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Abstra
t

The usual derivation of the Lagrangian of a model for massive ve
tor bosons,

by spontaneous symmetry breaking of a gauge theory, implies that the prefa
tors

of the various intera
tion terms are uniquely determined fun
tions of the 
oupling


onstant(s) and the masses. Sin
e, under the renormalization group (RG) �ow, dif-

ferent intera
tion terms get di�erent loop-
orre
tions, it is un
ertain, whether these

fun
tions remain �xed under this �ow. We investigate this question for the U(1)-
Higgs-model to 1-loop order in the framework of Epstein-Glaser renormalization.

Our main result reads: 
hoosing the renormalization mass s
ale(s) in a way 
or-

responding to the minimal subtra
tion s
heme, the geometri
al interpretation as a

spontaneously broken gauge theory gets lost under the RG-�ow. This holds also for

the 
learly stronger property of BRST-invarian
e of the Lagrangian. On the other

hand we prove that physi
al 
onsisten
y, whi
h is a weak form of BRST-invarian
e

of the time-ordered produ
ts, is maintained under the RG-�ow.
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1 Introdu
tion

The 
lassi
al geometri
al 
on
epts of �bre bundles and group theory have been 
ru
ial

for the development of quantum gauge theories, and the Higgs me
hanism was the key to

in
orporate the ele
troweak intera
tion into the framework of renormalizable �eld theory.

However, to the best of our knowledge, the Higgs me
hanism is not well understood

on a purely quantum level. And it is not needed: starting with massive BRST-invariant

free �elds, making a general renormalizable ansatz for the intera
tion and requiring

physi
al 
onsisten
y (PC) [KO79, DS00, Gri00℄ or perturbative gauge invarian
e (PGI)

[DS99, ADS99, S
h01, DGBSV10, S
h10℄

1

one obtains a 
onsistent perturbative quantum

theory of massive ve
tor bosons. (Some obvious properties as Poin
aré invarian
e and

relevant dis
rete symmetries are also taken into a

ount.) PC is the 
ondition that the

free BRST-
harge
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ommutes with the �S-matrix� in the adiabati
 limit, in order that

the latter indu
es a well-de�ned operator on the physi
al subspa
e; PGI is a re�nement

of this 
ondition whi
h is formulated independently of the adiabati
 limit � a su�
ient

(but in general not ne
essary) 
ondition for PC. If the ansatz for the intera
tion 
ontains

only trilinear and quadrilinear �elds

3

the resulting Lagrangian is essentially unique and

agrees with what one obtains from spontaneous symmetry breaking of a gauge theory; in

parti
ular the presen
e of Higgs parti
les and 
hirality of fermioni
 intera
tions 
an be

understood in this way without re
ourse to any geometri
al or group theoreti
al 
on
epts

[Sto97, DS99℄. These derivations of the intera
tion from basi
 QFT-prin
iples use PGI

(or PC) only on the level of tree diagrams (PGI-tree).

1

PGI was �rst introdu
ed in [DHKS94℄; in [DGBSV10℄ it is 
alled '
ausal gauge invarian
e'.

2

That is the 
harge implementing the BRST-transformation of the asymptoti
 free �elds.

3

Throughout this paper we use the words bilinear, trilinear and quadrilinear in the sense of bi-, tri-

and quadrilinear in the basi
 �elds.
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In the literature the geometri
al interpretation of the Standard Model of ele
troweak

intera
tions as a spontaneously broken gauge theory is frequently used at several (or even

all) s
ales. This is evident for the 
osmologi
al models relying on the �ele
troweak phase

transition�. Or, looking 
arefully at the geometri
al derivations of a value for the Higgs

mass of Connes et al. ([CCM07℄ and referen
es 
ited therein) and Tolksdorf [TT07℄, we

realized that in these papers the geometri
al interpretation is used at two very distin
t

s
ales: at the Z-mass and at the uni�
ation s
ale.

This paper was initiated by serious doubts about the geometri
al interpretability at

all s
ales, whi
h rely on the following: this interpretation is possible i� the prefa
tors

of the various intera
tion terms (i.e. of the verti
es) are pres
ribed fun
tions of the


oupling 
onstant(s) and masses. Sin
e di�erent verti
es get di�erent loop-
orre
tions it

is un
ertain, whether these fun
tions remain �xed under the RG-�ow.

Similarly to the 
onventional literature [Sib℄, our RG-�ow depends strongly on the

renormalization s
heme. Naively one might think that this is not so, be
ause we de�ne

the RG-�ow by a s
aling transformation [HW03, DF04, BDF09℄.

4

But the s
heme de-

penden
e 
omes in by the 
hoi
e of the renormalization mass s
ale(s) M : the s
aling

transformation may a
t on M or it may not, and di�erent 
hoi
es for di�erent Feynman

diagrams are possible.

An important result of this paper is that PC is maintained under the renormaliza-

tion group (RG) �ow (Se
t. 5). It is well known that also renormalizability (by power


ounting) is preserved. But, our original hope that these two properties yield enough

information about the running intera
tion to answer the geometri
al interpretability,

turned out to be too optimisti
. Due to the presen
e of bilinear �elds, PC and renor-

malizability are mu
h less restri
tive than in the above mentioned 
al
ulations involving

only tri- and quadrilinear �elds.

For this reason we pro
eed in a less elegant way: we answer the geometri
al inter-

pretability by means of a lot of expli
it 1-loop 
omputations of the RG-�ow (Se
t. 6).

Sin
e, up to a few s
alar �eld examples in [DF04, BDF09℄, su
h 
al
ulations have not

yet been done in the framework of Epstein-Glaser renormalization, we explain them in

detail (see Se
ts. 6.1-6.2 and Appendi
es A-B).

To get information about the important question whether PGI is maintained under

the RG-�ow, we analyze PGI-tree for the running intera
tion (Se
. 7).

BRST-invarian
e of the Lagrangian is a property whi
h is truly stronger than the

geometri
al interpretabilty and also stronger than PGI-tree. We investigate whether it


an be preserved under the RG-�ow by a suitable renormalization pres
ription (Se
ts. 3

and 6).

We assume that the reader is familiar with the formalism for Epstein-Glaser renor-

malization (also 
alled �
ausal perturbation theory�) given in [DF04℄, in parti
ular we

will use the Main Theorem, whi
h is the basis for our de�nition of the RG-�ow, and the

4

This seems to be the obvious way to introdu
e the RG-�ow in the Epstein-Glaser framework [EG73℄.

Namely, in this framework renormalization is the extension of distributions (see footnote 8) and, as long

as the adiabati
 limit (17) is not performed, renormalization in this sense 
annot be interpreted as a

rede�nition of �elds, masses and 
oupling 
onstants depending on a mass s
ale.
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s
aling and mass expansion [HW02, Düt15℄.

2 Pre
ise formulation of the question

The Lagrangian of the model: to simplify the 
al
ulations we study only one massive

ve
tor �eld Aµ
, the 
orresponding Stü
kelberg �eld B, a further real s
alar �eld ϕ (usually


alled �Higgs �eld�) and the Fadeev-Popov ghost �elds (u , ũ). We work with the free

Lagrangian

Lm,Λ
0 = −1

4
F 2 +

m2

2
(A ·A) + 1

2
(∂B · ∂B)− m2

B

2
B2 − Λ

2
(∂A)2

+
1

2
(∂ϕ · ∂ϕ)− m2

H

2
ϕ2 + ∂ũ · ∂u−m2

u ũu , (1)

where F 2 := (∂µAν − ∂νAµ)(∂µAν − ∂νAµ), m := (m,mB ,mu,mH) denotes the masses

of the various basi
 �elds and Λ is the gauge-�xing parameter.

For the moment we do not 
are about any notion of gauge symmetry and admit

intera
tions of the form

Lm,Λ
κ,λ = κ

(

m(A ·A)ϕ− λ10 m
2
u

m
ũuϕ+ λ1B(A · ∂ϕ)

− λ2ϕ(A · ∂B)− λ3m
2
H

2m
ϕ3 − λ4m

2
H

2m
B2ϕ

)

+ κ2
(λ5

2
(A · A)ϕ2 +

λ6

2
(A · A)B2 − λ7m

2
H

8m2
ϕ4

− λ8m
2
H

4m2
ϕ2B2 − λ9m

2
H

8m2
B4 + λ11 (A · A)2

)

+ ((λ12 − 1)m+
√
ΛmB) (A · ∂B) , (2)

where κ is the 
oupling 
onstant and λ := (λ1, ..., λ12) are arbitrary real parameters.

Apart from the last, bilinear term, ea
h �eld monomial in Lm,Λ
κ,λ has its own, independent


oupling 
onstant κλj or κ2λj . The reason for the 
ompli
ated de�nition of λ12 will

be
ome 
lear below in (6)-(7). The free Lagrangian is parametrized by m and Λ; the
intera
tion L has 13 additional parameters: κ and the dimensionless 
oupling parameters

λ. We point out that at the present stage we do not assume the usual mass relations

mB = mu = m√
Λ
, we 
onsider m, mB and mu as independent parameters.

The set of monomials appearing in Lm,Λ
κ,λ (2) is the minimal set with the following

properties:

• (Lm,Λ
0 +Lm,Λ

κ,λ ) 
ontains all monomials whi
h appear in the Lagrangian of the U(1)-
Higgs model;

• 
omputing the RG-�ow for the model given by (Lm,Λ
0 +Lm,Λ

κ,λ ), there do not appear
any new �eld monomials in the running intera
tion, ex
ept for a 
onstant �eld

k ∈ C (see (19)), i.e. the set of �eld monomials appearing in (Lm,Λ
0 + Lm,Λ

κ,λ ) is

stable under the RG-�ow.
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We point out that ea
h term in L0 and L is even under the �eld parity transformation

(A,B,ϕ, u, ũ) 7→ (−A,−B,ϕ, u, ũ) . (3)

Setting ũ := 0 and u := 0 and ignoring the A∂B-term, the set of monomials appearing

in (2) 
an be 
hara
terized as follows: apart from Bϕ∂A = ∂(BϕA) − BA∂ϕ − ϕA∂B,

these are all trilinear and quadrilinear �eld monomials whi
h are Lorentz invariant, have

mass dimension ≤ 4 and respe
t the symmetry (3).

Geometri
al interpretation: by the �
lassi
al version� of the model L0 + L we

mean L0 + L− Lgf − Lghost, where

LmB ,Λ
gf := −Λ

2

(

∂ ·A+
mB√
Λ
B

)2

(4)

is the gauge-�xing term and

Lmu

ghost κλ10
:= ∂ũ · ∂u−m2

u ũu− κλ10 m
2
u

m
ũuϕ (5)

is the ghost term, whi
h is the sum of all terms in L0+L 
ontaining the ghost �elds ũ, u.
There is a distinguished 
hoi
e of the parameters λ: by straightforward 
al
ulation

we �nd that the 
lassi
al version of L0 + L 
an be geometri
ally interpreted as a spon-

taneously broken U(1)-gauge model i� the parameters λ have the values

λ1 = ... = λ9 = 1 , λ11 = λ12 = 0 . (6)

Expli
itly, these values of the parameters are equivalent to

L0 + L− Lgf − Lghost −
√
ΛmB ∂µ(A

µB) = −1

4
F 2 +

1

2
(DµΦ)∗DµΦ− V (Φ) , (7)

where

Φ := iB +
m

κ
+ ϕ , Dµ := ∂µ − iκAµ

(8)

and

V (Φ) :=
κ2m2

H

8m2
(Φ∗Φ)2 − m2

H

4
(Φ∗Φ) +

m2
Hm2

8κ2
. (9)

The minima of the potential V (Φ) are on the 
ir
le Φ = m
κ eiα , α ∈ [0, 2π). The 
hoi
e

of a minima, usually one takes Φmin = m
κ , breaks the U(1) symmetry 'spontaneously'

and the �elds ϕ and B are the deviations from Φmin in radial and tangential dire
tion.

Besides m, mH , κ and Λ, also the parameters mB , mu and λ10 are not restri
ted by

the geometri
al interpretation (7). The latter are usually �xed as follows:

• the bilinear mixed term ∼ A∂B in L0+L hampers the parti
le interpretation. For

λ12 = 0 (as required by the geometri
al interpretation (6)), the 
ondition that the

A∂B-term vanishes is equivalent to the mass relation

mB =
m√
Λ

. (10)
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• In the next se
tion we will see that BRST-invarian
e of the total Lagrangian L0 +
L implies the geometri
al interpretation (7), however it restri
ts also the ghost

parameters. Expli
itly, BRST-invarian
e of the total Lagrangian is equivalent to

the parameter values (6) and

m2
u =

mB m√
Λ

and λ10 = 1 ; (11)

note that this holds also in the presen
e of an A∂B-term, i.e. the validity of (10)

is not assumed here.

The main aim of this paper is the following: we will start with the U(1)-Higgs model,

i.e. with the parameter values (6), (10) and (11), and with that we will investigate whether

the parameter values (6) are stable under the RG-�ow generated by s
aling transforma-

tions, i.e. we study the question whether the geometri
al interpretation (7) is possible 'at

all s
ales'.

De�nition of the RG-�ow: from now on we will use the just mentioned initial

values (6), (10) and (11). With that we have only two independent massesm := (m,mH),
and the intera
tion L ≡ Lm ≡ Lm,Λ

κ is of the form

L = κL1 + κ2 L2 . (12)

In view of Epstein-Glaser renormalization [EG73℄, we introdu
e an adiabati
 swit
hing

of the 
oupling 
onstant by a test fun
tion g ∈ D(R4):

L(g) ≡ Lm(g) :=

∫

dx
(

κ g(x)L1(x) +
(

κ g(x)
)2

L2(x)
)

. (13)

Following [HW03, DF04, BDF09℄ we de�ne the RG-�ow by means of a s
aling trans-

formation of the �elds

σ−1
ρ (φ(x)) = ρφ(ρx) , φ = Aµ, B, ϕ, u, ũ , ρ > 0 , (14)

and a simultaneous s
aling of the masses m 7→ ρ−1
m = (ρ−1m,ρ−1mH); see [DF04℄ for

the pre
ise de�nition of σρ. Under this transformation the 
lassi
al a
tion is invariant

(up to a s
aling of the swit
hing fun
tion g); namely, due to σ−1
ρ Lρm(x) = ρ4 Lm(ρx)

and the same for L0, we have

∫

dxLm

0 (x) + Lm(g) = σ−1
ρ

(

∫

dxLρm
0 (x) + Lρm(gρ)

)

, gρ(x) := g(ρx) , (15)

where the parameters Λ, κ are suppressed sin
e they are not a�e
ted by the s
aling

transformation.

In QFT s
aling invarian
e is broken by quantum e�e
ts. To explain this more in

detail, we introdu
e the generating fun
tional S(iL(g)) of the time ordered produ
ts of

L(g), i.e.

