (and nowhere else) we replae ~ by another parameter τ ; however,
in partiular the fators ~

−1
for eah vertex (see (19)) and ~ for eah propagator remain

untouhed. Note that this substitution onerns also the pertinent Q-vertex: ~ is replaed

by τ in (73) and in (75). With that, we have zρ(L) ∼ ~
−1

and P(g; ∂g) ∼ ~
0
, and we

an apply the above given de�nition of PGI-tree to S(izρ(L)(g)). After the seletion of

the tree diagrams we reset τ := ~.

Remark 7.1. Writing the interation L(g) = zρ(L)(g) and the pertinent Q-vertex

P(g; f) by means of the τ -trik, the proof in [Düt05℄ that BRST-invariane of the La-

grangian implies PGI-tree applies to L0 + zρ(L) (54). In addition this proof yields an

expliit expression for the Q-vertex [Düt05, formula (3.23)℄), whih gives

P
(1)ν
0 = 0 , P

(1)ν
1 = b(1)ρ (mAνuϕ−∂νB uϕ+Bu∂νϕ) , P

(1)ν
2 = b(1)ρ (Aνuϕ2+AνuB2) ,

(170)

if (54) holds true. (b
(1)
ρ is de�ned by (59).)

Restritions on the 1-loop oe�ients of zρ(L) oming from PGI-tree: here

we assume that the oe�ients eρ of zρ(L) are unknown. In Appendix C it is worked out

that PGI-tree for L(g) = zρ(L)(g) an be ful�lled to order τ1 i� the following relations
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among the 1-loop oe�ients e
(1)
ρ hold true:

a
(1)
0ρ , b

(1)
0ρ , b

(1)
1ρ , c

(1)
0ρ , c

(1)
2ρ , l

(1)
7ρ , l

(1)
1ρ are arbitrary ,

a
(1)
2ρ = 0 , l

(1)
11ρ = 0 , a

(1)
1ρ = b

(1)
0ρ + 2c

(1)
2ρ − b

(1)
1ρ , −b

(1)
2ρ = l

(1)
0ρ = b

(1)
0ρ + c

(1)
2ρ − b

(1)
1ρ ,

l
(1)
2ρ = l

(1)
1ρ , l

(1)
3ρ = l

(1)
7ρ + c

(1)
2ρ + 2(b

(1)
0ρ − b

(1)
1ρ

2 − l
(1)
1ρ ) ,

l
(1)
4ρ = l

(1)
7ρ + c

(1)
2ρ + 3b

(1)
0ρ − c

(1)
0ρ − b

(1)
1ρ − 2l

(1)
1ρ = l

(1)
3ρ + (b

(1)
0ρ − c

(1)
0ρ ) ,

l
(1)
5ρ = 2l

(1)
1ρ − b

(1)
0ρ , l

(1)
6ρ = 2l

(1)
1ρ − c

(1)
0ρ = l

(1)
5ρ + (b

(1)
0ρ − c

(1)
0ρ ) ,

l
(1)
8ρ = l

(1)
7ρ + (b

(1)
0ρ − c

(1)
0ρ ) , l

(1)
9ρ = l

(1)
7ρ + 2(b

(1)
0ρ − c

(1)
0ρ ) ,

c
(1)
1ρ = l

(1)
7ρ + 2c

(1)
2ρ + 4(b

(1)
0ρ − b

(1)
1ρ

2 − l
(1)
1ρ ) +

2m2

m2
H

(l
(1)
1ρ − b

(1)
0ρ +

b
(1)
1ρ

2 ) . (171)

Let us ompare these PGI-tree relations with the geometrial interpretability at all sales

on 1-loop level (i.e. equations (36)-(46) to �rst order in ~κ2): from the number of free

parameters (7 versus 9) we immediately see that the geometrial interpretability annot

imply PGI-tree. Also the reversed statement does not hold true: in order that (171) im-

plies the geometrial interpretability, preisely one additional relation is needed, namely

l
(1)
1ρ = b

(1)
0ρ − b

(1)
1ρ

2 . (172)

However, note that (171) implies the two ruial neessary onditions for the geometrial

interpretability, (155) and (151), without this additional relation (172). Note also that

the geometrial interpretability does not imply (172).

One veri�es straightforwardly, that the partiular solution (162) for the 1-loop o-

e�ients e
(1)
ρ , generalized by an arbitrary �nite renormalization of a

(1)
0ρ (139), solves

the system of linear equations (171)-(172), i.e. there exists a way to renormalize suh

that PGI-tree and the geometrial interpretability are satis�ed. In ontrast to the latter,

the system (171)-(172) �xes the values of the �nite renormalization parameters α3 and

(α6 − α7) uniquely (f. the disussion after (161)), this re�ets that (171)-(172) is more

restritive.

Relation to minimal subtration: dimensional regularization with minimal sub-

tration is a widespread sheme in onventional momentum spae renormalization, whih

preserves BRST-invariane generially. Applied to the 1-loop diagrams of our initial

model, this property implies that the resulting time-ordered produts ful�ll PGI.

13

In

the minimal subtration sheme the mass sale(s) is/are hosen in a way whih belongs

to the lass �use always method (A) and do not perform any �nite renormalization�.

Using the latter presription, neither PGI-tree nor the geometrial interpretability are

maintained under the RG-�ow, beause the seond ruial neessary ondition (155) is

13

We are not aware of a proof of this statement, but it is very plausible. A orresponding statement

for higher loop diagrams involves a partial adiabati limit, beause suh diagrams ontain inner verties,

whih are integrated out with g(x) = 1 in onventional momentum spae renormalization � but PGI is

formulated before the adiabati limit g → 1 is taken.
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violated. Weakening this presription by admitting the �nite PGI-preserving renormal-

izations (139)-(147), the violation of (155) annot be removed.

14

Remark 7.2. For an ansatz for the interation ontaining solely trilinear and quadri-

linear terms it has been worked out for various models that PGI-tree determines the in-

teration essentially uniquely

15

(see e.g. [Sto97, DS99, ADS99, Sh01, DGBSV10℄). But

here, for an ansatz ontaining also bilinear terms, we obtain ruially di�erent results:

16

• BRST-invariane of the total Lagrangian does not determine the interation uniquely

(see (56));

• PGI-tree is truly weaker than BRST-invariane of the Lagrangian. (Compared with

(56), the relations (171) leave 4 additional parameters to be freely hosen.)