Tn(L(g)
⊗n) =

dn

in dηn
|η=0 S(iη L(g)) or more generally Tn = S(n)(0) , (16)
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whi
h we 
onstru
t indu
tively by Epstein-Glaser renormalization [EG73℄. We use that,

for a purely massive model and with a suitable (re)normalization of S(iL(g)), the adia-
bati
 limit

S[L] := lim
ε↓0

S(iL(gε)) , gε(x) := g(εx) , (17)

exists, where g(0) = 1 is assumed [EG73, EG76℄.

5

Now, 
omputing S[L] for the s
aled

�elds σ−1
ρ (φ(x)) (14) and transforming the result ba
k by σρ, we obtain a result whi
h

di�ers in general from S[L] by a 
hange of the renormalization pres
ription. The Main

Theorem of perturbative renormalization [PS82, DF04, HW03℄ implies that the transfor-

mation Sm[Lm] 7→ σρ(Sρ−1
m
[σ−1

ρ (Lm)]) 
an equivalently be expressed by a renormaliza-

tion of the intera
tion Lm 7→ zρ(L
m), expli
itly

σρ(Sρ−1
m
[σ−1

ρ (Lm)]) = Sm[zρ(L
m)] , (18)

where the lower index m of Sm denotes the masses of the Feynman propagators. This is

explained more in detail in se
t. 5.

The form of the running intera
tion: in Se
t. 5 we will see that, with a slight

restri
tion on the (re)normalization of S(iL(g)), the new intera
tion zρ(L) has the form

zρ(L
m,Λ
κ ) ≃ ~

−1
[

kρ −
1

4
a0ρ F

2 +
m2

2
a1ρ(A ·A)− a2ρ

2
(∂A · ∂A)

+
1

2
b0ρ(∂B · ∂B)− m2

2Λ
b1ρ B

2 +
1

2
c0ρ (∂ϕ · ∂ϕ)− m2

H

2
c1ρ ϕ

2

− m2

Λ
c2ρ ũu+ b2ρ m (A · ∂B)

+ κ
(

(1 + l0ρ)m(A ·A)ϕ − m

Λ
ũuϕ+ (1 + l1ρ)B(A · ∂ϕ)

− (1 + l2ρ)ϕ(A · ∂B)− (1 + l3ρ)m
2
H

2m
ϕ3 − (1 + l4ρ)m

2
H

2m
B2ϕ

)

+ κ2
( (1 + l5ρ)

2
(A · A)ϕ2 +

(1 + l6ρ)

2
(A ·A)B2 − (1 + l7ρ)m

2
H

8m2
ϕ4

− (1 + l8ρ)m
2
H

4m2
ϕ2B2 − (1 + l9ρ)m

2
H

8m2
B4 + l11ρ (A ·A)2

)]

, (19)

where kρ ∈ ~C[[~]] is a 
onstant �eld (it is the 
ontribution of the va
uum diagrams) and

≃ means 'equal up to the addition of terms of type ∂aA', where |a| ≥ 1 and A is a lo
al

�eld polynomial; su
h a ∂aA-term vanishes in the adiabati
 limit. It is a pe
uliarity of

this model that a term ∼ ∂ũ∂u does not appear in zρ(L) (if not added �by hand� � see

Remark 6.3) and that there are also no trilinear and quadrilinear terms in (zρ(L) − L)

ontaining ũu.

5

In this paper we treat the adiabati
 limit on a heuristi
 level, for a rigorous treatment we refer to

the mentioned papers of Epstein and Glaser, in whi
h it is shown that for purely massive models the

adiabati
 limit (17) exists (in the strong operator sense) and is unique (i.e. independent of the 
hoi
e of

g).
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The dimensionless, ρ-dependent 
oe�
ients kρ, ajρ, bjρ, cjρ and ljρ will 
olle
tively

be denoted by eρ. In prin
iple these 
oe�
ients are 
omputable � at least to lowest

orders (see the 1-loop 
omputations in Se
ts. 6.1-6.2 and Appendi
es A-B); however,

at the present stage they are unknown. The eρ's are of order O(~) (i.e. they are loop


orre
tions), more pre
isely they are formal power series in κ2~ with vanishing term of

zeroth order,

eρ =

∞
∑

n=1

e(n)ρ (κ2~)n , e = k, aj , bj , cj , lj . (20)

Due to zρ=1(L) = L/~, all fun
tions ρ 7→ eρ have the initial value 0 at ρ = 1.
Proof of (20): That eρ is a formal power series of the form (20) 
an be seen as follows.

To every eρ there 
orresponds a 
lass of Feynman diagrams with external legs a

ording

to (19). For example, the diagrams 
ontributing to b0ρ have 2 external legs, both are

B-�elds with 0 or 1 partial derivative. The verti
es are given by L (2), i.e. we have

trilinear verti
es ∼ κ and quadrilinear verti
es ∼ κ2. For ea
h vertex there is a fa
tor

~
−1

and for ea
h inner line a fa
tor ~. A diagram with r trilinear verti
es, s quadrilinear
verti
es, p inner and q external lines satis�es

3r + 4s− 2p = q (21)

and, hen
e, its 
ontribution to zρ(L) (19) is

∼ κr+2s
~
r/2+s−q/2 . (22)

If q is odd, q = 2q0 +1, also r is odd, r = 2r0 + 1 (q0, r0 ∈ N0), and with that we obtain

the fa
tor

κ~−q0 (κ2~)r0+s . (23)

If q is even, q = 2q0, also r is even, r = 2r0 (q0, r0 ∈ N0), and with that we get

~
−q0 (κ2~)r0+s . (24)

The 
ontributing diagrams satisfy n := r0 + s ≥ 1 for q = 2, 3 and n := r0 + s − 1 ≥ 1
for q = 4. With that we obtain (20) � the additional fa
tors ~

−1
(for q = 2), ~−1κ (for

q = 3) and ~
−1κ2 (for q = 4) in (23)-(24) agree pre
isely with the prefa
tors in zρ(L)

(19).

Renormalization of the wave fun
tions, masses, gauge-�xing parameter

and the 
oupling 
onstants: ex
ept for the A∂B-term, all bilinear terms of zρ(L) do
not appear in L. However, introdu
ing new �elds, whi
h are of the form

φρ(x) = fφ(ρ)φ(x) , φ = A, B, ϕ, (25)

where fφ : (0,∞) → C is a φ-dependent fun
tion, and introdu
ing a running gauge-

�xing parameter Λρ, running masses mρ ≡ (mρ, mBρ, muρ, mHρ) and running 
oupling


onstants κρ, λjρ, we 
an a
hieve that L0 + zρ(L)− kρ has the same form as L0 + L, in
parti
ular we absorb the novel bilinear intera
tion terms in the free Lagrangian:

(

Lm,Λ
0 + zρ(L

m,Λ
κ,λ )− kρ

)

(A,B,ϕ, u, ũ) =
(

L
mρ,Λρ

0 + L
mρ,Λρ

κρ,λρ

)

(Aρ, Bρ, ϕρ, u, ũ) . (26)

8



We will use the shorthand notation

L0 + zρ(L)− kρ = Lρ
0 + Lρ

for this equation. Sin
e every new �eld is of the form (25), the 
ondition (26) is an

equation for polynomials in the old �elds; equating the 
oe�
ients the impli
it de�nition

(26) of the running quantities turns into the following expli
it equations:

- for the wave fun
tions

Aµ
ρ =

√

1 + a0ρ A
µ , Bρ =

√

1 + b0ρ B , ϕρ =
√

1 + c0ρ ϕ ; (27)

- for the gauge-�xing parameter

Λρ =
Λ+ a2ρ
1 + a0ρ

; (28)

- for the masses

mρ =

√

1 + a1ρ
1 + a0ρ

m , mHρ =

√

1 + c1ρ
1 + c0ρ

mH ,

mBρ =

√

1 + b1ρ
1 + b0ρ

m√
Λ

, muρ =
√

1 + c2ρ
m√
Λ

; (29)

- for the 
oupling 
onstant

κρ =
1 + l0ρ

√

(1 + a0ρ)(1 + a1ρ)(1 + c0ρ)
κ ; (30)

and the running 
oupling parameters λρ are impli
itly determined by

κm

Λ
ũuϕ =

κρλ10ρ m
2
uρ

mρ
ũuϕρ ,

κ(1 + l1ρ)B(A · ∂ϕ) = κρλ1ρ Bρ(Aρ · ∂ϕρ) ,

........ = .......................

κ(1 + l4ρ)m
2
H

m
B2ϕ =

κρλ4ρm
2
Hρ

mρ
B2

ρϕρ ,

κ2(1 + l5ρ) (A ·A)ϕ2 = κ2ρλ5ρ (Aρ · Aρ)ϕ
2
ρ ,

........ = .......................

κ2 l11ρ (A · A)2 = κ2ρλ11ρ (Aρ · Aρ)
2 ,

b2ρ m (A · ∂B) =
(

(λ12ρ − 1)mρ +
√

Λρ mBρ

)

(Aρ · ∂Bρ) . (31)

The renormalizations (27)-(31) are not diagonal (as one naively might think): the

new �elds/parameters depend not only on the pertinent old �eld/parameter, be
ause the


oe�
ients ajρ, bjρ, cjρ, ljρ are fun
tions of the whole set {m,Λ, κ} of old parameters.

The renormalization of the wave fun
tions 
an be interpreted as follows: the �eld mono-

mials appearing in L0+zρ(L) 
an be viewed as a basis of a ve
tor spa
e. The rede�nitions

(27) are then a 
hange of the �unit of lenght on the various 
oordinate axis�.
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Remark 2.1 (�Perturbative agreement�). By the renormalization of the wave fun
tions,

masses and gauge �xing-parameter, we 
hange the splitting of the total Lagrangian L0+
zρ(L) into a free and intera
ting part, i.e. we 
hange the starting point for the perturbative
expansion. To justify this, one has to show that the two pertubative QFTs given by the

splittings L0 + zρ(L) and Lρ
0 + Lρ

, respe
tively, have the same physi
al 
ontent. This

statement 
an be viewed as an appli
ation of the �Prin
iple of Perturbative Agreement� of

Hollands and Wald, whi
h is used in [HW05℄ as an additional renormalization 
ondition.

The proof that the �old� perturbative QFT (given by L0 + zρ(L)) and the �new� one

(given by Lρ
0 + Lρ

) are physi
ally equivalent is beyond the s
ope of this paper. For the

wave fun
tion and mass renormalization in a s
alar �eld theory, the following 
onje
ture

has been formulated (by using the framework of algebrai
 QFT) and veri�ed for a few

examples [BDF℄: given a renormalization pres
ription (i.e. an S-fun
tional (16)) for the
old perturbative QFT, there exists a renormalization pres
ription for the new pertur-

bative QFT, su
h that the pertinent nets of lo
al observables in the algebrai
 adiabati


limit (see [BF00℄ or [DF04, BDF09℄) are equivalent. The 
orresponding isomorphisms


an be 
hosen su
h that lo
al �elds are identi�ed with lo
al �elds modulo the free �eld

equation.

For models with spin 1 �elds, the gauge-�xing parameter has also to be renormalized;

and there is the di�
ulty that in general the new free theory (given by Lρ
0) is not BRST-

invariant, see Remark 7.2.

Geometri
al interpretation at an arbitrary s
ale: sin
e we have written the

running Lagrangian L0 + zρ(L)− kρ in the form Lρ
0 +Lρ

, the equivalen
e of (7) and (6)


an be applied to it: Lρ
0 +Lρ


an be geometri
ally interpreted i� the λjρ have the values

λ1ρ = λ2ρ = ... = λ9ρ = 1 , λ11ρ = λ12ρ = 0 . (32)

To be pre
ise: by 'geometri
al interpretation' we mean here that

(

L
mρ,Λρ

0 + L
mρ,Λρ

κρ,λρ

)

(Aρ, Bρ, ϕρ, u, ũ) = −1

4
F 2
ρ +

1

2
(Dµ

ρΦρ)
∗DρµΦρ − Vρ(Φρ)

+ Lρ
gf + Lρ

ghost +
√

Λρ mBρ ∂µ(A
µ
ρBρ) , (33)

where Fµν
ρ := ∂µAν

ρ − ∂νAµ
ρ ,

Φρ := iBρ +
mρ

κρ
+ ϕρ , Dµ

ρ := ∂µ − iκρ A
µ
ρ

Vρ(Φρ) :=
κ2ρm

2
Hρ

8m2
ρ

(Φ∗
ρΦρ)

2 −
m2

Hρ

4
(Φ∗

ρΦρ) +
m2

Hρ
m2

ρ

8κ2ρ
(34)

and

Lρ
gf := −Λρ

2

(

∂ · Aρ +
mBρ
√

Λρ

Bρ

)2

,

Lρ
ghost := ∂ũ · ∂u−m2

uρ ũu−
κρ λ10ρ m

2
uρ

mρ
ũuϕρ . (35)

10



Our main question is whether (32) holds true when starting with the U(1)-Higgs-
model; for simpli
ity we also assume that initially we are in Feynman gauge: Λρ=1 = 1.

With these initial values, the geometri
al interpretability (32) is equivalent to the

following relations among the 
oe�
ients eρ:

λ1ρ = 1 gives

1 + l1ρ
1 + l0ρ

=

√

1 + b0ρ
1 + a1ρ

, (36)

λ2ρ = 1 gives l2ρ = l1ρ , (37)

λ3ρ = 1 gives

1 + l3ρ
1 + l0ρ

=
1 + c1ρ
1 + a1ρ

, (38)

λ4ρ = 1 gives

1 + l4ρ
1 + l3ρ

=
1 + b0ρ
1 + c0ρ

, (39)

λ5ρ = 1 gives

1 + l5ρ
(1 + l0ρ)2

=
1

1 + a1ρ
, (40)

λ6ρ = 1 gives

1 + l6ρ
1 + l5ρ

=
1 + b0ρ
1 + c0ρ

, (41)

λ7ρ = 1 gives

1 + l7ρ
(1 + l0ρ)2

=
1 + c1ρ

(1 + a1ρ)2
, (42)

λ8ρ = 1 gives

1 + l8ρ
1 + l7ρ

=
1 + b0ρ
1 + c0ρ

, (43)

λ9ρ = 1 gives

1 + l9ρ
1 + l7ρ

=
(1 + b0ρ
1 + c0ρ

)2
, (44)

λ11ρ = 0 gives l11ρ = 0 , (45)

λ12ρ = 0 gives b2ρ =
√

(1 + a2ρ)(1 + b1ρ)−
√

(1 + a1ρ)(1 + b0ρ) . (46)

Sear
hing all values for the 
oe�
ients eρ whi
h solve this system of equations, we

�nd that this is quite a large set: negle
ting kρ, 9 
oe�
ients 
an freely be 
hosen

(e.g. a0ρ, a1ρ, a2ρ, b0ρ, b1ρ, c0ρ, c1ρ, c2ρ and l0ρ), the other 11 
oe�
ients are then uniquely

determined by the 11 equations (36)-(46).

Combining the equations (38), (40) and (42) we obtain

1 + l7ρ
1 + l3ρ

=
1 + l5ρ
1 + l0ρ

. (47)

It will turn out that the 
onditions (46) and (47) are 
ru
ial for the geometri
al inter-

pretability.

For later purpose we mention that, with the 
onsidered initial values, the expli
it

formula for λ10ρ reads

λ10ρ =
1 + a1ρ

(1 + c2ρ)(1 + l0ρ)
. (48)
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3 BRST-invarian
e of the Lagrangian

The main result of this Se
tion is that BRST-invarian
e of the Lagrangian is a su�
ient

(but not ne
essary) 
ondition for the geometri
al interpretation � for both, the initial

Lagrangian L0 + L and the running Lagrangian L0 + zρ(L).
The BRST-transformation s ≡ sβ = s0+κβ s1 is a graded derivation whi
h 
ommutes

with partial derivatives and is given on the basi
 �elds by

sAµ = ∂µu , sB = mu+ κβ uϕ , s ϕ = −κβ Bu ,

s u = 0 , s ũ = −Λ (∂A+
mB√
Λ
B) . (49)

Sin
e it is a priory not 
lear whi
h of the 
oupling 
onstant κ, κλj in L (2) is equal to

the κ in the BRST-transformation, we have introdu
ed the parameter β in s.
BRST-invarian
e of the initial Lagrangian: expli
itly this property reads

sβ(L0 + L) ≃ 0 (50)

(where again ≃ means 'equal up to the addition of derivatives of lo
al �eld polynomials');

it is equivalent to

β = 1 and the parameter values (6) and (11). (51)

That the parameter values (51) imply (50) 
an be seen by formally interpreting the

BRST-transformation of Aµ
and (ϕ,B) as an in�nitesimal gauge transformation,

s(Aµ,Φ) =
d

dα
|α=0 (A

µ + α∂µu, eiακuΦ) , (52)

and by taking into a

ount that Dµ
is a pertinent 
ovariant derivative. With that we

immediately see that s(F 2) = 0 , s((DµΦ)∗DµΦ) = 0 , s(V (Φ)) = 0, and by using (7)

and a simple 
al
ulation we obtain

s(L0+L) =
√
ΛmB s∂(AB)+s(Lgf +Lghost) = ∂µ

(
√
ΛmB s(AµB)+(sũ)(sAµ)

)

. (53)

The proof that (50) is also su�
ient for the parameter values (51), is a straightforward


al
ulation: inserting (1) and (2) into (50) one obtains (after some work) these parameter

values. The relations (11) are pre
isely the 
ondition that s(Lgf +Lghost) ≃ 0, where we
assume that β = 1 is already obtained from other parts of the 
al
ulation.

BRST-invarian
e of the running Lagrangian (L0 + zρ(L)): the property

sβ(L0 + zρ(L)) ≃ 0 , (54)

where sβ ≡ s is given by (49), determines zρ(L) − kρ uniquely in terms of the three


oe�
ients

aρ := a0ρ , bρ := b0ρ , lρ := c1ρ , (55)
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whi
h 
an freely be 
hosen. More expli
itly, the 
ondition (54) is equivalent to β = 1
and the following form of zρ(L):

zρ(L
m,Λ
κ ) ≃ kρ −

1

4
aρ F

2 + bρ
(m2

2
A2 −mA∂B +

1

2
(∂B)2 +

1

2
(∂ϕ)2

)

− lρ
m2

H

2
ϕ2

+ κ
(

−m

Λ
ũuϕ+ (1 + bρ)

(

mA2ϕ+BA∂ϕ− ϕA∂B
)

− (1 + lρ)m
2
H

2m
(ϕ3 +B2ϕ)

)

+ κ2
((1 + bρ)

2
(A2 ϕ2 +A2 B2)− (1 + lρ)m

2
H

8m2
(ϕ4 + 2ϕ2B2 +B4)

)

. (56)

One veri�es easily that with these relations among the 
oe�
ients eρ, the equations

(36)-(46) are satis�ed, that is, (54) implies indeed the geometri
al interpretation (33).

However, due to the presen
e of bilinear terms in zρ(L), the di�eren
e between BRST-

invarian
e of the Lagrangian (54) and the geometri
al interpretation (33) does not only


on
ern the ghost se
tor, as for L0+L (see (11)), it is 
learly bigger � the number of free


oe�
ients eρ is 3 versus 9.
The proof that the set of solutions of the 
ondition (54) is given by β = 1 and (56), is

a somewhat lengthy and straightforward 
al
ulation, whi
h is quite boring. More instru
-

tive is the following understanding of the parameter values (56): the above derivation

(52)-(53) of BRST-invarian
e of L0 + L, by using the geometri
al interpretation, 
an

only be applied to Lρ
0 + Lρ(= L0 + zρ(L) − kρ) , if the BRST transformation s (49)

expressed in terms of the ρ-�elds, has the same form as for the original �elds, up to a

global prefa
tor γ. Expli
itly this requirement reads

sAµ
ρ =

√

1 + a0ρ sAµ = γ ∂µu ,

sBρ =
√

1 + b0ρ sB = γ (mρu+ κρ uϕρ) ,

s ϕρ =
√

1 + c0ρ s ϕ = −γ (κρ Bρu)

s ũ = −γ Λρ (∂Aρ +
mBρ
√

Λρ

Bρ) (57)

and s u = γ 0 = 0 is trivially satis�ed. From the �rst equation we obtain

γ =
√

1 + a0ρ (58)

and with that the further equations are equivalent to

bρ := b0ρ = a1ρ = c0ρ = l0ρ and b1ρ = 0 = a2ρ . (59)

To take the demand for validity of the geometri
al interpretation into a

ount, we insert

(59) into (36)-(46), this yields

bρ = l1ρ = l2ρ = l5ρ = l6ρ = −b2ρ

lρ := c1ρ = l3ρ = l4ρ = l7ρ = l8ρ = l9ρ

l11ρ = 0 . (60)
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In addition, the derivation (52)-(53) needs BRST-invarian
e of (Lρ
gf +Lρ

ghost) (35), whi
h

is equivalent to m2
uρ =

mBρ mρ√
Λρ

and λ10ρ = 1 (similarly to (11)); both equations give

c2ρ = 0 (61)

by using (59) (and the formulas (28), (29), (48) for the running quantities). The param-

eter relations (59), (60) and (61) agree pre
isely with (56).

As usual, the BRST-transformation s (49) is nilpotent modulo the �eld equations

of L0 + L; we point out that this holds also for s expressed in terms of the ρ-�elds
(i.e. (57)-(58)) w.r.t. the �eld equations of the new Lagrangian Lρ

0 + Lρ
:

s2ũ = −Λρ(1 + aρ)
(

�u+
mBρ
√

Λρ

(mρu+ κρ uϕρ)
)

= Λρ(1 + aρ)
δ
∫

dx (Lρ
0 + Lρ)

δũ
, (62)

where we use the pre
eding relations, i.e. we assume that (54) holds true.

4 Perturbative gauge invarian
e (PGI)

For the initial model S(iL(g)) we admit all renormalization pres
riptions whi
h ful�ll the

Epstein-Glaser axioms [EG73, DF04℄ and a suitable version of BRST-invarian
e. The

latter should be well adapted to the indu
tive Epstein-Glaser 
onstru
tion of the time-

ordered produ
ts and to our de�nition of the RG-�ow. We will see that PGI [DHKS94,

DS99℄ ful�lls these 
riteria.

Physi
al 
onsisten
y (PC). To motivate PGI we start with PC, whi
h is a some-

what weaker 
ondition [KO79, DS00, Gri00℄. Let Q be the 
harge implementing the free

BRST-transformation s0 := s|κ=0, expli
itly

[Q,φ]∓⋆ ≈ i~ s0φ , φ = Aµ , B , ϕ , u , ũ , (63)

where [· , ·]∓⋆ denotes the graded 
ommutator w.r.t. the ⋆-produ
t and ≈ means 'equal

modulo the free �eld equations'. The nilpoten
y Q2 ≈ 0 re�e
ts s20 ≈ 0. For our model

with Feynman gauge Λ = 1, the 
harge Q is given by the somewhat heuristi
 formula

6

Q =

∫

x0=constant
d3x

(

(∂A+mB) ∂0u− ∂0(∂A +mB)u
)

. (64)

For the asymptoti
 free �elds, the �subspa
e� of physi
al states 
an be des
ribed as

Hphys :=
kerQ

ranQ
.

The operator S[L] (17) indu
es a well de�ned operator from Hphys into itself i�

[Q,S[L]]⋆|kerQ ≈ 0 ,

6

A rigorous de�nition of Q is given in [DF99℄.
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see e.g. [DS00℄. This is the reason to require

physi
al 
onsisten
y (PC): 0 ≈ [Q,S[L]]⋆ ≡ lim
ε↓0

[Q,S(iL(gε)/~)]⋆ . (65)

Perturbative gauge invarian
e (PGI): to ful�ll PC in the indu
tive Epstein-

Glaser 
onstru
tion of time-ordered produ
ts, we need a version of PC before the adia-

bati
 limit g → 1 is taken: pre
isely for this purpose PGI was introdu
ed in [DHKS94℄.

PGI is the 
ondition that to a given lo
al intera
tion

L(g) := ~
−1

∞
∑

k=1

κk
∫

dx (g(x))k L(k)(x) , (66)

there exists a �Q-vertex�

P
ν(g; f) :=

∞
∑

k=1

κk
∫

dx (g(x))(k−1)
P
ν
(k)(x) f(x) (67)

(where g, f ∈ D(R4) and L(k), P(k) are lo
al �eld polynomials) and a renormalization of

the time-ordered produ
ts su
h that

[Q,S
(

iL(g)
)

]⋆ ≈
d

dη
|η=0 S

(

iL(g) + η Pν(g; ∂νg)
)

. (68)

That PGI implies PC, is easy to see (on the heuristi
 level on whi
h we treat the

adiabati
 limit in this paper): the r.h.s. of (68) vanishes in the adiabati
 limit, sin
e it

is linear in the Q-vertex, the latter is linear in ∂νg and ∂νgε ∼ ε.
For time-ordered produ
ts Tn of order n ≥ 2, PGI is a renormalization 
ondition � it

is a parti
ular 
ase of the 'Master BRST Identity', whi
h is the appli
ation of the 'Master

Ward Identity' to the 
onservation of the free BRST-
urrent, see [DB02, DF03℄.

It is well-known that the U(1)-Higgs model is anomaly-free. Hen
e, our initial model


an be renormalized su
h that PGI (68) holds to all orders in κ, where L(g) := L(g) is
given by (13) and

P
ν(g; f) :=

∫

dx
(

κP ν
1 (x) + κ2g(x)P ν

2 (x)
)

f(x), (69)

with

P ν
1 = mAνuϕ− ∂νB uϕ+Bu∂νϕ , P ν

2 = Aνuϕ2 +AνuB2 , (70)

where Lk (13) and P ν
k are (k + 2)-linear in the basi
 �elds and Feynman gauge Λ = 1 is


hosen.

To apply PGI to the running intera
tion zρ(L), we insert the power series (20) for

the 
oe�
ients eρ into zρ(L) (19), to write the latter as a power series in κ,

zρ(L) = ~
−1

∞
∑

k=1

zρ k(L) κ
k . (71)
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So, for this intera
tion, L(g) (66) is given by

L(g) = zρ(L)(g) := ~
−1

∞
∑

k=1

∫

dx zρ k(L)(x) (κ g(x))
k . (72)

Expli
itly, with Λρ=1 = 1 we have

L(1) = L1 , L(2) = L2 + ~L
(1)
0 , L(3) = ~L

(1)
1 , L(4) = ~L

(1)
2 + ~

2L
(2)
0 (73)

et
., where L
(j)
k is (k + 2)-linear in the basi
 �elds and the upper index j denotes the

order in ~; expli
itly

L
(j)
0 =− 1

4
a
(j)
0ρ F 2 +

m2

2
a
(j)
1ρ A2 −

a
(j)
2ρ

2
(∂A)2 +

1

2
b
(j)
0ρ (∂B)2 − m2

2
b
(j)
1ρ B2

+
1

2
c
(j)
0ρ (∂ϕ)2 − m2

H

2
c
(j)
1ρ ϕ2 −m2 c

(j)
2ρ ũu+mb

(j)
2ρ A∂B ,

L
(j)
1 =ml

(j)
0ρ A2ϕ+ l

(j)
1ρ B(A∂ϕ) − l

(j)
2ρ ϕ(A∂B) − m2

H

2m
(l
(j)
3ρ ϕ3 + l

(j)
4ρ B2ϕ) ,

L
(j)
2 =

1

2

(

l
(j)
5ρ A2ϕ2 + l

(j)
6ρ A2B2

)

− m2
H

8m2
(l
(j)
7ρ ϕ4 + 2 l

(j)
8ρ ϕ2B2 + l

(j)
9ρ B4) + l

(j)
11ρ (A

2)2 (74)

for j ≥ 1. The pertinent P(k) in (67) must have a similar stru
ture

P(1) = P1 , P(2) = P2 + ~P
(1)
0 , P(2) = ~P

(1)
1 , P(2) = ~P

(1)
2 + ~

2P
(2)
0 (75)

et
., where the indi
es of P
(j)
k have the same meaning as for L

(j)
k .

5 Stability of physi
al 
onsisten
y under the renormaliza-

tion group �ow

Stability of PC: it is hard to �nd out whether PGI is maintained under the RG-

�ow, i.e. whether PGI for L(g) = L(g) (13) implies PGI for L(g) = zρ(L)(g) (72). In

Se
t. 7 we show that PGI for S
(

izρ(L)(g)
)


an be ful�lled on the level of tree diagrams

(with verti
es zρ(L)(g)), if one takes only the 1-loop 
ontributions e
(1)
ρ (20) to zρ(L) into

a

ount. But this depends on the renormalization pres
ription for S
(

iL(g)
)

: using a

pres
ription 
orresponding to the minimal subtra
tion s
heme, PGI gets lost under the

RG-�ow, already at the level of tree diagrams.