This an be understood as follows: PGI presupposes that the free theory is BRST-

invariant: s0L0 ≃ 0. If we try to trae bak the ase of an interation inluding

bilinear terms to the ase with solely tri- and quadrilinear terms, by renormalization

of the wave funtions and parameters (27)-(31), BRST-invariane of the free theory

may get lost. Expliitly we obtain

17

s0L
ρ
0 ≃ 0 ⇔ b0ρ = 0 = a2ρ ∧ a1ρ = b1ρ = c2ρ . (173)

To 1-loop order we an simultaneously ful�l this ondition and BRST-invariane

of the Lagrangian (54): by using the renormalization method (B) for the relevant

diagrams, we an reah that in the partiular solution (165) of (54) the value for

b
(1)
ρ is replaed by 0. But in general (173) does not hold true, see e.g. the partiular

solution (162) of the geometrial interpretability. Moreover, there is the additional

obstale that, after the renormalization of the wave funtions and parameters, the

interation still ontains the bilinear term b2ρmA∂B.

• In [DS00℄ it is worked out for the model of three massive vetor �elds that, making

a general renormalizable ansatz for the interation, the ondition of PC for tree

diagrams (PC-tree) restrits the interation to the same extent as PGI-tree � the

essentially unique solution is the SU(2)-Higgs-Kibble model. However, for our

S
(

izρ(L)(g)
)

, whih ontains also bilinear terms, PC-tree is signi�antly weaker

than PGI-tree. This follows from our results: we have proved that PC (and, hene,

also PC-tree) holds true, but in general PGI-tree is violated.

14

An alternative, simple argument that PGI-tree (and, hene, also PGI) an get lost under the RG-�ow

is the following: The α1-renormalization (145) maintains PGI of the initial model, but it an be used to

violate the PGI-tree equations (171), sine it modi�es only c
(1)
0ρ � this argumentation works also for the

α2-renormalization (146).

15

This holds also for our model. Namely, setting a
(1)
jρ = 0, b

(1)
jρ = 0 and c

(1)
jρ = 0 (for all j), the

restritions from PGI-tree (171) and (289) yield l
(1)
kρ = 0 (for all k).

16

We are not aware of any other paper in whih PGI has been studied for an interation ontaining

bilinear terms.

17

Sine L
ρ
0 = L0 + zρ(L)bilinear, where zρ(L)bilinear is the bilinear part of zρ(L) (19) without the A∂B-

term, the easiest way to obtain the equivalene (173) is to work out the ondition s0 zρ(L)bilinear ≃ 0.
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8 Summary and onluding remarks

De�ning the RG-�ow by means of a saling transformation [HW03, DF04, BDF09℄ one

an easily show that PC is maintained under the RG-�ow. Hene, the U(1)-Higgs model

is a onsistent QFT-model at all sales. However, the somewhat stronger property of

PGI gets lost in general, and in partiular if one uses a renormalization presription

orresponding to minimal subtration.

Using the Epstein-Glaser axioms [EG73, DF04℄, ompleted by the requirement that

the initial model ful�lls PGI, the RG-�ow ontains quite a large non-uniqueness, due to

the following two fats:

• whether a ertain Feynman diagram ontributes to the RG-�ow, depends on whether

one hooses as renomalization mass sale a �xed mass (method (A)), or a mass

whih is subjet to our saling transformation � e.g. the mass of one of the basi

�elds (method (B)).

• By �nite renormalizations (136), whih preserve PGI of the initial model, one an

modify the RG-�ow.

To 1-loop level we have shown that, by using this non-uniqueness, one an ahieve that

the geometrial interpretation is possible at all sales; one an even ahieve that the muh

stronger ondition of BRST-invariane of the running Lagrangian is satis�ed. But this

requires a quite (geometrial interpretation) or very (BRST-invariane) spei� presrip-

tion for the hoie of the renormalization method ((A) or (B)) for the various Feynman

diagrams, and for the �nite renormalizations. If one uses always method (A) � min-

imal subtration is of this kind � the geometrial interpretation is violated by terms

∼ A∂B; relaxing this presription by admitting �nite PGI-preserving renormalizations,

these A∂B-terms annot be removed.

Instead of a state independent renormalization sheme, as e.g. minimal subtration,

one may use state dependent renormalization onditions: e.g. in the adiabati limit

the vauum expetation values of ertain time ordered produts must agree with the

�experimentally� known values for the masses of stable partiles in the vauum, and

analogous onditions for parameters of ertain vauum orrelation funtions. With suh

a sheme, quite a lot of diagrams are renormalized by method (A). To 1-loop level, the

geometrial interpretability at all sales amounts then mainly to the question, whether

it is nevertheless possible to ful�ll the seond ruial neessary ondition (155), whih

requires to renormalize ertain diagrams by method (B), see (156)-(157). We postpone

this question to future work, and we do so also for the dependene of our results on the

initial value of the gauge-�xing parameter.

Returning to the fundamental question, already touhed in the Introdution, whether

masses are really generated by the Higgs mehanism, we may say that our results sow a

germ of doubt.

Or � one an keep the Higgs mehanism as a fundamental priniple explaining the

origin of mass at all sales (although it is not understood in a pure QFT framework),
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then our results forbid quite a lot of renormalization shemes, in partiular minimal

subtration!
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A Breaking of homogeneous saling for some 1-loop dia-

grams

In Set. 6.1 it is derived that the violation of homogeneous saling of the massless �sh

diagram is

(y∂y + 4) tMfish(y) = Cfish δ(y) with Cfish =
−i

8π2
, y∂y := yλ∂

λ
y , (174)

and that for the �sh diagram tMm,mH
(102) (with di�erent masses m,mH) it holds

(y∂y + 4−m∂m −mH∂mH
) tMm,mH

(y) = Cfish δ(y) , (175)

where M > 0 is a renormalization mass sale.