However, the somewhat weaker property of PC is maintained under the RG-�ow;

more pre
isely we will prove that

[

Q,S[L]
]

⋆
≈ 0 ⇒

[

Q,S[zρ(L)]
]

⋆
≈ 0 . (76)

Hen
e, at least in this weak form, BRST-invarian
e of the time-ordered produ
ts is stable

under the RG-�ow. We point out that (76) is a model-independent result; only rather

weak assumptions are needed, whi
h will be given in the 
ourse of the proof.
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Constru
tion of zρ(L): to prove (76), we need to understand pre
isely how zρ(L)
is 
onstru
ted. We use the formalism of [DF04℄ (see also [BDF09℄), in parti
ular we

apply the Main Theorem [DF04, HW03℄: assuming that S ful�lls the axioms of Epstein-

Glaser renormalization, this holds also for the s
aled time-ordered produ
ts σρ ◦S ◦σ−1
ρ ;

therefore, there exists a unique map Zρ ≡ Zρ,m from the spa
e of lo
al intera
tions into

itself su
h that

7

σρ ◦ Sρ−1
m

◦ σ−1
ρ = Sm ◦ Zρ,m (77)

(the lower index m on S and Zρ denotes the masses of the underlying ⋆-produ
t, i.e. the
masses of the Feynman propagators).

In addition Zρ is of the following form [DF04, Prop. 4.3℄: let P be the spa
e of lo
al

�eld polynomials, h ∈ D(R4) and A(h) =
∫

dx A(x)h(x) for A ∈ P. Given Zρ, there

exist linear and symmetri
 maps dρn,a : P⊗n → P for n ≥ 2, a ≡ (a1, . . . , an) ∈ (N4
0)

n
,

su
h that

Zρ(A(h)) = A(h) +

∞
∑

n=2

1

n!

∑

a

∫

dx dρn,a(A
⊗n)(x)

n
∏

l=1

(∂alh(x)) . (78)

The expressions dρn,a(A⊗n) are uniquely determined if one requires dρn,a(A⊗n) ∈ Pbal,

where Pbal ⊂ P is the subspa
e of �balan
ed �elds�, de�ned in [DF04℄.

Applying (78) to A(h) = iL(g)/~ = (i/~)
∑

j=1,2

∫

dx (κg(x))j Lj(x) (13), we get

Zρ(iL(g)/~) = iL(g)/~+

∞
∑

n=2

in

n! ~n

∑

a

∑

j1,...,jn=1,2

κj1+···+jn

·
∫

dx dρn,a(Lj1 ⊗ · · · ⊗ Ljn)(x)
n
∏

l=1

∂al(g(x))jl . (79)

In view of the adiabati
 limit and ∂gε(x) = O(ε), we 
ut o� the terms with derivatives

of g:
Zρ(iL(gε)/~) = i zρ(L)(gε) + O(ε) , (80)

where

zρ(L)(g) =
1

~

(

L(g) +
∞
∑

n=2

in−1

n! ~n−1

∑

jl=1,2

∫

dx dρn,0(Lj1 ⊗ · · · ⊗ Ljn)(x) (κg(x))
j1+···+jn

)

.

(81)

Hen
e, zρ(L)(g) is indeed of the form (72) with

zρ k(L) = Lk +

k
∑

n=2

in−1

n! ~n−1

∑

j1+···+jn=k

dρn,0(Lj1 ⊗ · · · ⊗ Ljn) , (82)

7

We use the 
onvention for Zρ given in [BDF09℄, whi
h di�ers by fa
tors i from the de�nition Z̃ρ(F ) :=
Dρ(e

F
⊗) in [DF04℄, namely: Zρ(iF ) = i Z̃ρ(F ) .
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where Lk := 0 for k ≥ 3. Finally, zρ(L) is obtained from (82) by means of (71). From

(72) and (80) we see that zρ k(L) is uniquely determined up to the addition of terms

∂aA, |a| ≥ 1, A ∈ P � as 
laimed in (19).

From (80) and (multi-)linearity of the time-ordered produ
ts, we 
on
lude that the

adiabati
 limit of (77) applied to iL(g) gives indeed (18):

σρ(Sρ−1
m
[σ−1

ρ (Lm)]) := lim
ε↓0

σρ ◦ Sρ−1
m

◦ σ−1
ρ (iLm(gε)) = lim

ε↓0
Sm

(

Zρ(iL
m(gε))

)

= lim
ε↓0

Sm

(

i zρ(L
m)(gε)

)

=: Sm[zρ(L
m)] . (83)

Here we assume that Sm(iL(g)) is renormalized su
h that the adiabati
 limit ε ↓ 0 exists

and is unique for σρ ◦ Sρ−1
m

◦ σ−1
ρ (iL(gε)) for all ρ > 0; hen
e, this limit exists also for

S
(

i zρ(L)(gε)
)

.

Proof of stability of PC (76): by using the Main Theorem, the relations

σ−1
ρ (Lm(g)) = Lρ−1

m(g1/ρ) ( again gλ(x) := g(λx) ) (84)

and

σρ(F ⋆ρ−1
m

G) = σρ(F ) ⋆m σρ(G) , ρ σρ ◦Qρ−1
m

= Qm , (85)

we obtain

[Qm, Sm(Zρ(iL
m(gε)))]⋆m = [Qm, σρ ◦ Sρ−1

m
(iLρ−1

m(gε/ρ))]⋆m

= ρ σρ

(

[Qρ−1
m
, Sρ−1

m
(iLρ−1

m(gε/ρ))]⋆ρ−1
m

)

. (86)

Now, assuming that Sm(iLm(g)) ful�lls PC (65) for all values m,mH > 0 of the masses,

we 
on
lude that the adiabati
 limit ε ↓ 0 of the last expression in (86) vanishes. (Here

we use that it does not matter whether we perform the adiabati
 limit with g or g1/ρ,
sin
e it is unique.) With that and with (80) we obtain the assertion (76):

0 ≈ lim
ε↓0

[Q,S(Zρ(iL(gε)))]⋆ = lim
ε↓0

[Q,S(i zρ(L)(gε))]⋆ =
[

Q,S[zρ(L)]
]

⋆
. (87)

Completion of the derivation of the form of zρ(L): having given the 
onstru
-

tion of zρ(L) (82) (see also Se
t. 5 of [DF04℄), we are able to explain why on the r.h.s. of

(19) pre
isely these �eld monomials appear and no others:

• ea
h term appearing in zρ(L) is Lorentz invariant, has ghost number = 0 and its

mass dimension is ≤ 4 (see formula (5.5) in [DF04℄).

• Sin
e the only intera
tion term 
ontaining ũu is mũuϕ, ea
h term in (zρ(L) − L)
whi
h is bilinear in the ghost �elds has a fa
tor m2

and, hen
e, its mass dimension

is ≤ 2. This ex
ludes a ∂ũ ∂u-term and non-trivial trilinear and quadrilinear terms


ontaining ũu.

• The property that L is even under the �eld parity transformation (3) goes over to

ea
h diagram 
ontributing to S(iL(g)) and, hen
e, ea
h term appearing in zρ(L)
has also this property. This redu
es the number of possible terms in zρ(L) quite
strongly.
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• To dis
uss the appearan
e of one-leg terms

∑

a ca ∂
aφ in zρ(L) (where φ = Aµ, B, ϕ

and ca ∈ C), we write (77) to n-th order, by using the 
hain rule:

Z
(n)
ρ,m

(

L(gε)
⊗n

)

=σρ ◦ Tnm/ρ

(

(σ−1
ρ L(gε))

⊗n
)

− Tnm

(

L(gε)
⊗n

)

−
∑

P∈Part({1,...,n}, n>|P |>1

T|P |m
(

⊗I∈PZ
|I|
ρ,m(L(gε)

⊗|I|)
)

, (88)

where Z
(n)
ρ := Z

(n)
ρ (0) is the n-th derivative of Zρ(F ) at F = 0 and the two terms

with |P | = n and |P | = 1, resp., are expli
itly written out. Taking (79) into

a

ount, we see that ea
h one-leg term appearing on the r.h.s. of (88) is a sum of

terms of the form

∫

dx1 . . . dxk G1(εx1) . . . Gk(εxk)
∑

b

∂bφ(xk)tb(x1 − xk, . . . , xk−1 − xk) , (89)

where k = n or k = |P |, the testfun
tions Gj are of the form Gj(x) =
∏nj

l=1 ∂
ajlg(x)

and ta = ω0

(

Tk(. . .)
)

is the va
uum expe
tation value of a time-ordered produ
t.

The expression (89) 
an be written as an integral in momentum spa
e: up to a

power of (2π) as prefa
tor it is equal to

∫

dp1 . . . dpk Ĝ1(p1) . . . Ĝk(pk) φ̂(−ε(p1 + . . .+ pk))

·
∑

b

(−iε(p1 + · · · + pk))
b t̂b(−εp1, . . . ,−εpk−1) . (90)

From [EG73℄ we know that t̂b(p) is analyti
 in a neighbourhood of p = 0, sin
e all
�elds are massive. Hen
e, in the adiabati
 limit ε ↓ 0 of (90), the (|b| > 0)-terms

vanish and, hen
e, do not 
ontribute to zρ(L).

To avoid the appearan
e of a (b = 0)-term in zρ(L), we �rst mention that we only

have to 
onsider the 
ase in whi
h the singular order of t := tb=0 is ω(t) ≥ 0;8 for

the following reason: a term with ω(t) < 0 is non-lo
al, i.e. supp(t) 6⊂ {0}. But

the l.h.s. of (88) is lo
al; hen
e, the (ω(t) < 0)-terms appearing on the r.h.s. of

(88) must 
an
el, when restri
ted to D(R4k \ ∆k) (where ∆k := {(x1, . . . , xk) ∈
R

4k |x1 = . . . = xk}). Sin
e for these terms, the extension to D(R4k) is unique,

they 
an
el also on D(R4k).

Obviously, the �nite renormalization

t̂(p) 7→ t̂(p)− t̂(0) , t ≡ tb=0 , (91)

8

For t ∈ D
′(Rl) or t ∈ D

′(Rl \ {0}), the singular order is de�ned as ω(t) := sd(t) − l, where

sd(t) is Steinmann's s
aling degree of t, whi
h measures the UV-behaviour of t [Ste71℄. In the Epstein-

Glaser framework, renormalization is the extension of a distribution t◦ ∈ D
′(Rl \ {0}) to a distribution

t ∈ D
′(Rl), with the 
ondition that sd(t) = sd(t◦). In the 
ase sd(t◦) < l, the extension is unique, due

to the s
aling degree requirement, and obtained by �dire
t extension�, see [BF00, Theorem 5.2℄, [DF04,

Appendix B℄ and [DFKR14, Theorem 4.1℄.
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whi
h is admitted due to ω(t) ≥ 0, removes the possible one-leg terms in zρ(L).
This renormalization preserves PGI, be
ause of

[Q,φ] ≈ i ∂µφ
µ
1 , where φµ

1 = 0, −∂µu
m , gµνu for φ = ϕ, B, Aν , resp.; (92)

in detail:

[Q , t̂(0)φ(xk) δ(x1−xk, . . . , xk−1−xk)] ≈ i

k
∑

l=1

∂xl
µ

(

t̂(0)φµ
1 (xk) δ(x1−xk, . . . , xk−1−xk)

)

.

(93)

We point out that when we perform the �nite renormalization (91) for a t belonging
to Tnm, then the 
orresponding t belonging to σρ◦Tnm/ρ◦(σ−1

ρ )⊗n
is automati
ally

modi�ed by pre
isely the same �nite renormalization, be
ause the renormalization


ondition t̂(0) = 0 is s
aling invariant.

If one does not perform the �nite renormalization (91), one-leg terms may appear

in zρ(L); however, only in se
ond and higher loop orders. Namely, they ful�ll (23)

with q0 = 0 and n := r0 + s ≥ 1, hen
e they appear in (19) as

zρ(L) = ~
−1

(

κ−1
∞
∑

n=2

e(n)ρ (κ2~)n φ+ . . .
)

. (94)

6 Geometri
al interpretation at all s
ales to 1-loop order

In this se
tion we explain, how one 
an ful�ll the geometri
al interpretation at all s
ales,

i.e. the equations (36)-(46), on 1-loop level. For this purpose we derive a lot of results

about the 1-loop 
oe�
ients e
(1)
ρ (20) of the running intera
tion zρ(L) (19). Throughout

we 
hoose Feynman gauge Λ = 1 for the initial U(1)-Higgs model. The 
onventions for

the signs and fa
tors i, 2π are �xed in (207).

6.1 The two ways to renormalize

Renormalizing a 1-loop Feynman diagram, there are two 
ru
ially di�erent methods to


hoose the renormalization mass s
ale. We explain this in terms of the 
omputation of

the 1-loop 
oe�
ient c
(1)
2ρ , whi
h is the one that is most easily to 
ompute.

Computation of c
(1)
2ρ : we re
all that Zρ

(

i L(g)/~
)

is a formal Taylor series,

Zρ

(

i L(g)/~
)

= i L(g)/~ +

∞
∑

n=2

in

~n n!
Z(n)
ρ (L(g)⊗n) ; (95)

a

ording to (88) the (n = 2)-term is obtained by

Z(2)
ρ (Lm(g)⊗2) = σρ ◦ T2 ρ−1

m

(

σ−1
ρ (Lm(g))⊗2

)

− T2m

(

Lm(g)⊗2
)

. (96)
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To 
ompute c
(1)
2ρ we sele
t the term with external legs ũu, whi
h is ∼ κ2:

T2m

(

L1(x1)⊗ L1(x2)
)

= m2
(

tũu
m
(x1 − x2) ũ(x1)u(x2) + (x1 ↔ x2) + ...

)

, (97)

where

tũu
m
(x1 − x2) := ω0

(

T2m(u(x1)ϕ(x1)⊗ ũ(x2)ϕ(x2))
)

(98)

and ω0 denotes the va
uum state. The 
orresponding 
ontribution to Zρ(~
−1i L(g)) reads

Zρ(i L(g)/~) =~
−1i L(g) − κ2 m2

~2

∫

dx1 dx2 g(x1)g(x2)

·
(

ρ4 tũuρ−1
m
(ρ(x1 − x2))− tũu

m
(x1 − x2)

)

ũ(x1)u(x2) + . . . . (99)

We will see that

ρ4 tũuρ−1
m
(ρy)− tũu

m
(y) = ~

2 Cfish log ρ δ(y) (100)

with a 
onstant Cfish ∈ iR. Inserting (100) into (99) and using (79), (82), we end up

with

c
(1)
2ρ = −iCfish log ρ . (101)

To derive (100) and to 
ompute the number Cfish, we start with the unrenormalized

version of tũu
m
: the restri
tion of tũu

m
(y) to D(R4 \ {0}) agrees with

tũu ◦
m

(y) := ~
2 tm,mH

(y) tm,mH
(y) := ∆F

m(y)∆F
mH

(y) ∈ D
′(R4 \ {0}) , (102)

where ∆F
m is the Feynman propagator to the mass m. Due to ρ2 ∆F

ρ−1m(ρy) = ∆F
m(y),

the unrenormalized distribution tũu ◦
m

s
ales homogeneously,

ρ4 tũu ◦
ρ−1

m
(ρy) = tũu ◦

m
(y) . (103)

The question is, whether this property 
an be maintained in the pro
ess of renormaliza-

tion (i.e. extension, see footnote 8).

To 
onstru
t the extension tũu
m

∈ D′(R4) we use the s
aling and mass expansion

(shortly 'sm-expansion') [Düt15℄; in the present 
ase this means that we split tũu ◦
m

(y)
into the 
orresponding massless distribution −~

2t◦fish(y) and a remainder r◦
m
(y), whi
h is

of order r◦
m

= O(m2,m2
H):

tũu ◦
m

(y) = ~
2t◦fish(y) + r◦

m
(y) , t◦fish(y) := (DF (y))2 , sd(t◦fish) = sd(t◦

m
) = 4 , (104)

where DF := ∆F
m=0 is the massless Feynman propagator. The remainder r◦

m
has a unique

extension rm ∈ D′(R4) with sd(rm) = sd(r◦
m
) = 2, whi
h is obtained by dire
t extension;

it preserves the homogeneous s
aling (103).

The unrenormalized massless part t◦fish s
ales homogeneously in y, but this property

annot be preserved: the extension needs a mass s
aleM > 0 and with that homogeneous

s
aling in y is broken at least by a logarithmi
 term. All extensions with su
h a minimal

breaking 
an be obtained by di�erential renormalization:

tMfish(y) =
−1

64π4
�y

( log(−M2(y2 − i0))

y2 − i0

)

∈ D
′(R4) , M > 0 arbitrary, (105)
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see e.g. appendix B in [DF04℄.

The two methods to 
hoose the renormalization mass s
ale. Whether ho-

mogeneous s
aling in y and (m−1,m−1
H ) (103) is maintained depends on the following


hoi
e:

(A) If we 
hoose forM a �xed mass s
ale, whi
h is independent ofm,mH , homogeneous

s
aling is broken:

ρ4 tũuρ−1
m
(ρy)− tũu

m
(y) =~

2
(

ρ4 tMfish(ρy)− tMfish(y)
)

=~
2 Cfish log ρ δ(y) , Cfish :=

−i

8π2
, (106)

by using �( 1
y2−i0

) = i 4π2 δ(y) . The breaking term is unique, i.e. independent

of M ; therefore, we may admit di�erent values of M for di�erent t-distributions,
however, all M 's must be independent of m,mH .

(B) Homogeneous s
aling (103) 
an be maintained by 
hoosing M := α1m + α2mH ,

where (α1, α2) ∈ (R2 \ {(0, 0)}) may be fun
tions of

m
mH

:

ρ4 tũuρ−1
m
(ρy)− tũu

m
(y) = −~

2
(

ρ4 tρ
−1M

fish (ρy)− tMfish(y)
)

= 0 . (107)

With that, tũu
m

does not 
ontribute to the RG-�ow: c
(1)
2ρ = 0.

Remark 6.1. When using the renormalization method (B), we have to weaken a bit

the sm-expansion axiom given in [Düt15℄. In detail: among other 
onditions, this axiom

requires that the term l = 0 in the sm-expansion

9

tm(y) =
L
∑

l=0

∑

l1,l2≥0, l1+l2=l

m2l1m2l2
H u

(m)
l1,l2

(y) + r
(m)
2L+2(y) ,

i.e. u
(m)
0,0 , is independent of m. Only the distributions u

(m)
l1,l2

with l1 + l2 ≥ 1 may be

polynomials in (log m
M1

, log mH

M1
), where M1 > 0 is a �xed mass s
ale. From (104)-(105)

we expli
itly see that this 
ondition is violated by the method (B); e.g. for M := m we

have

�y

( log(−m2(y2 − i0))

y2 − i0

)

= �y

( log(−M2
1 (y

2 − i0))

y2 − i0

)

+ 8iπ δ(y) log m
M1

.

So, when using method (A), we keep the original version of the sm-expansion axiom; but,

when using method (B), we admit that also u
(m)
0,0 is a polynomial in (log m

M1
, log mH

M1
).

Pro
eeding analogously to [Düt15℄, one veri�es that using method (B) and the indu
tive

Epstein-Glaser 
onstru
tion of time-ordered produ
ts, this weakened version of the sm-

expansion axiom 
an be ful�lled to all orders of perturbation theory.

9

In 4 dimensions only even powers of m and mH appear.

22



Conje
ture: If we renormalize all t-distributions in all indu
tive steps of the Epstein-
Glaser 
onstru
tion by the 
hoi
e (B), i.e. we use as renormalization mass s
ale through-

out M := α1m + α2mH (where (α1, α2) are as above, di�erent values of (α1, α2) for

di�erent diagrams are admitted), then the RG-�ow is trivial:

zρ(L) = L/~ ∀ρ > 0. (108)

Proof. We prove this Conje
ture for massless, primitive divergent diagrams.

10

This 
ov-

ers all massive 1-loop diagrams with singular order ω = 0 or 1, be
ause for these dia-

grams, only the leading term of the sm-expansion, whi
h is the 
orresponding massless

distribution, 
ontributes to the RG-�ow. However, note that also the (ω = 2)-diagrams

(181)-(182) are 
overed, be
ause their s
aling behaviour 
an be tra
ed ba
k to the s
aling

behaviour of the massless �sh-diagram, see Appendix A.

Let y := (y1, . . . , yl), Yj := y2j − i0; for the 
onsidered diagrams the unrenormalized

distribution t◦ ∈ D′(R4l \ {0}) s
ales homogeneously:

ρω+4l t◦(ρy) = t◦(y) . (109)

We work with an analyti
 regularization [Hol08℄:

tζ◦(y) := t◦(y) (M2lY1 . . . Yl)
ζ , (110)

where ζ ∈ C \ {0} with |ζ| su�
iently small, and M > 0 is a renormalization mass s
ale.

tζ◦ s
ales also homogeneously � by the regularization we gain that the degree (of the

s
aling) is (ω+4l− 2lζ), whi
h is not an integer. Therefore, the homogeneous extension

tζ ∈ D′(R4l) is unique and 
an be obtained by di�erential renormalization [DFKR14,

Se
t. IV.D℄:

tζ(y) =
1

∏ω
j=0(j − ω + 2lζ)

∑

r1...rω+1

∂yrω+1
. . . ∂yr1

(

yr1 . . . yrω+1 t
ζ◦(y)

)

, (111)

where

∑

r ∂yr(yr . . .) :=
∑

r ∂
yr
µ (yµr . . .) and the overline denotes the dire
t extension. In

order that the limit ζ → 0 exists, we subtra
t from the Laurent series tζ its prin
iple

part. A

ording to [DFKR14, Corollary 4.4℄ the term ∼ ζ0 (�minimal subtra
tion�) is an

admissible extension tM of t◦:

tM (y) =
(−1)ω

ω!

∑

r1...rω+1

∂yrω+1
. . . ∂yr1

[ 1

2l

(

yr1 . . . yrω+1 t
◦(y) log(M2lY1 . . . Yl)

)

+ (
ω
∑

j=1

1

j
)
(

yr1 . . . yrω+1 t
◦(y)

)]

, (112)

10

That is, massless diagrams Γ with singular order ω(Γ) ≥ 0 (see footnote 8) whi
h do not 
ontain

any subdiagram Γ1 ⊂ Γ with less verti
es and with ω(Γ1) ≥ 0. For example, the setting sun diagram is

a primitive divergent 2-loop diagram.

23



see [DFKR14, formula (104)℄. The se
ond term is of the form

∑

|a|=ω Ca ∂
aδ(y). The

�rst term breaks homogeneous s
aling in y logarithmi
ally, but we expli
itly see that

ρω+4l tρ
−1M (ρy) = tM (y) ; (113)

this proves the Conje
ture.

Remark 6.2. We only admit renormalizations of the initial U(1)-Higgs model whi
h

ful�ll PGI. This requirement is neither in 
on�i
t with method (A) nor with method

(B), for the following reason: we require PGI only for the initial model, i.e. only at one

�xed s
ale. Now, working at one �xed s
ale, the renormalization 
onstant M appearing

in (105) may have any value M > 0 for both methods (A) and (B) and, hen
e, one may


hoose it su
h that PGI is satis�ed. These methods only pres
ribe how M behaves under

a s
aling transformation: using (A) it remains un
hanged, using (B) it is also s
aled:

M 7→ ρ−1M .

Computation of b
(1)
0ρ : The purpose of this 
omputation is to illustrate the methods

(A) and (B) for a 1-loop 
oe�
ient having 
ontributions from more than one Feynman

diagram; in addition this 
omputation is also a preparation for the following Subse
tion.

To 
ompute b
(1)
0ρ we have to take the following terms of T2m

(

L1(x1) ⊗ L1(x2)
)

into

a

ount:

t∂B∂B
mλν (x1 − x2) ∂

λB(x1)∂
νB(x2) +

(

tB∂B
m ν (x1 − x2)B(x1)∂

νB(x2) + (x1 ↔ x2)
)

, (114)

where (x1 ↔ x2) refers only to the tB∂B
-term and

t∂B∂B
mλν (x1 − x2) := ω0

(

T2m(ϕAλ(x1)⊗ ϕAν(x2))
)

,

tB∂B
m ν (x1 − x2) := −ω0

(

T2m(∂λϕAλ(x1)⊗ ϕAν(x2))
)

. (115)

The unrenormalized t-distributions read

t∂B∂B ◦
mλν (y) = −~

2 gλν ∆
F
m(y)∆F

mH
(y) ∈ D

′(R4 \ {0}) ,
tB∂B ◦
m ν (y) = ~

2∆F
m(y) ∂ν∆

F
mH

(y) ∈ D
′(R4 \ {0}) ; (116)

both s
ale homogeneously, e.g. ρ5 tB∂B ◦
ρ−1

m ν(ρy) = tB∂B ◦
m ν (y).

We renormalize both diagrams by using method (A). Sin
e t∂B∂B ◦
essentially agrees

with tũu ◦
, we know from (106) that

ρ4 t∂B∂B
ρ−1

mλν(ρy)− t∂B∂B
mλν (y) = −~

2 gλν Cfish log ρ δ(y) . (117)

To extend tB∂B ◦
m ν , we use again the sm-expansion

tB∂B ◦
m ν (y) = v◦ν(y) + r◦

m ν(y) , v◦ν(y) := ~
2 DF (y) ∂νD

F (y) =
~
2

2
∂νt

◦
fish(y) , (118)
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the statements in the pre
eding example about the remainder r◦
m ν and its extension

rm ν ∈ D′(R4) hold true also in the present 
ase, with the ex
eption that now sd(r◦
m ν) =

3. All extensions of v◦ν with a minimal (i.e. logarithmi
) breaking of homogeneous s
aling

in y 
an be obtained by di�erential renormalization:

vMν (y) =
~
2

2
∂νt

M
fish(y) ∈ D

′(R4) , M > 0 arbitrary. (119)

Choosing M a

ording to method (A) we get

ρ5 tB∂B ◦
ρ−1

m ν(ρy)− tB∂B ◦
m ν (y) = ρ5 vMν (ρy)− vMν (y) =

~
2

2
Cfish log ρ ∂νδ(y) . (120)

Taking (96) into a

ount we see that the terms (114) give

Z(2)
ρ (L(g)⊗2) = Cfish κ

2
~
2 log ρ

∫

dx1dx2 g(x1)g(x2)

·
(

∂νδ(x1 − x2)B(x1)∂
νB(x2)− gλν δ(x1 − x2) ∂

λB(x1)∂
νB(x2) + . . .

)

+ . . . ,

(121)

whi
h yields

zρ(L) = ~
−1

(

L− iCfish ~κ
2

2
log ρ (1 + 1) (∂B)2 + . . .

)

(122)

by using (95) and (82). We end up with

b
(1)
0ρ = −2i Cfish log ρ =

−1

4π2
log ρ . (123)

The 
onje
ture 
an expli
itly be veri�ed: renormalizing tB∂B ◦
or t∂B∂B ◦

by means of

method (B) the pertinent expressions (117) and (120), respe
tively, vanish. Hen
e, also

the values b
(1)
0ρ = −1

8π2 log ρ and b
(1)
0ρ = 0 
an appear.

Note that

ω0

(

T2m(A∂ϕ(x1)⊗A∂ϕ(x2))
)

B(x1)B(x2)


ontributes only to b
(1)
1ρ and not to b

(1)
0ρ , see (212) and (217).

6.2 Equality of 
ertain 
oe�
ients

In this subse
tion we explain how some of the equations (36)-(46) (whi
h express the

geometri
al interpretability at all s
ales) 
an be ful�lled on 1-loop level, by renormalizing

su
h that 
ertain Feynman diagrams, whi
h go over into ea
h other by ex
hanging B ↔
ϕ for some lines, give the same 
ontribution to the RG-�ow (up to possibly di�erent


ombinatorial fa
tors).

How to obtain c
(1)
0ρ = b

(1)
0ρ : The terms 
ontributing to c

(1)
0ρ are obtained from (114)-

(115) by ex
hanging B ↔ ϕ throughout. The 
orresponding unrenormalized distributions
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t∂ϕ∂ϕ ◦
and tϕ∂ϕ ◦

are given by (116) with ∆F
mH

repla
ed by ∆F
m. However, this modi-

�
ation does not show up in the pertinent massless parts −gλν t
◦
fish (104) and v◦ν (118),

respe
tively. Sin
e only the latter 
ontribute to the RG-�ow, we 
on
lude that

c
(1)
0ρ = b

(1)
0ρ (124)


an be obtained in the following way:

(⋆) Corresponding t-distributions (or more pre
isely their massless parts) have to be

renormalized all with method (A) or all with method (B). For the various t-distributions
we may 
hoose di�erent renormalization mass s
ales M when using method (A);

or di�erent linear 
ombinations M = α1m+ α2mH when using method (B).

Taking Remark 6.2 into a

ount, we see that this renormalization pres
ription is


ompatible with PGI of the initial U(1)-Higgs model.

Having obtained (124), the equations (39), (41) and (43)-(44) simplify to

l
(1)
3ρ = l

(1)
4ρ , l

(1)
5ρ = l

(1)
6ρ , l

(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ (125)

on 1-loop level.

Obtaining analogously l
(1)
1ρ = l

(1)
2ρ (37): There are 
ontributions to l

(1)
1ρ 
oming

from T2(L1 ⊗L2), more pre
isely only the part L1
1 := BA∂ϕ−ϕA∂B of L1 
ontributes.