In this appendix we ompute the breaking of homogeneous saling for some massless

triangle diagrams,

tµν◦1△ (y) := ∂µDF (y1) ∂
νDF (y2)D

F (y1 − y2) ∈ D
′(R8 \ {0}) , (176)

tµν◦2△ (y) := DF (y1)D
F (y2) ∂

µ∂νDF (y1 − y2) ∈ D
′(R8 \ {0}) , (177)

some massless square diagrams,

tλν◦1� (y) := ∂λ∂νDF (y1 − y2) ∂µD
F (y2 − y3)D

F (y3) ∂
µDF (y1) ∈ D

′(R12 \ {0}) , (178)

tλν◦2� (y) := DF (y1 − y2) ∂
ν∂µD

F (y2 − y3)D
F (y3) ∂

λ∂µDF (y1) ∈ D
′(R12 \ {0}) , (179)

tλν◦3� (y) := ∂λDF (y1 − y2) ∂
ν∂µD

F (y2 − y3)D
F (y3) ∂

µDF (y1) ∈ D
′(R12 \ {0}) , (180)
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and for some massive �sh-like diagrams,

tµν ◦
1m,mH

(y) := ∆F
m(y) ∂µ∂ν∆F

mH
(y) ∈ D

′(R4 \ {0}) , (181)

tµν ◦
2m,mH

(y) := ∂µ∆F
m(y) ∂ν∆F

mH
(y) ∈ D

′(R4 \ {0}) , (182)

by using the renormalization method (A) (see Set. 6.1). The point is that these om-

putations an be traed bak to the result (174).

Massless triangle diagrams: �rst note that ontration of tµν◦2△ with gµν yields

tµ◦2△µ = −i δ(y1 − y2) t
◦
fish(y1) (183)

by using �DF (x) = −iδ(x). Hene, for an arbitrary pair of almost homogeneous exten-

sions to D′(R8), the di�erene is of the form

tµ2△µ(y) + i δ(y1 − y2) tfish(y1) = C δ(y) , C ∈ C ; (184)

suh a term sales homogeneously. We onlude that

(y∂y + 8) tµ2△µ(y) = −i Cfish δ(y) , where y∂y := yµ1 ∂
y1
µ + yµ2∂

y2
µ . (185)

Due to Lorentz ovariane, the expression (y∂y + 8) tµν2△(y) must be ∼ gµν ; therefore, we
obtain

ρ8 tµν2△(ρy)− tµν2△(y) = C2△ gµν δ(y) log ρ with C2△ =
−i

4
Cfish . (186)

To ompute the violation of homogeneous saling for tµν1△, we introdue

t̃µ△(y) := ∂µDF (y1)D
F (y2)D

F (y1 − y2) , (187)

whih exists in D′(R8) by the diret extension (see footnote 8) and sales homogeneously:

(y∂y + 7) t̃µ△(y) = 0. In D′(R8 \ {0}) we �nd

(∂ν
y1 + ∂ν

y2)t̃
µ◦
△ (y) = tµν◦2△ (y1 − y2,−y2) + tµν◦1△ (y) . (188)

Therefore, arbitrary almost homogeneous extensions ful�ll

(∂ν
y1 + ∂ν

y2) t̃
µ
△(y) = tµν2△(y1 − y2,−y2) + tµν1△(y) + C̃ δ(y) (189)

for some C̃ ∈ C. We onlude

0 = (y∂y + 8) (∂ν
y1 + ∂ν

y2) t̃
µ
△(y) = (y∂y + 8) tµν2△(y1 − y2,−y2) + (y∂y + 8) tµν1△(y) . (190)

Taking (186) into aount we end up with

ρ8 tµν1△(ρy)− tµν1△(y) = C1△ gµν δ(y) log ρ with C1△ = −C2△ =
i

4
Cfish . (191)

Massless square diagrams: proeeding analogously, we use that

gλν t
λν◦
1� (y) = −iδ(y1 − y2) t

µ◦
1△µ(y1, y1 − y3) (192)
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and obtain

ρ12 tλν1�(ρy)− tλν1�(y) = C1� gλν δ(y) log ρ with C1� = −i C1△ =
1

4
Cfish . (193)

Taking into aount that in D′(R12 \ {0}) it holds

∂ν
y2

(

∂λDF (y1 − y2) ∂µD
F (y2 − y3)D

F (y3) ∂
µDF (y1)

)

= −tλν◦1� (y) + tλν◦3� (y) , (194)

we onlude that

ρ12 tλν3�(ρy)− tλν3�(y) = C3� gλν δ(y) log ρ with C3� = C1� . (195)

Finally, by means of

∂λ
y1

(

DF (y1 − y2) ∂
ν∂µD

F (y2 − y3)D
F (y3) ∂

µDF (y1)
)

= tλν◦3� (y) + tλν◦2� (y) , (196)

we derive that

ρ12 tλν2�(ρy)− tλν2�(y) = C2� gλν δ(y) log ρ with C2� = −C3� = −C1� . (197)

Similarly to the massless �sh diagram (106), the following holds also for the massless

triangle diagrams (176)-(177) and for the massless square diagrams (178)-(180): the

breaking of homogeneous saling is equal for all almost homogeneous extensions. This

must be so, beause two almost homogeneous extensions di�er by a term of the form

∑

|a|=ω Ca ∂
aδ, Ca ∈ C, whih sales homogeneously. (See footnote 8 for the de�nition

of ω; for the examples in hand we have ω = 0.)
Massive �sh-like diagrams: as a preparation we �rst ompute the violation of

homogeneous saling of the renormalized version tµν M
2 of the massless distribution

tµν ◦
2 (y) := ∂µDF (y) ∂νDF (y) ∈ D

′(R4 \ {0}) . (198)

This omputation an be traed bak to the result (174) in the following way: �rst we

write tµν ◦
2 as

tµν ◦
2 (y) =

yµyν

48
�y�yt

◦
fish(y) ∈ D

′(R4 \ {0}) , (199)

whih follows from the expliit formula DF (y) = −1
4π2 (y2−i0) by straightforward alula-

tion, taking into aount that �y 6= 0�. Then, by di�erential renormalization we get

tµν M
2 (y) =

yµyν

48
�y�yt

M
fish(y) ∈ D

′(R4) , (200)

where M > 0 is a �xed mass sale (method (A)). From this relation we onlude that

(y∂y + 6) tµν M
2 (y) =

Cfish

48
yµyν �y�yδ(y) =

Cfish

12
(gµν �y + 2 ∂µ

y ∂
ν
y ) δ(y) ; (201)

the seond equality is obtained by straightforward alulation.
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We renormalize the massive �sh-like diagrams (181), (182) by using the sm-expansion

[Düt15℄. Due to that we know that the violation of homogeneous saling is of the form

(y∂y + 6−m∂m −mH∂mH
) tµν M

j m,mH
(y) =

(

Cj1 g
µν

�y + Cj2 ∂
µ
y ∂

ν
y

)

δ(y)

+ gµν
(

m2 Pj1(log
m
M , log mH

M ) +m2
H Pj2(log

m
M , log mH

M )
)

δ(y) , j = 1, 2, (202)

where Pjl(z1, z2) is a polynomial in z1 and z2. The term O(m0) an be omputed by

setting m := 0 =: mH ; hene, we know the values of the numbers (C2l)l=1,2 from (201).

We renormalize suh that the relations

∂µ
y ∂

ν
y t

◦
m,mH

(y) = tµν ◦
1m,mH

(y) + tµν ◦
1mH ,m(y) + tµν ◦

2m,mH
(y) + tµν ◦

2mH ,m(y) ,

gµν t
µν ◦
1m,mH

(y) = −m2
H t◦m,mH

(y) and tµν ◦
2m,mH

(y) = tνµ ◦
2mH ,m(y) (203)

are maintained up to (loal) terms whih are in the kernel of the operator (y∂y + 6 −
m∂m −mH∂mH

); for the �rst and the last relation this is a term of the form

(

C1 g
µν

�y + C2 ∂
µ
y ∂

ν
y

)

δ(y) + gµν
(

m2 C3 +m2
H C4

)

δ(y) , Ck ∈ C arbitrary.

Due to the sm-expansion, this renormalization presription restrits only the loal terms

O(m2,m2
H): without this presription the numbers C3 and C4 may be replaed by poly-

nomials in log m
M and log mH

M .

By using the renormalized version of the relations (203) and (175) and (201), we

determine the numbers C1l and the polynomials Pjl. It results

ρ6 tµν M
1m/ρ,mH/ρ(ρy)− tµν M

1m,mH
(y)

= Cfish

[ 1

12

(

−gµν �y + 4 ∂µ
y ∂

ν
y

)

− gµν

4
m2

H

]

δ(y) log ρ , (204)

ρ6 tµν M
2m/ρ,mH/ρ(ρy)− tµν M

2m,mH
(y)

= Cfish

[ 1

12

(

gµν �y + 2 ∂µ
y ∂

ν
y

)

+
gµν

8
(m2 +m2

H)
]

δ(y) log ρ . (205)

B Computation of some 1-loop oe�ients of the running

interation

In this appendix we ompute some 1-loop oe�ients e of zρ(L), de�ned by (19), (20)

and

e log ρ := e(1)ρ , (206)

by using the results of Appendix A. We assume that for all ontributing terms the

renormalization mass sale M is hosen aording to method (A), see Set. 6.1. Working
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in Feynman gauge, we may use the following onventions:

ω0

(

T2

(

B(x)⊗B(y)
)

)

= ~∆F
m(x− y) , ω0

(

T2

(

ϕ(x)⊗ ϕ(y)
)

)

= ~∆F
mH

(x− y) ,

ω0

(

T2

(

u(x)⊗ ũ(y)
)

)

= ~∆F
m(x− y) , ω0

(

T2

(

ũ(x)⊗ u(y)
)

)

= −~∆F
m(x− y) ,

ω0

(

T2

(

Aµ(x)⊗Aν(y)
)

)

= −~ gµν ∆F
m(x− y) , (�+m2)∆F

m(x) = −i δ(x) . (207)

Coe�ients of some bilinear �elds: to ompute a0, a1, a2, b1, b2, we have to take
into aount the following terms of T2(L

2
1
⊗2

) where L2
1 := mA2ϕ + BA∂ϕ − ϕA∂B −

m2
H

2m B2ϕ: the most ompliated is

ω0

(

T2

(

(B∂µϕ− ϕ∂µB)(x1)⊗ (B∂νϕ− ϕ∂νB)(x2)
)

)

Aµ(x1)Aν(x2)

=
(

−tµν M
1m,mH

(y)− tµν M
1mH ,m(y) + tµν M

2m,mH
(y) + tµν M

2mH ,m(y)
)

Aµ(x1)Aν(x2) , (208)

where y := x1−x2. Using (204)-(205), we �nd that (208) gives the following ontribution

to Z
(2)
ρ (L(g)⊗2) (96):

κ2~2 Cfish

∫

dx1dx2 g(x1)g(x2)
(

1
3 (g

µν
�y − ∂µ

y ∂
ν
y ) +

1
2 g

µν(m2 +m2
H)

)

δ(y)Aµ(x1)Aν(x2)

= κ2~2 Cfish

∫

dx (g(x))2
(

−1
6 F 2(x) + 1

2 (m
2 +m2

H)A2(x)
)

+ . . . , (209)

where the dots stand for terms with derivatives of g, whih do not ontribute to the

adiabati limit. The further ontributing terms are

m2 4ω0

(

T2

(

Aµϕ(x1)⊗Aνϕ(x2)
)

)

Aµ(x1)Aν(x2) , (210)

m4
H

4m2
4ω0

(

T2

(

Bϕ(x1)⊗Bϕ(x2)
)

)

B(x1)B(x2) , (211)

ω0

(

T2

(

A∂ϕ(x1)⊗A∂ϕ(x2)
)

)

B(x1)B(x2) = gµν t
µν M
1m,mH

(y)B(x1)B(x2) , (212)

−m 2ω0

(

T2

(

Aµϕ(x1)⊗Aνϕ(x2)
)

)

Aµ(x1)∂νB(x2) + (x1 ↔ x2)

+m 2ω0

(

T2

(

Aµϕ(x1)⊗A∂ϕ(x2)
)

)

Aµ(x1)B(x2) + (x1 ↔ x2) , (213)

− m2
H

2m
2ω0

(

T2

(

(B∂µϕ− ϕ∂µB)(x1)⊗Bϕ(x2)
)

)

Aµ(x1)B(x2) + (x1 ↔ x2) . (214)

The last term does not ontribute to the RG-�ow, beause in the sm-expansion of the per-

tinent unrenormalized expression the leading terms (whih are the orresponding massless

distributions) anel,

∆F
m(y)∂µ∆F

mH
(y)− ∂µ∆F

m(y)∆F
mH

(y) = 0 + O(m2,m2
H) , (215)

and the terms O(m2,m2
H) have singular order ω ≤ −1.
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Now from (209) and (210) we obtain

a0 =
i

3
Cfish , a1 = i

(1

2
(1 +

m2
H

m2
)− 4

)

Cfish , a2 = 0 , (216)

and from (211), (212) and (213) we get

b1 = i
(m2

H

m2
− m4

H

m4

)

Cfish , b2 = 3i Cfish ; (217)

the omputation of b2 is analogous to the omputation of b0 given in Set. 6.1.