These terms read

2
(

ω0

(

T2

(

AλB(x1)⊗AνB(x2)
)

)

∂λϕ(x1)A
ν(x2)B(x2)

− ω0

(

T2

(

A∂B(x1)⊗AνB(x2)
)

)

ϕ(x1)A
ν(x2)B(x2)

)

+ (x1 ↔ x2) . (126)

The 
orresponding 
ontributions to l
(1)
2ρ are obtained by ex
hanging B ↔ ϕ through-

out. Pro
eeding similarly to the derivation of (124) (in parti
ular the renormalization

pres
ription (⋆) is used), we �nd that the 
ontributions of these terms to l
(1)
1ρ and l

(1)
2ρ

agree.

Note that similarly to (214)-(215), there is neither a 
ontribution to l
(1)
1ρ nor to l

(1)
2ρ


oming from the following T2(L
1
1 ⊗ L2)-term:

− m2
H

m2
ω0

(

T2

(

(B∂λϕ− ϕ∂λB)(x1)⊗Bϕ(x2)
)

)

Aλ(x1)B(x2)ϕ(x2) + (x1 ↔ x2) . (127)

The 
ontributions to l
(1)
1ρ , l

(1)
2ρ 
oming from T3(L

⊗3
1 ) use only the part L1

1 of L1, the

relevant terms of T3(L
1
1
⊗3

) are triangle diagrams with 2 or 3 derivatives, they are of the

form

(

(

vλν11 (y1, y2) + rλν11 (y1, y2)
)

Aλ(x1)∂νϕ(x2)B(x3)

−
(

vλν12 (y1, y2) + rλν12 (y1, y2)
)

Aλ(x1)∂νB(x2)ϕ(x3)

+
(

vλ21(y1, y2) + rλ21(y1, y2)
)

Aλ(x3)B(x1)ϕ(x2)

−
(

vλ22(y1, y2) + rλ22(y1, y2)
)

Aλ(x3)ϕ(x1)B(x2)
)

+
(

5permutations ofx1, x2, x3

)

,

(128)
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where yj := xj − x3 and the �rst two lines are obtained from ea
h other by ex
hanging

B ↔ ϕ throughout and the same for the third and fourth lines. Moreover, we have

inserted the sm-expansion. The remainders rkl (k, l ∈ {1, 2}) do not 
ontribute to the

RG-�ow, sin
e they are renormalized by dire
t extension. The unrenormalized versions

of the massless parts vkl agree pairwise: v◦k := v◦k1 = v◦k2 ∈ D′(R8 \ {0}); expli
itly they

read

vλν ◦
1 (y1, y2) = ~

3
(

−∂νDF (y1)D
F (y2) ∂

λDF (y1 − y2) + ∂λ∂νDF (y1)D
F (y2)D

F (y1 − y2)
)

,

vλ ◦
2 (y1, y2) = −2~3 ∂λ∂νD

F (y1) ∂
νDF (y2)D

F (y1 − y2) . (129)

Obviously these v◦-distributions s
ale homogeneously in (y1, y2). Renormalization breaks

this symmetry by terms of the form

ρ8 vλν1l (ρy1, ρy2)− vλν1l (y1, y2) = ~
3 log ρ C1 g

λν δ(y1, y2) ,

ρ9 vλ2l(ρy1, ρy2)− vλ2l(y1, y2) = ~
3 log ρ (C21∂

λ
y1 + C22∂

λ
y2)δ(y1, y2) , (130)

where Lorentz 
ovarian
e is taken into a

ount.

11

A

ording to the pres
ription (⋆) we
have to 
hoose the renormalization mass s
ales for vk1 and vk2 by the same method.

Inserting these results into

Z(3)
ρ (Lm

1 (g)⊗3) = σρ ◦ T3 ρ−1
m

(

σ−1
ρ (Lm

1 (g))⊗3
)

− T3m

(

Lm

1 (g)⊗3
)

+ . . . , (131)

where Lm

1 (g) :=
∫

dx Lm

1 (x) g(x), we obtain the following 
ontributions to l
(1)
1ρ and l

(1)
2ρ ,

respe
tively: using method (A) throughout, we get

l
(1)
1ρ = (−C1 − C21 + C22 − 3i Cfish) log ρ = l

(1)
2ρ , (132)

where the Cfish-term is the 
ontribution from (126). When using (B) for v◦1 or v◦2 (or for

both), the 
onstant C1 or (−C21 + C22), resp., (or both) is/are repla
ed by zero, and

analogously for the 
ontribution from (126). In all these 
ases l
(1)
1ρ = l

(1)
2ρ remains true.

Obtaining analogously l
(1)
5ρ = l

(1)
6ρ and l

(1)
7ρ = l

(1)
9ρ (125): the terms 
ontributing to

l
(1)
5ρ and l

(1)
7ρ are listed in Appendix B. The 
orresponding terms 
ontributing to l

(1)
6ρ and

l
(1)
9ρ , respe
tively, are obtained by repla
ing B ↔ ϕ throughout. Pro
eeding as above, the

renormalization pres
ription (⋆) implies l
(1)
5ρ = l

(1)
6ρ and l

(1)
7ρ = l

(1)
9ρ .

Obtaining analogously l
(1)
3ρ = l

(1)
4ρ and l

(1)
7ρ = l

(1)
8ρ (125): here, the 
ombinatori
s

is somewhat involved � there is not a (1 : 1)-
orresponden
e of terms. In Appendix

B these two equations are veri�ed by expli
it 
omputation of the pertinent 
oe�
ients,

under the assumption that all 
ontributing terms are renormalized by method (A). From

the 
al
ulations given there, we see that l
(1)
3ρ = l

(1)
4ρ and l

(1)
7ρ = l

(1)
8ρ hold true, also if the

method (B) is used for 
orresponding terms. For example, if we swit
h to method (B) in

(226) and (231), C1△ is repla
ed by zero in (228) and (233), but l
(1)
3ρ = l

(1)
4ρ remains true.

11

In terms of the invariants Cj△ 
omputed in Appendix A, we have C1 = −C1△ + C2△ = −2C1△.

The 
omputation of the invariants C21 and C22 is a more di�
ult task � for our purposes, we do not

need to know these numbers.
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6.3 Vanishing of the A
4
-term due to maintenan
e of PC

In this short subse
tion we explain, why the identity (45) holds true to 1-loop order.

A byprodu
t of the 
al
ulations in Appendix C is the following (see Remark C.2):

working out stability of PC under the RG-�ow,

lim
ε↓0

[Q,S(i zρ(L)(gε))]⋆ ≈ 0 , (133)

to order κ4, we obtain � among other relations � the equation

0 ≈ l
(1)
11ρ lim

ε↓0

∫

dx (gε(x))
2 [Q, (A2)2(x)] = l

(1)
11ρ 4i lim

ε↓0

∫

dx (gε(x))
2 A2A∂u(x) . (134)

Using results of Appendix A of [DS00℄ we may argue as follows: sin
e there does not

exist a lo
al �eld polynomial W µ
su
h that A2A∂u = ∂µW

µ
, the equation (134) implies

l
(1)
11ρ = 0 . (135)

6.4 Changing the running intera
tion by �nite renormalizations

To 
ontinue the ful�llment of the identities (36)-(46) on 1-loop level, we take into a
-


ount that the following �nite renormalizations are admitted by the axioms of 
ausal

perturbation theory [EG73, DF04℄ and that they preserve PGI of the initial model: to

T2

(

L1(x1)⊗ L1(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M

(

α1 (∂ϕ)
2(x1) + α2 m

2
H ϕ2(x1) + α3 F

2(x1) + α4 (∂A +mB)2

+ α5

(

−m2B2(x1) + (∂B)2(x1)
)

+ α6

(

m2A2(x1)− (∂A)2(x1)
)

+ α7 m
2
(

−2 ũu(x1) +A2(x1)−B2(x1)
)

)

, (136)

where α1, . . . , α7 ∈ C are arbitrary.

The 
ompatibility with PGI is obvious for the α1-, α2-, α3- and α4-term, be
ause the


ommutator of Q with the pertinent �eld polynomials is ≈ 0. For the other terms, the

PGI-relation

[Q,T2

(

L1(x1)⊗ L1(x2)
)

]⋆ ≈ i∂x1
ν T2

(

P ν
1 (x1)⊗ L1(x2)

)

+ (x1 ↔ x2) (137)

is maintained, if we simultaneously renormalize T2

(

P ν
1 (x1)⊗ L1(x2)

)

by adding

~
2 δ(x1 − x2) log

m
M

(

α5 2mu∂νB(x1) + (α6 + α7) 2m
2 Aνu(x1)

)

. (138)

Pro
eeding analogously to the 
omputation (95)-(101) of c
(1)
2ρ , we �nd that the renor-

28



malizations (136) modify the 1-loop 
oe�
ients e
(1)
ρ appearing in zρ(L) (19) as follows:

a
(1)
0ρ 7→ a

(1)
0ρ + 2i α3 log ρ , (139)

a
(1)
1ρ 7→ a

(1)
1ρ − i (α6 + α7) log ρ , (140)

a
(1)
2ρ 7→ a

(1)
2ρ + i (α4 − α6) log ρ , (141)

b
(1)
0ρ 7→ b

(1)
0ρ − i α5 log ρ , (142)

b
(1)
1ρ 7→ b

(1)
1ρ + i (α4 − α5 − α7) log ρ , (143)

b
(1)
2ρ 7→ b

(1)
2ρ + i α4 log ρ , (144)

c
(1)
0ρ 7→ c

(1)
0ρ − i α1 log ρ , (145)

c
(1)
1ρ 7→ c

(1)
1ρ + i α2 log ρ , (146)

c
(1)
2ρ 7→ c

(1)
2ρ − i α7 log ρ , (147)

the other 
oe�
ients remain un
hanged.

Remark 6.3. There are further, linearly independent (w.r.t. ≃) possibilities for �nite
renormalization whi
h preserves PGI:

• to T2

(

L1(x1)⊗ L1(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M β1

(

2 ∂ũ∂u(x1)− (∂A)2(x1) + (∂B)2(x1)
)

, (148)

sin
e [Q, (2 ∂ũ∂u− (∂A)2 + (∂B)2)]⋆ ≈ −2i ∂µ(∂A∂µu);

• to T2

(

L2(x1)⊗ L1(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M

(

β2
m2

H

2m
ϕ3(x1)

+ β3

[

mA2ϕ−mũuϕ+B(A∂ϕ)− ϕ(A∂B)− m2
H

2m
ϕ3 − m2

H

2m
B2ϕ

]

(x1)
)

,

(149)

sin
e [. . .] = L1 and [Q,L1]⋆ ≈ i ∂νP
ν
1 (P ν

1 is given in (70));

• to T2

(

L2(x1)⊗ L2(x2)
)

we may add

~
2 δ(x1 − x2) log

m
M β4

m2
H

4m2
ϕ4(x1) . (150)

However, the β1- and β3-renormalization add �by hand� novel kind of terms ∼ ∂ũ∂u
and ∼ mũuϕ, respe
tively, to (zρ(L) − L) (19) � therefore, we do not take them into

a

ount. And, even if we would admit a ∂ũ∂u- and a (mũuϕ)-term in (zρ(L) − L), the
β1- and β3-renormalization 
annot be used to ful�ll the 
ru
ial identities (155) or (151),

be
ause they do not 
hange a
(1)
2ρ − b

(1)
0ρ or l

(1)
3ρ − l

(1)
0ρ , respe
tively.

We may not use the β2- and β4-renormalization: they would destroy the relations

l
(1)
3ρ = l

(1)
4ρ and l

(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ sin
e they would modify only l

(1)
3ρ and l

(1)
7ρ , respe
tively.
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6.5 Geometri
al interpretation at all s
ales

There are two ne
essary 
onditions for the geometri
al interpretation at all s
ales, whi
h

are 
ru
ial, sin
e they 
annot be ful�lled by �nite renormalizations.

Veri�
ation of the �rst 
ru
ial ne
essary 
ondition: The 
ondition (47) reads

to 1-loop level

l
(1)
7ρ − l

(1)
3ρ = l

(1)
5ρ − l

(1)
0ρ . (151)

As dis
ussed in Remark 6.3, there is no possibility to ful�ll this equation by �nite renor-

malizations. Therefore, we investigate its validity by expli
it 
al
ulation: using the

renormalization method (A) for all 
ontributing terms, the results of Appendix B yield:

l
(1)
7ρ − l

(1)
3ρ

log ρ
= 4C1△ +

m2

m2
H

8 (iC2� −C2△) , (152)

l
(1)
5ρ − l

(1)
0ρ

log ρ
= 8C1△ − 4i C1� ; (153)

where 
an
ellations of �sh- with triangle-, �sh- with square- and triangle- with square-

diagrams are not used so far. Using now relations among the invariants Cj△ and Cj�

(derived in Appendix A), we �nd that (151) holds indeed true:

l
(1)
7ρ − l

(1)
3ρ = 4C1△ = l

(1)
5ρ − l

(1)
0ρ . (154)

The fa
t that we need 
an
ellations of square- and triangle-
ontributions shows that

(151) is of a deeper kind than the equalities derived in Se
t. 6.2.

The identity (151) holds also if 
ertain terms are renormalized by method (B), e.g. all


ontributing triangle and square-diagrams with (B) and all 
ontributing �sh diagrams

with (A), or vi
e versa.

A further example, for whi
h both sides of (151) vanish, is given below under the

subtitle �How to ful�ll BRST-invarian
e of the running Lagrangian�.

How to ful�ll the se
ond 
ru
ial ne
essary 
ondition: the 
ondition (46) reads

to 1-loop order

b
(1)
2ρ = 1

2

(

a
(1)
2ρ + b

(1)
1ρ − a

(1)
1ρ − b

(1)
0ρ

)

. (155)

Performing the �nite renormalizations (136), i.e. inserting (139)-(147) into (155), we �nd

that all αj drop out � that is, the 
ondition (155) 
annot be ful�lled by means of these

�nite renormalizations.

Inserting the expli
it values (123), (216) and (217) for the 
oe�
ients a
(1)
jρ , b

(1)
jρ , 
om-

puted by using method (A), we obtain

1

log ρ

(

1
2(a

(1)
2ρ + b

(1)
1ρ − a

(1)
1ρ − b

(1)
0ρ )− b

(1)
2ρ

)

= iCfish

(

(2− 1
4 + 1− 3) +

m2
H

m2
(12 − 1

4 ) +
m4

H

m4
(−1

2)
)

. (156)

Hen
e, using method (A) throughout, we have λ12ρ 6= 0, i.e. the geometri
al interpreta-

tion is violated by terms ∼ A∂B.

To ful�ll the 
ondition (155), we may pro
eed as follows: we use
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• method (B) for the terms (211)-(212) [i.e. b
(1)
1ρ ℄ and (208) [i.e. a

(1)
0ρ and part of a

(1)
1ρ ℄;

• and method (A) for (115) [i.e. b
(1)
0ρ ℄, (210) [i.e. part of a

(1)
1ρ ℄ and (213) [i.e. b

(1)
2ρ ℄.