There are 5 terms ontributing to c1: one term is obtained from (212) by ϕ ↔ B and

four terms are ∼ ω0

(

T2

(

φ(x1)⊗ φ(x2)
)

)

ϕ(x1)ϕ(x2) where φ = ϕ2, B2, A2
and φ = ũu.

We �nd

c1 = −i
(

6
m2

m2
H

+ 5
m2

H

m2

)

Cfish . (218)

Coe�ients of some trilinear �elds: the ontributions to l0, l3 and l4 ome from

�sh diagrams (without derivatives) belonging to T2(L
0
1⊗L2) and from triangle diagrams

(with two derivatives) belonging to T3(L
1⊗2
1 ⊗L0

1), where L
0
1 := mA2ϕ− m2

H

2m (ϕ3+B2ϕ)
and L1

1 := BA∂ϕ− ϕA∂B. To ompute l0 we have to take into aount the terms

4mω0

(

T2

(

Aλϕ(x1)⊗Aνϕ(x2)
)

)

Aλ(x1)A
νϕ(x2) + 1permutation , (219)

−m2
H

4m
ω0

(

3T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ T2

(

B2(x1)⊗B2(x2)
)

)

ϕ(x1)A
2(x2) + 1permutation ,

(220)

−m2
H

2m
ω0

(

T3

(

(B∂µϕ− ϕ∂µB)(x1)⊗ (B∂νϕ− ϕ∂νB)(x2)⊗ (3ϕ2 +B2)(x3)
)

)

·Aµ(x1)Aν(x2)ϕ(x3) + 2permutations , (221)

− 2mω0

(

T3

(

Aµϕ(x1)⊗A∂B(x2)⊗ (B∂λϕ− ϕ∂λB)(x3)
)

)

·Aµ(x1)ϕ(x2)Aλ(x3) + 5permutations , (222)

where permutations of the verties are meant. These terms yield

l0 = −4i Cfish +
m2

H

m2
(−2i Cfish) +

m2
H

m2
2(3 + 1)C1△ + 4C1△ = −3i Cfish , (223)

where in the �rst step only C2△ = −C1△ is used, and the k-th summand omes from

the k-th term in (219)-(222) (k = 1, 2, 3, 4). In (228),(233), (240), (245) and (250) the

summands are ordered orrespondingly.

Turning to l3, the terms

m

2
ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

ϕ(x1)ϕ
2(x2) + 1permutation , (224)

m4
H

8m3
ω0

(

9T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ T2

(

B2(x1)⊗B2(x2)
)

)

ϕ(x1)ϕ
2(x2) + 1permutation ,

(225)
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−m2
H

2m
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ(x3) + 2permutations ,

(226)

mω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗A2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ(x3) + 2permutations , (227)

give

l3 =
m2

m2
H

(−8i Cfish) +
m2

H

m2
(−5i Cfish) + 4C1△ +

m2

m2
H

(−8C2△)

=iCfish

(

1− 6
m2

m2
H

− 5
m2

H

m2

)

. (228)

The ontributions to l4 ome from the terms

m

2
ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

ϕ(x1)B
2(x2) + 1permutation , (229)

m4
H

8m3
ω0

(

3T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ 3T2

(

B2(x1)⊗B2(x2)
)

)

ϕ(x1)B
2(x2) + 1permutation

+
m4

H

8m3
8ω0

(

T2

(

ϕB(x1)⊗ ϕB(x2)
)

)

B(x1)ϕB(x2) + 1permutation , (230)

−m2
H

2m
3ω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗ ϕ2(x3)
)

)

B(x1)B(x2)ϕ(x3) + 2permutations

+
m2

H

2m
2ω0

(

T3

(

A∂B(x1)⊗A∂ϕ(x2)⊗ ϕB(x3)
)

)

ϕ(x1)B(x2)B(x3) + 5permutations ,

(231)

mω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗A2(x3)
)

)

B(x1)B(x2)ϕ(x3) + 2permutations , (232)

whih yield

l4 =
m2

m2
H

(−8i Cfish)+
m2

H

m2
(−(3+ 2)i Cfish)+ (12− 8)C1△ +

m2

m2
H

(−8C2△) = l3 . (233)

Coe�ients of some quadrilinear �elds: the ontributions to l5, l7 and l8 ome

from �sh diagrams (without derivatives) belonging to T2(L2⊗L2), from triangle diagrams

(with two derivatives) belonging to T3(L
1⊗2
1 ⊗L2) and from square diagrams (with four
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derivatives) belonging to T4(L
1⊗4
1 ). The following terms ontribute to l5:

−m2
H

8m2

[

3ω0

(

T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

)

+ ω0

(

T2

(

B2(x1)⊗B2(x2)
)

)]

A2(x1)ϕ
2(x2) + 1permutation , (234)

4ω0

(

T2

(

Aµϕ(x1)⊗Aνϕ(x2)
)

)

Aµϕ(x1)Aνϕ(x2) , (235)

1

2
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)A
2(x3) + 2permutations , (236)

− 2ω0

(

T3

(

A∂B(x1)⊗ (B∂µϕ− ϕ∂µB)(x2)⊗Aνϕ(x3)
)

)

· ϕ(x1)Aµ(x2)Aνϕ(x3) + 5permutations , (237)

−m2
H

4m2
ω0

(

T3

(

(B∂µϕ− ϕ∂µB)(x1)⊗ (B∂νϕ− ϕ∂νB)(x2)⊗ (3ϕ2 +B2)(x3)
)

)

· Aµ(x1)Aν(x2)ϕ
2(x3) + 2permutations , (238)

ω0

(

T c
4

(

(B∂νϕ− ϕ∂νB)(x1)⊗ (B∂µϕ− ϕ∂µB)(x2)⊗A∂B(x3)⊗A∂B(x4)
)

)

· Aν(x1)Aµ(x2)ϕ(x3)ϕ(x4) + 5permutations , (239)

where the upper index '' means onneted. We obtain

l5 =
m2

H

m2
(−2i Cfish)− 4i Cfish +4C1△ +8C1△ +

2(3 + 1)m2
H

m2
C1△ − 4i C1� = −2i Cfish ,

(240)

and in the �rst step only C2△ = −C1△ and C1� = −C2� = C3� are used.

The ontributions to l7 ome from

[

1
4 ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

+ 36
(m2

H

8m2

)2
ω0

(

T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

)

+
(m2

H

4m2

)2
ω0

(

T2

(

B2(x1)⊗B2(x2)
)

)]

ϕ2(x1)ϕ
2(x2) , (241)

1

2
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗A2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ
2(x3) + 2permutations , (242)

−m2
H

4m2
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ
2(x3) + 2permutations ,

(243)

ω0

(

T c
4

(

A∂B(x1)⊗A∂B(x2)⊗A∂B(x3)⊗A∂B(x4)
)

)

ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) ; (244)

it results

l7 =− i Cfish

(

8
m2

m2
H

+
(9 + 1)

2

m2
H

m2

)

+
m2

m2
H

(−16C2△) + 8C1△ +
m2

m2
H

8i C2�

=iCfish

(

2− 6
m2

m2
H

− 5
m2

H

m2

)

. (245)
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Finally, to ompute l8 we have to take aount of

ϕ2(x1)B
2(x2)

[

1
4 ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

+
m4

H

8 · 4m4
6ω0

(

T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ T2

(

B2(x1)⊗B2(x2)
)

)]

+ 1permutation

+ ϕB(x1)ϕB(x2) 16
(m2

H

4m2

)2
ω0

(

T2

(

ϕB(x1)⊗ ϕB(x2)
)

)

, (246)

1

2

[

ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗A2(x3)
)

)

ϕ(x1)ϕ(x2)B
2(x3)

+ ω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗A2(x3)
)

)

B(x1)B(x2)ϕ
2(x3)

]

+ 2permutations ,

(247)

−m2
H

8m2
6
[

ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)B
2(x3)

+ ω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗ ϕ2(x3)
)

)

B(x1)B(x2)ϕ
2(x3)

]

+ 2permutations

+
m2

H

4m2
4ω0

(

T3

(

A∂B(x1)⊗A∂ϕ(x2)⊗Bϕ(x3)
)

)

ϕ(x1)B(x2)ϕB(x3) + 5permutations ,

(248)

ω0

(

T c
4

(

A∂B(x1)⊗A∂B(x2)⊗A∂ϕ(x3)⊗A∂ϕ(x4)
)

)

· ϕ(x1)ϕ(x2)B(x3)B(x4) + 5permutations , (249)

and we get

l8 = −i Cfish

(

8
m2

m2
H

+(3+2)
m2

H

m2

)

− m2

m2
H

(8+8)C2△+(12+12−16)C1△+
m2

m2
H

8i C2� = l7 .

(250)

Note that (227), (232), (242) and (247) an be viewed also as �sh diagram on-

tributions, sine their unrenormalized versions are ∼ −gµν ∂
µ∂νDF (x1 − x2)D

F (x1 −
x3)D

F (x2 − x3) = i δ(x1 − x2) t
◦
fish(x1 − x3); however in Set. 6.5 we treat them as

triangle diagram ontributions.

C Working out PGI-tree for the running interation

In this appendix we work out PGI-tree for the interation L(g) = zρ(L)(g), as de�ned
after (169). We use that L(g) is of the form (66) with the expliit expressions (73) and

(74), with unknown oe�ients e
(j)
ρ in the L

(j)
k (k = 0, 1, 2) for j ≥ 1. About the Q-

vertex Pν(g; f) (67) we only know that it is of the form (75), the �eld polynomials P
(j)
k

are ompletely unknown.

It is well-known (see e.g. [DS99, Sh01, DGBSV10℄) that in the indutive Epstein-

Glaser onstrution of the time ordered produts, PGI an be violated only by loal
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terms. Hene, we need to study only the loal ontributions. However, in priniple

the splitting of a distribution into a loal and a non-loal part is non-unique; hene,

some aution is alled for. Let x1, ..., xn be the verties of the onsidered onneted tree

diagram. Everywhere in our alulations we replae (∂)�∆F
m by (−m2(∂)∆F

m − i(∂)δ).
Then, outside the total diagonal x1 = x2 = ... = xn only terms with at least one

propagator ∆F
m, ∂µ∆

F
m, ∂ν∂µ∆

F
m and ∂ν∂µ∂λ∆

F
m (with no ontration of Lorentz indies)

ontribute. Sine these terms anel outside the total diagonal, they anel also on the

total diagonal. The remaining terms are the loal terms, they are linear ombinations

of ∂aδ(x1 − xn, ..., xn−1 − xn). We write Ttree for the ontribution of the onneted tree

diagrams and T (...)|loc means the seletion of the loal terms. The latter is a rather

deliate issue. Considering

∂x
ν Ttree

(

P ν(x)⊗ L(y)
)

|loc , (251)

there appear the following possibilities how the divergene ∂x
ν generates loal terms

(f. [DS99, DGBSV10℄):

Type 1 If P ν = ∂νφF + · · · and L = φE + · · · , then the ontration of ∂νφ(x) with φ(y)
gives a propagator ~ ∂ν∆F

m(x − y), and on omputing its divergene we �nd the

loal ontribution −i~ δ(x− y)F (x)E(x).

Type 2 If P ν
is as before and L = ∂µφE + · · · , then analogously to type 1 we obtain the

loal ontribution i~ ∂µδ(x− y)F (x)E(y).

Type 3 If P ν = Aν F + · · · and L = (∂µA
µ)E + · · · , then the ontration of Aν(x) with

∂µA
µ(y) gives a propagator ~ gνµ∂µ∆

F
m(x − y), and we get the loal ontribution

−i~ δ(x − y)F (x)E(x) .

Remark C.1.

(1) Usually interations for spin-1 �elds do not ontain a ∂µA
µ
-�eld; hene, the type 3

mehanism is non-standard, however it has been used already in the appliation of PGI

to spin-2 gauge theories [Sh01℄.

(2) In the literature about PGI mostly a di�erent normalization of the time ordered

produts is used (denoted by TN
in the following). Considering S

(

iL(g)
)

, where L(g)
is of the form (66), the arguments of TN

are only the verties L(1)(xj) whih are of �rst

order in g. A higher order vertex

∫

dx (g(x))n L(n)(x) (n ≥ 2) is taken into aount as a

loal ontribution

n! (−i)n−1 δ(x1 − xn, ..., xn−1 − xn)L(n)(xn) to TN
n,tree

(

⊗n
j=1L(1)(xj)

)

. (252)

Analogously a higher order Q-vertex

∫

dx (g(x))(n−1) Pν
(n)(x) f(x) (n ≥ 2) appears as a

loal ontribution

(n−1)! (−i)n−1 δ(x1−xn, ..., xn−1−xn)P(n)(xn) to TN
n,tree

(

P(1)(x1)⊗(⊗n
j=2L(1)(xj))

)

(253)

47



integrated out with f(x1)
∏n

j=2 g(xj). The relation between the time ordered produts

TN
and T an generally be desribed in terms of the Main Theorem, see [Düt05, formula

(2.29)℄.