With that the values (216)-(217) are modi�ed:

a
(1)
0ρ = 0 , a

(1)
1ρ = −4i Cfish log ρ and b

(1)
1ρ = 0 , (157)

and a
(1)
2ρ , b

(1)
0ρ , b

(1)
2ρ remain un
hanged.

Ful�lling the remaining 
onditions by �nite renormalizations: to 
omplete

the ful�llment of the identities (36)-(46) to 1-loop order, we show that we 
an rea
h by

�nite renormalizations that the numbers D1,D2,D3, de�ned by

D1 log ρ := l
(1)
1ρ − l

(1)
0ρ − 1

2

(

b
(1)
0ρ − a

(1)
1ρ

)

, (158)

D2 log ρ := l
(1)
3ρ − l

(1)
0ρ −

(

c
(1)
1ρ − a

(1)
1ρ

)

, (159)

D3 log ρ := l
(1)
5ρ − 2 l

(1)
0ρ + a

(1)
1ρ , (160)

vanish. For the 
oe�
ients e
(1)
ρ appearing in these de�nitions we use values whi
h ful�ll

the equations (37), (124), (125), (135), (151) and (155).

If c
(1)
1ρ , l

(1)
0ρ , l

(1)
3ρ and l

(1)
5ρ are renormalized by method (A) (see Appendix B) and a

(1)
1ρ

as in (157), we have D3 = 0 and D2 = 0.12 However, to be as general as possible, we

admit arbitrary values of D1,D2,D3 in the following.

Using (139)-(147), we see that we have to solve the following system of linear equa-

tions:

D1 +
i

2
(α5 − (α6 + α7)) = 0

D2 − i(α2 + (α6 + α7)) = 0

D3 − i(α6 + α7) = 0 . (161)

There is a unique solution for (α2, α5, (α6+α7)). To preserve b
(1)
0ρ = c

(1)
0ρ we have to 
hoose

α1 = α5 (145). There remains a 3-dimensional freedom of renormalization: α3, α4 and

(α6 − α7) are unrestri
ted.

As a summary we expli
itly give a parti
ular solution for the 
oe�
ients e
(1)
ρ , whi
h

ful�lls the geometri
al interpretation at all s
ales: using the method (B) only for the

terms spe
i�ed before (157) (in order that we have the values (157)) and renormalizing

all other terms with method (A), and then performing the α5-renormalization with α5 =
2iD1 = 2i l1 − 4Cfish (161) and the pertinent α1-renormalization with α1 = α5, we end

12

Sin
e we have not 
omputed l
(1)
1ρ (see footnote 11), we 
annot make a 
orresponding statement about

the value of D1.
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up with:

a
(1)
0ρ = a

(1)
2ρ = l

(1)
11ρ = 0 , a

(1)
1ρ = −4i Cfish log ρ ,

b
(1)
0ρ = c

(1)
0ρ = (2i Cfish + 2 l1) log ρ , b

(1)
1ρ = (4i Cfish + 2 l1) log ρ ,

b
(1)
2ρ = 3i Cfish log ρ , c

(1)
1ρ = −i

(

6
m2

m2
H

+ 5
m2

H

m2

)

Cfish log ρ , c
(1)
2ρ = −i Cfish log ρ ,

l
(1)
0ρ = −3i Cfish log ρ , l

(1)
1ρ = l

(1)
2ρ =: l1 log ρ ,

l
(1)
3ρ = l

(1)
4ρ = i

(

1− 6
m2

m2
H

− 5
m2

H

m2

)

Cfish log ρ , l
(1)
5ρ = l

(1)
6ρ = −2i Cfish log ρ ,

l
(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ = i

(

2− 6
m2

m2
H

− 5
m2

H

m2

)

Cfish log ρ , (162)

where l1 is the number whi
h one obtains on 
omputing l
(1)
1ρ =: l1 log ρ by method (A) �

from (132) and footnote 11 we have

l1 = −3i Cfish + 2C1△ − C21 + C22 = −5i

2
Cfish − C21 +C22 . (163)

How to ful�ll BRST-invarian
e of the running Lagrangian (54): we start

with the values (162), ex
ept that we do not perform the �nite renormalization with

α1 = α5 = −4Cfish + 2i l1, with that we have b
(1)
1ρ = 0 and b

(1)
0ρ = c

(1)
0ρ = −2i Cfish.

To ful�ll the BRST-
ondition

b(1)ρ := b
(1)
0ρ = c

(1)
0ρ = a

(1)
1ρ = −b

(1)
2ρ = l

(1)
0ρ = l

(1)
1ρ = l

(1)
2ρ = l

(1)
5ρ = l

(1)
6ρ (164)

(see (59)-(60)), there is the trivial possibility b
(1)
ρ = 0, whi
h is obtained by renor-

malizing all 
ontributing terms by method (B). However, there is also the solution

b
(1)
ρ = −3i Cfish log ρ whi
h 
an be obtained from our starting values as follows: we

perform �nite renormalizations with α1 = α5 = Cfish and α7 = −Cfish; this yields

b
(1)
0ρ = c

(1)
0ρ = a

(1)
1ρ = −b

(1)
2ρ = l

(1)
0ρ = −3i Cfish log ρ and c

(1)
2ρ = 0 (61), and does not 
hange

c
(1)
1ρ and b

(1)
1ρ = 0 = a

(1)
2ρ . In order that l

(1)
1ρ = l

(1)
2ρ and l

(1)
5ρ = l

(1)
6ρ also get the value

−3i Cfish log ρ we swit
h the method from (A) to (B) in the triangle terms of l
(1)
1ρ = l

(1)
2ρ

(i.e. in (128)) and in the term(s) (236) (or alternatively (237) and (239)) of l
(1)
5ρ = l

(1)
6ρ .

The 
ondition l
(1)
ρ := c

(1)
1ρ = l

(1)
3ρ = l

(1)
4ρ = l

(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ (60) 
an non-trivially be

satis�ed by repla
ing the terms O
(

( m2

m2
H

)0
)

by zero in the expressions (162) for l
(1)
3ρ = l

(1)
4ρ

and l
(1)
7ρ = l

(1)
8ρ = l

(1)
9ρ ; that is, we swit
h the method from (A) to (B) in the terms (226),

(231), (243) and (248).

Taking into a

ount that a
(1)
0ρ is not restri
ted by BRST-invarian
e (i.e. the �nite

renormalization parameter α3 
an freely be 
hosen), we get the following parti
ular so-
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lution for the parameters (55):

a
(1)
0ρ

log ρ
∈ C arbitrary , b(1)ρ = −3i Cfish log ρ , l(1)ρ = −i

(

6
m2

m2
H

+ 5
m2

H

m2

)

Cfish log ρ .

(165)

Remark 6.4. We dis
uss whether there is a non-trivial renormalization of the gauge-

�xing parameter to 1-loop order (28):

• if we ful�ll the geometri
al interpretation as des
ribed (i.e. (157) and (161) are

satis�ed) and 
hoose α3 = 0 and α4 = α6, we have a
(1)
0ρ = 0 and a

(1)
2ρ = 0 whi
h

yields

Λρ = 1 + O(~2κ4) . (166)

• In 
ontrast, if we use the renormalization method (A) throughout and do not

perform any �nite renormalization, the values (216) give

Λρ = 1− 1

24π2
log ρ ~κ2 + O(~2κ4) . (167)

However, we re
all that even BRST-invarian
e of L0 + zρ(L) (54) does not restri
t a
(1)
0ρ

in any way; hen
e, we are free to modify a
(1)
0ρ by a �nite renormalization (139) and this


hanges Λρ to 1-loop order.

7 PGI for tree diagrams for the running intera
tion

Besides the geometri
al interpretability at all s
ales and BRST-invarian
e, there is a

further property whi
h we will investigate for the running Lagrangian: PGI-tree. Its re-

stri
tive power for a general renormalizable ansatz for the intera
tion and the importan
e

of that are pointed out in the Introdu
tion. In [Düt05℄ it is generally proved that BRST-

invarian
e of the Lagrangian (that is (54) in our 
ase) implies PGI-tree. For intera
tions

whi
h are only tri- and quadrilinear in the �elds, it has turned out that PGI-tree restri
ts

the intera
tion as strong as BRST-invarian
e of the Lagrangian; however, we will see that

for zρ(L), whi
h 
ontains also bilinear terms, PGI-tree is mu
h less restri
tive.

De�nition of PGI-tree: to study PGI-tree, it su�
es to 
onsider the 
onne
ted tree

diagrams. To sele
t the latter from the S-fun
tionals appearing in the PGI-
ondition (68),

we �rst introdu
e the 
onne
ted time-ordered produ
ts (T c
n)n∈N, by the (usual) re
ursive

de�nition

T c
n(F1 ⊗ ...⊗ Fn) := Tn(F1 ⊗ . . .⊗ Fn)−

∑

|P |≥2

∏

J∈P
T c
|J |(Fj1 ⊗ . . .⊗ Fj|J|

) , (168)

where {j1, . . . , j|J |} = J , j1 < . . . < j|J |, the sum runs over all partitions P of {1, ..., n}
in at least two subsets and

∏

means the 
lassi
al produ
t. Analogously to (16), let Sc
be
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the generating fun
tional of the 
onne
ted time-ordered produ
ts. PGI (68) is equivalent

to PGI for Sc
, i.e.

[Q,Sc
(

iL(g)
)

]⋆ ≈
d

dη
|η=0 S

c
(

iL(g) + ηPν(g; ∂νg)
)

; (169)

this 
an be veri�ed straightforwardly by using that [Q, · ]⋆ is a graded derivation w.r.t. 
las-
si
al produ
t, see [Düt05, Lemma 1℄.

For a 
onne
ted time ordered produ
t T c
n

(

L(g)⊗n
)

, the tree diagrams are the terms of

lowest order in ~, if the intera
tion L(g) is homogeneous in ~, see e.g. [DF01℄. If, as usual,

L(g) ∼ ~
−1

and P(g; ∂g) ∼ ~
0
, the tree diagrams of Sc

(

iL(g)
)

[or

d
dη |η=0 S

c
(

i zρ(L)(g)+

η P(g; ∂g)
)

℄ are pre
isely the terms∼ ~
−1

[or∼ ~
0
, resp.℄, and all 
onne
ted loop diagrams

are of higher orders in ~. Taking into a

ount that [Q,F ]⋆ ∼ ~ if F ∼ ~
0
(see again

[Düt05, Lemma 1℄), we de�ne: PGI-tree is the equation (169) to lowest order in ~, whi
h

is ~
0
.

But zρ(L) is by itself a formal power series in ~. Therefore, we use a tri
k to sele
t the

tree diagrams from Sc
(

izρ(L)(g)
)

and

d
dη |η=0 S

c
(

i zρ(L)(g) + η Pν(g; ∂νg)
)

. Namely, in

all 
oe�
ients eρ (20) (and nowhere else) we repla
e ~ by another parameter τ ; however,
in parti
ular the fa
tors ~

−1
for ea
h vertex (see (19)) and ~ for ea
h propagator remain

untou
hed. Note that this substitution 
on
erns also the pertinent Q-vertex: ~ is repla
ed

by τ in (73) and in (75). With that, we have zρ(L) ∼ ~
−1

and P(g; ∂g) ∼ ~
0
, and we


an apply the above given de�nition of PGI-tree to S(izρ(L)(g)). After the sele
tion of

the tree diagrams we reset τ := ~.

Remark 7.1. Writing the intera
tion L(g) = zρ(L)(g) and the pertinent Q-vertex

P(g; f) by means of the τ -tri
k, the proof in [Düt05℄ that BRST-invarian
e of the La-

grangian implies PGI-tree applies to L0 + zρ(L) (54). In addition this proof yields an

expli
it expression for the Q-vertex [Düt05, formula (3.23)℄), whi
h gives

P
(1)ν
0 = 0 , P

(1)ν
1 = b(1)ρ (mAνuϕ−∂νB uϕ+Bu∂νϕ) , P

(1)ν
2 = b(1)ρ (Aνuϕ2+AνuB2) ,

(170)

if (54) holds true. (b
(1)
ρ is de�ned by (59).)

Restri
tions on the 1-loop 
oe�
ients of zρ(L) 
oming from PGI-tree: here

we assume that the 
oe�
ients eρ of zρ(L) are unknown. In Appendix C it is worked out

that PGI-tree for L(g) = zρ(L)(g) 
an be ful�lled to order τ1 i� the following relations
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among the 1-loop 
oe�
ients e
(1)
ρ hold true:

a
(1)
0ρ , b

(1)
0ρ , b

(1)
1ρ , c

(1)
0ρ , c

(1)
2ρ , l

(1)
7ρ , l

(1)
1ρ are arbitrary ,

a
(1)
2ρ = 0 , l

(1)
11ρ = 0 , a

(1)
1ρ = b

(1)
0ρ + 2c

(1)
2ρ − b

(1)
1ρ , −b

(1)
2ρ = l

(1)
0ρ = b

(1)
0ρ + c

(1)
2ρ − b

(1)
1ρ ,

l
(1)
2ρ = l

(1)
1ρ , l

(1)
3ρ = l

(1)
7ρ + c

(1)
2ρ + 2(b

(1)
0ρ − b

(1)
1ρ

2 − l
(1)
1ρ ) ,

l
(1)
4ρ = l

(1)
7ρ + c

(1)
2ρ + 3b

(1)
0ρ − c

(1)
0ρ − b

(1)
1ρ − 2l

(1)
1ρ = l

(1)
3ρ + (b

(1)
0ρ − c

(1)
0ρ ) ,

l
(1)
5ρ = 2l

(1)
1ρ − b

(1)
0ρ , l

(1)
6ρ = 2l

(1)
1ρ − c

(1)
0ρ = l

(1)
5ρ + (b

(1)
0ρ − c

(1)
0ρ ) ,

l
(1)
8ρ = l

(1)
7ρ + (b

(1)
0ρ − c

(1)
0ρ ) , l

(1)
9ρ = l

(1)
7ρ + 2(b

(1)
0ρ − c

(1)
0ρ ) ,

c
(1)
1ρ = l

(1)
7ρ + 2c

(1)
2ρ + 4(b

(1)
0ρ − b

(1)
1ρ

2 − l
(1)
1ρ ) +

2m2

m2
H

(l
(1)
1ρ − b

(1)
0ρ +

b
(1)
1ρ

2 ) . (171)

Let us 
ompare these PGI-tree relations with the geometri
al interpretability at all s
ales

on 1-loop level (i.e. equations (36)-(46) to �rst order in ~κ2): from the number of free

parameters (7 versus 9) we immediately see that the geometri
al interpretability 
annot

imply PGI-tree. Also the reversed statement does not hold true: in order that (171) im-

plies the geometri
al interpretability, pre
isely one additional relation is needed, namely

l
(1)
1ρ = b

(1)
0ρ − b

(1)
1ρ

2 . (172)

However, note that (171) implies the two 
ru
ial ne
essary 
onditions for the geometri
al

interpretability, (155) and (151), without this additional relation (172). Note also that

the geometri
al interpretability does not imply (172).