Now we are going to work out PGI-tree. Seleting the loal terms whih are of order

~
0
and of a ertain order in τ and κ, we obtain the following equations:

~
0τ0κ1 : i

~
[Q,L1(g)] ≈ −(∂P1)(g) , (254)

~
0τ0κ2 : i

~
[Q,L2(g

2)] ≈ − i
2(∂P2)(g

2)

− i
~

∫

dxdy g(x)g(y) ∂xTtree

(

P1(x)⊗ L1(y)
)

|loc , (255)

~
0τ0κ3 : 0 ≈ − i

~

∫

dxdy g(x)(g(y))2
(

∂x Ttree

(

P1(x)⊗ L2(y)
)

|loc

+ 1
2∂y Ttree

(

L1(x)⊗ P2(y)
)

|loc
)

, (256)

~
0τ1κ2 : i

~
[Q,L

(1)
0 (g2)] ≈ −1

2 (∂P
(1)
0 )(g2) , (257)

~
0τ1κ3 : i

~
[Q,L

(1)
1 (g3)] ≈ −1

3(∂P
(1)
1 )(g3)

− i
~

∫

dxdy (g(x))2g(y)
(

∂yTtree

(

L
(1)
0 (x)⊗ P1(y)

)

|loc

+ 1
2∂x Ttree

(

P
(1)
0 (x)⊗ L1(y)

)

|loc
)

, (258)

~
0τ1κ4 : i

~
[Q,L

(1)
2 (g4)] ≈ −1

4(∂P
(1)
2 )(g4)

− i
~

∫

dxdy (g(x))3g(y)
(

1
3 ∂xTtree

(

P
(1)
1 (x)⊗ L1(y)

)

|loc

+ ∂yTtree

(

L
(1)
1 (x)⊗ P1(y)

)

|loc
)

− i
2 ~

∫

dxdy (g(x))2(g(y))2
(

∂x Ttree

(

P
(1)
0 (x)⊗ L2(y)

)

|loc

+ ∂yTtree

(

L
(1)
0 (x)⊗ P2(y)

)

|loc
)

+ 1
~2

∫

dydx1dx2 g(y)(g(x1))
2g(x2) ∂y Ttree

(

P1(y)⊗ L
(1)
0 (x1)⊗ L1(x2)

)

|loc ,

(259)
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~
0τ1κ5 : 0 ≈ − i

~

∫

dxdy (g(x))3(g(y))2
(

1
3 ∂xTtree

(

P
(1)
1 (x)⊗ L2(y)

)

|loc

+ 1
2 ∂yTtree

(

L
(1)
1 (x)⊗ P2(y)

)

|loc
)

− i
~

∫

dxdy g(x)(g(y))4
(

∂x Ttree

(

P1(x)⊗ L
(1)
2 (y)

)

|loc

+ 1
4 ∂yTtree

(

L1(x)⊗ P
(1)
2 (y)

)

|loc
)

+ 1
~2

∫

dydx1dx2 g(y)(g(x1))
2(g(x2))

2 ∂y Ttree

(

P1(y)⊗ L
(1)
0 (x1)⊗ L2(x2)

)

|loc .

(260)

This list ontains all loal terms of (169) whih are of order ~
0τ0κl or ~

0τ1κl for l
arbitrary. On omputing the terms appearing in this list, we replae �φ by −m2

φ φ.

• PGI-equations (254)-(256). The τ0-equations express PGI-tree for the (ρ = 1)-
theory, they have a unique solution for P1 and P2 given in (70) (f. [ADS97, GB11℄).

• PGI-equation (257). (Tree diagrams with 2 external lines.) Throughout this ap-

pendix we use the notation e log ρ := e
(1)
ρ (206). With that (257) is equivalent

to

a1 − a2 + b2 − c2 = 0 ∧ b2 + b0 − b1 + c2 = 0 (261)

and a non-unique expression for P
(1)
0 :

1
2 P

(1)ν
0 = (c2 + a2)m

2 Aνu+ (b2 + b0)(σmu∂νB + (1− σ)mB∂νu) , (262)

where σ ∈ C is an arbitrary number.

• PGI-equation (258). (Tree diagrams with 3 external lines.) A type 3 term appears

only in ∂yTtree

(

L
(1)
0 (x)⊗P1(y)

)

|loc. The equation (258) is equivalent to the following
relations: P

(1)
1 is of the form

1
3 P

(1)ν
1 = αϕB∂νu+ β ϕu∂νB + γ uB∂νϕ+ λmAνuϕ , α, β, γ, λ ∈ C ; (263)

and

mA∂uϕ : 0 = −2l0 + l2 + λ− σ
3 (b2 + b0)− 2

3 b2 , (264)

mAu∂ϕ : 0 = −l1 + λ+ 5σ
3 (b2 + b0)− 2

3 b2 , (265)

m∂Auϕ : 0 = λ+ 2σ
3 (b2 + b0)− a2 +

1
3 b2 , (266)

B∂u∂ϕ : 0 = −l1 + α+ γ + 2
3 c0 , (267)

∂B∂uϕ : 0 = l2 + α+ β − 2
3 b0 , (268)

∂Bu∂ϕ : 0 = β + γ + 2
3 c0 − 2

3 b0 , (269)

uBϕ : 0 = m2
H(l4 − γ − σ (b2 + b0)− c1 +

1
3 c0)

+m2(−α− β − (1− σ)(b2 + b0) + b1 − 1
3 b0) . (270)
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The equations (264)-(270) are obtained by setting the oe�ient of the indiated

�eld monomial to zero.

• PGI-equation (259). (Tree diagrams with 4 external lines.) A type 3 ontribution

appears only in ∂yTtree

(

L
(1)
0 (x)⊗ P4(y)

)

|loc. There is only one type 1 ontribution

oming from a ontration of ∂u with ũ, namely in ∂xTtree

(

P
(1)
1 (x) ⊗ L1(y)

)

|loc.
The last term in (259) is the most di�ult one; we explain the omputation: the

loal ontributions ome from terms of the form

1
~2

∫

dydx1dx2 g(y)(g(x1))
2g(x2) ∂

y
ν Ttree

(

(G∂νφ)(y)⊗1
2 (∂φ)

2(x1)⊗(Fτ∂
τφ)(x2)

)

|loc ,
(271)

where φ = B or φ = ϕ. The ontration of ∂νφ(y) with ∂µφ(x1) is of type 2; the

ontration of ∂µφ(x1) with ∂τφ(x2) gives a propagator i~ ∂µ∂
τ∆F (x1−x2). With

that (271) is equal to

=− i

∫

dydx1dx2 g(y)(g(x1))
2g(x2)G(y) ∂µδ(y − x1) ∂µ∂

τ∆F (x1 − x2)Fτ (x2)|loc

=i

∫

dydx2
∂µ
y (g(y))3

3 g(x2)G(y) ∂µ∂
τ∆F (y − x2)Fτ (x2)|loc

=−1
3

∫

dydx2 (g(y))
3 g(x2)G(y) ∂τ δ(y − x2)Fτ (x2)

=1
3

∫

dy
(

3
4 ∂τ (g(y))

4 G(y)Fτ (y) + (g(y))4 ∂τG(y)Fτ (y)
)

=

∫

dy (g(y))4
(

1
12 ∂

τG(y)Fτ (y)− 1
4 G(y)∂τFτ (y)

)

, (272)

where non-loal terms are omitted. If the x2-vertex is of the simpler form (Fφ)(x2),
then ∂τ∆F (x1 − x2)Fτ (x2) is replaed by −∆F (x1 − x2)F (x2) and it results

1
3

∫

dy (g(y))4 G(y)F (y) .

Proeeding as for (258), the PGI-equation (259) is equivalent to the following: P
(1)
2

is of the form

1
4 P

(1)ν
2 = Υuϕ2Aν + ΞuB2Aν , Υ,Ξ ∈ C , (273)
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and

A2A∂u : 0 = l11 , (274)

Bϕ2u : 0 = −mα+
m2

H

2m (l8 − 3l3 + 2l4 − σ(b2 + b0)− 3γ − 2β + c0 − 2
3b0) ,
(275)

mA2Bu : 0 = −l6 + l0 + σ(b2 + b0) + γ − 1
3c0 , (276)

m2
H

2m B3u : 0 = l9 − l4 − σ(b2 + b0)− γ + 1
3c0 , (277)

Aϕ2∂u : 0 = Υ− l5 +
3
4 l2 − 1

4β − 1
12b0 , (278)

∂Aϕ2u : 0 = Υ− 1
4 l2 − 1

2a2 +
3
4β + 1

4b0 , (279)

2Auϕ∂ϕ : 0 = Υ + 1
4 l2 − 1

2 l1 +
3
4β + 1

4b0 , (280)

AB2∂u : 0 = Ξ− l6 +
3
4 l1 +

1
4γ − 1

12c0 , (281)

∂AB2u : 0 = Ξ− 1
4 l1 − 1

2a2 − 3
4γ + 1

4c0 , (282)

2AuB∂B : 0 = Ξ + 1
4 l1 − 1

2 l2 − 3
4γ + 1

4c0 . (283)

• PGI-equation (260). (Tree diagrams with 5 external lines.) Note that

∂yTtree

(

L
(1)
1 (x)⊗ P2(y)

)

|loc = 0 = ∂yTtree

(

L1(x)⊗ P
(1)
2 (y)

)

|loc , (284)

sine Aν(y) (appearing in P2(y) and P
(1)
2 (y)) has no partner �eld ∂µA

µ(x) whih
is needed for a type 3 ontribution. Proeeding as above we get

uBA2ϕ : 0 = l5 − l6 + β + γ + 1
3(b0 − c0) , (285)

m2
H

2m2uϕ
3B : 0 = l8 − l7 − β − γ + 1

3(c0 − b0) , (286)

m2
H

2m2uϕB
3 : 0 = l9 − l8 − β − γ + 1

3(c0 − b0) . (287)

The system of equations (261), (264)-(270), (274)-(283) and (285)-(287) ontains a

lot of redundanies; the most general solution is given in (171). To omplete this result

we add

α = 0 , β = −l1 +
2b0
3 , γ = l1 − 2c0

3 , λ = b0 + c2 − b1 − 2l1
3 ,

Υ = l1 − 3b0
4 , Ξ = l1 − 3c0

4 (288)

and the relation determining σ,

σ(b1 − c2) = l1 − b0 + b1 − c2 . (289)

The most general solution of the BRST-ondition (54) (given in (59)-(61) and for the

pertinent Q-vertex see (170)) is a true subset of the PGI-tree solution omputed here, due

to Remark 7.1. This subset property is a good hek of the alulations in this appendix.

The result (171) gives the restritions from PGI-tree on the 1-loop oe�ients e
(1)
ρ .

The orresponding restritions on the higher loop oe�ients e
(2)
ρ , e

(3)
ρ , . . . an be ob-

tained by ontinuing the alulations in this appendix: one has to selet the loal terms

of (169) whih are of order ~
0τ rκl for l arbitrary and r = 2, 3, . . . .
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Remark C.2. We now are able to see, why the laim (134) holds true. First note that

PC for S
(

izρ(L)(g)
)

(133) implies PC for the onneted time-ordered produts:

lim
ε↓0

[Q,Sc
(

izρ(L)(gε)
)

]⋆ ≈ 0 , (290)

this follows analogously to (169). Now, using the τ -trik in this equation, the terms ∼ τ0

vanish separately, beause they are the U(1)-Higgs model, whih ful�lls PGI and, hene,

also (290). Therefore, taking τ = ~ into aount, there annot be a anellation of terms

∼ ~
0τ1κ4 with terms ∼ ~

1τ0κ4; hene, the terms ∼ ~
0τ1κ4 (whih are tree-terms) must

ful�ll (290) separately. Moreover, as explained above, the non-loal onneted tree terms

ful�ll PGI separately and, hene, they ful�ll also (290) separately. Now, as we see from

(274), there is only one loal onneted (tree) term ∼ ~
0τ1κ4 A2A∂u ontributing to the

l.h.s. of (290), namely the r.h.s. of (134); therefore, the latter must be ≈ 0 individually.
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