One veri�es straightforwardly, that the parti
ular solution (162) for the 1-loop 
o-

e�
ients e
(1)
ρ , generalized by an arbitrary �nite renormalization of a

(1)
0ρ (139), solves

the system of linear equations (171)-(172), i.e. there exists a way to renormalize su
h

that PGI-tree and the geometri
al interpretability are satis�ed. In 
ontrast to the latter,

the system (171)-(172) �xes the values of the �nite renormalization parameters α3 and

(α6 − α7) uniquely (
f. the dis
ussion after (161)), this re�e
ts that (171)-(172) is more

restri
tive.

Relation to minimal subtra
tion: dimensional regularization with minimal sub-

tra
tion is a widespread s
heme in 
onventional momentum spa
e renormalization, whi
h

preserves BRST-invarian
e generi
ally. Applied to the 1-loop diagrams of our initial

model, this property implies that the resulting time-ordered produ
ts ful�ll PGI.

13

In

the minimal subtra
tion s
heme the mass s
ale(s) is/are 
hosen in a way whi
h belongs

to the 
lass �use always method (A) and do not perform any �nite renormalization�.

Using the latter pres
ription, neither PGI-tree nor the geometri
al interpretability are

maintained under the RG-�ow, be
ause the se
ond 
ru
ial ne
essary 
ondition (155) is

13

We are not aware of a proof of this statement, but it is very plausible. A 
orresponding statement

for higher loop diagrams involves a partial adiabati
 limit, be
ause su
h diagrams 
ontain inner verti
es,

whi
h are integrated out with g(x) = 1 in 
onventional momentum spa
e renormalization � but PGI is

formulated before the adiabati
 limit g → 1 is taken.
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violated. Weakening this pres
ription by admitting the �nite PGI-preserving renormal-

izations (139)-(147), the violation of (155) 
annot be removed.

14

Remark 7.2. For an ansatz for the intera
tion 
ontaining solely trilinear and quadri-

linear terms it has been worked out for various models that PGI-tree determines the in-

tera
tion essentially uniquely

15

(see e.g. [Sto97, DS99, ADS99, S
h01, DGBSV10℄). But

here, for an ansatz 
ontaining also bilinear terms, we obtain 
ru
ially di�erent results:

16

• BRST-invarian
e of the total Lagrangian does not determine the intera
tion uniquely

(see (56));

• PGI-tree is truly weaker than BRST-invarian
e of the Lagrangian. (Compared with

(56), the relations (171) leave 4 additional parameters to be freely 
hosen.)

This 
an be understood as follows: PGI presupposes that the free theory is BRST-

invariant: s0L0 ≃ 0. If we try to tra
e ba
k the 
ase of an intera
tion in
luding

bilinear terms to the 
ase with solely tri- and quadrilinear terms, by renormalization

of the wave fun
tions and parameters (27)-(31), BRST-invarian
e of the free theory

may get lost. Expli
itly we obtain

17

s0L
ρ
0 ≃ 0 ⇔ b0ρ = 0 = a2ρ ∧ a1ρ = b1ρ = c2ρ . (173)

To 1-loop order we 
an simultaneously ful�l this 
ondition and BRST-invarian
e

of the Lagrangian (54): by using the renormalization method (B) for the relevant

diagrams, we 
an rea
h that in the parti
ular solution (165) of (54) the value for

b
(1)
ρ is repla
ed by 0. But in general (173) does not hold true, see e.g. the parti
ular

solution (162) of the geometri
al interpretability. Moreover, there is the additional

obsta
le that, after the renormalization of the wave fun
tions and parameters, the

intera
tion still 
ontains the bilinear term b2ρmA∂B.

• In [DS00℄ it is worked out for the model of three massive ve
tor �elds that, making

a general renormalizable ansatz for the intera
tion, the 
ondition of PC for tree

diagrams (PC-tree) restri
ts the intera
tion to the same extent as PGI-tree � the

essentially unique solution is the SU(2)-Higgs-Kibble model. However, for our

S
(

izρ(L)(g)
)

, whi
h 
ontains also bilinear terms, PC-tree is signi�
antly weaker

than PGI-tree. This follows from our results: we have proved that PC (and, hen
e,

also PC-tree) holds true, but in general PGI-tree is violated.

14

An alternative, simple argument that PGI-tree (and, hen
e, also PGI) 
an get lost under the RG-�ow

is the following: The α1-renormalization (145) maintains PGI of the initial model, but it 
an be used to

violate the PGI-tree equations (171), sin
e it modi�es only c
(1)
0ρ � this argumentation works also for the

α2-renormalization (146).

15

This holds also for our model. Namely, setting a
(1)
jρ = 0, b

(1)
jρ = 0 and c

(1)
jρ = 0 (for all j), the

restri
tions from PGI-tree (171) and (289) yield l
(1)
kρ = 0 (for all k).

16

We are not aware of any other paper in whi
h PGI has been studied for an intera
tion 
ontaining

bilinear terms.

17

Sin
e L
ρ
0 = L0 + zρ(L)bilinear, where zρ(L)bilinear is the bilinear part of zρ(L) (19) without the A∂B-

term, the easiest way to obtain the equivalen
e (173) is to work out the 
ondition s0 zρ(L)bilinear ≃ 0.
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8 Summary and 
on
luding remarks

De�ning the RG-�ow by means of a s
aling transformation [HW03, DF04, BDF09℄ one


an easily show that PC is maintained under the RG-�ow. Hen
e, the U(1)-Higgs model

is a 
onsistent QFT-model at all s
ales. However, the somewhat stronger property of

PGI gets lost in general, and in parti
ular if one uses a renormalization pres
ription


orresponding to minimal subtra
tion.

Using the Epstein-Glaser axioms [EG73, DF04℄, 
ompleted by the requirement that

the initial model ful�lls PGI, the RG-�ow 
ontains quite a large non-uniqueness, due to

the following two fa
ts:

• whether a 
ertain Feynman diagram 
ontributes to the RG-�ow, depends on whether

one 
hooses as renomalization mass s
ale a �xed mass (method (A)), or a mass

whi
h is subje
t to our s
aling transformation � e.g. the mass of one of the basi


�elds (method (B)).

• By �nite renormalizations (136), whi
h preserve PGI of the initial model, one 
an

modify the RG-�ow.

To 1-loop level we have shown that, by using this non-uniqueness, one 
an a
hieve that

the geometri
al interpretation is possible at all s
ales; one 
an even a
hieve that the mu
h

stronger 
ondition of BRST-invarian
e of the running Lagrangian is satis�ed. But this

requires a quite (geometri
al interpretation) or very (BRST-invarian
e) spe
i�
 pres
rip-

tion for the 
hoi
e of the renormalization method ((A) or (B)) for the various Feynman

diagrams, and for the �nite renormalizations. If one uses always method (A) � min-

imal subtra
tion is of this kind � the geometri
al interpretation is violated by terms

∼ A∂B; relaxing this pres
ription by admitting �nite PGI-preserving renormalizations,

these A∂B-terms 
annot be removed.

Instead of a state independent renormalization s
heme, as e.g. minimal subtra
tion,

one may use state dependent renormalization 
onditions: e.g. in the adiabati
 limit

the va
uum expe
tation values of 
ertain time ordered produ
ts must agree with the

�experimentally� known values for the masses of stable parti
les in the va
uum, and

analogous 
onditions for parameters of 
ertain va
uum 
orrelation fun
tions. With su
h

a s
heme, quite a lot of diagrams are renormalized by method (A). To 1-loop level, the

geometri
al interpretability at all s
ales amounts then mainly to the question, whether

it is nevertheless possible to ful�ll the se
ond 
ru
ial ne
essary 
ondition (155), whi
h

requires to renormalize 
ertain diagrams by method (B), see (156)-(157). We postpone

this question to future work, and we do so also for the dependen
e of our results on the

initial value of the gauge-�xing parameter.

Returning to the fundamental question, already tou
hed in the Introdu
tion, whether

masses are really generated by the Higgs me
hanism, we may say that our results sow a

germ of doubt.

Or � one 
an keep the Higgs me
hanism as a fundamental prin
iple explaining the

origin of mass at all s
ales (although it is not understood in a pure QFT framework),
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then our results forbid quite a lot of renormalization s
hemes, in parti
ular minimal

subtra
tion!
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A Breaking of homogeneous s
aling for some 1-loop dia-

grams

In Se
t. 6.1 it is derived that the violation of homogeneous s
aling of the massless �sh

diagram is

(y∂y + 4) tMfish(y) = Cfish δ(y) with Cfish =
−i

8π2
, y∂y := yλ∂

λ
y , (174)

and that for the �sh diagram tMm,mH
(102) (with di�erent masses m,mH) it holds

(y∂y + 4−m∂m −mH∂mH
) tMm,mH

(y) = Cfish δ(y) , (175)

where M > 0 is a renormalization mass s
ale.

In this appendix we 
ompute the breaking of homogeneous s
aling for some massless

triangle diagrams,

tµν◦1△ (y) := ∂µDF (y1) ∂
νDF (y2)D

F (y1 − y2) ∈ D
′(R8 \ {0}) , (176)

tµν◦2△ (y) := DF (y1)D
F (y2) ∂

µ∂νDF (y1 − y2) ∈ D
′(R8 \ {0}) , (177)

some massless square diagrams,

tλν◦1� (y) := ∂λ∂νDF (y1 − y2) ∂µD
F (y2 − y3)D

F (y3) ∂
µDF (y1) ∈ D

′(R12 \ {0}) , (178)

tλν◦2� (y) := DF (y1 − y2) ∂
ν∂µD

F (y2 − y3)D
F (y3) ∂

λ∂µDF (y1) ∈ D
′(R12 \ {0}) , (179)

tλν◦3� (y) := ∂λDF (y1 − y2) ∂
ν∂µD

F (y2 − y3)D
F (y3) ∂

µDF (y1) ∈ D
′(R12 \ {0}) , (180)
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and for some massive �sh-like diagrams,

tµν ◦
1m,mH

(y) := ∆F
m(y) ∂µ∂ν∆F

mH
(y) ∈ D

′(R4 \ {0}) , (181)

tµν ◦
2m,mH

(y) := ∂µ∆F
m(y) ∂ν∆F

mH
(y) ∈ D

′(R4 \ {0}) , (182)

by using the renormalization method (A) (see Se
t. 6.1). The point is that these 
om-

putations 
an be tra
ed ba
k to the result (174).

Massless triangle diagrams: �rst note that 
ontra
tion of tµν◦2△ with gµν yields

tµ◦2△µ = −i δ(y1 − y2) t
◦
fish(y1) (183)

by using �DF (x) = −iδ(x). Hen
e, for an arbitrary pair of almost homogeneous exten-

sions to D′(R8), the di�eren
e is of the form

tµ2△µ(y) + i δ(y1 − y2) tfish(y1) = C δ(y) , C ∈ C ; (184)

su
h a term s
ales homogeneously. We 
on
lude that

(y∂y + 8) tµ2△µ(y) = −i Cfish δ(y) , where y∂y := yµ1 ∂
y1
µ + yµ2∂

y2
µ . (185)

Due to Lorentz 
ovarian
e, the expression (y∂y + 8) tµν2△(y) must be ∼ gµν ; therefore, we
obtain

ρ8 tµν2△(ρy)− tµν2△(y) = C2△ gµν δ(y) log ρ with C2△ =
−i

4
Cfish . (186)

To 
ompute the violation of homogeneous s
aling for tµν1△, we introdu
e

t̃µ△(y) := ∂µDF (y1)D
F (y2)D

F (y1 − y2) , (187)

whi
h exists in D′(R8) by the dire
t extension (see footnote 8) and s
ales homogeneously:

(y∂y + 7) t̃µ△(y) = 0. In D′(R8 \ {0}) we �nd

(∂ν
y1 + ∂ν

y2)t̃
µ◦
△ (y) = tµν◦2△ (y1 − y2,−y2) + tµν◦1△ (y) . (188)

Therefore, arbitrary almost homogeneous extensions ful�ll

(∂ν
y1 + ∂ν

y2) t̃
µ
△(y) = tµν2△(y1 − y2,−y2) + tµν1△(y) + C̃ δ(y) (189)

for some C̃ ∈ C. We 
on
lude

0 = (y∂y + 8) (∂ν
y1 + ∂ν

y2) t̃
µ
△(y) = (y∂y + 8) tµν2△(y1 − y2,−y2) + (y∂y + 8) tµν1△(y) . (190)

Taking (186) into a

ount we end up with

ρ8 tµν1△(ρy)− tµν1△(y) = C1△ gµν δ(y) log ρ with C1△ = −C2△ =
i

4
Cfish . (191)

Massless square diagrams: pro
eeding analogously, we use that

gλν t
λν◦
1� (y) = −iδ(y1 − y2) t

µ◦
1△µ(y1, y1 − y3) (192)
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and obtain

ρ12 tλν1�(ρy)− tλν1�(y) = C1� gλν δ(y) log ρ with C1� = −i C1△ =
1

4
Cfish . (193)

Taking into a

ount that in D′(R12 \ {0}) it holds

∂ν
y2

(

∂λDF (y1 − y2) ∂µD
F (y2 − y3)D

F (y3) ∂
µDF (y1)

)

= −tλν◦1� (y) + tλν◦3� (y) , (194)

we 
on
lude that

ρ12 tλν3�(ρy)− tλν3�(y) = C3� gλν δ(y) log ρ with C3� = C1� . (195)

Finally, by means of

∂λ
y1

(

DF (y1 − y2) ∂
ν∂µD

F (y2 − y3)D
F (y3) ∂

µDF (y1)
)

= tλν◦3� (y) + tλν◦2� (y) , (196)

we derive that

ρ12 tλν2�(ρy)− tλν2�(y) = C2� gλν δ(y) log ρ with C2� = −C3� = −C1� . (197)

Similarly to the massless �sh diagram (106), the following holds also for the massless

triangle diagrams (176)-(177) and for the massless square diagrams (178)-(180): the

breaking of homogeneous s
aling is equal for all almost homogeneous extensions. This

must be so, be
ause two almost homogeneous extensions di�er by a term of the form

∑

|a|=ω Ca ∂
aδ, Ca ∈ C, whi
h s
ales homogeneously. (See footnote 8 for the de�nition

of ω; for the examples in hand we have ω = 0.)
Massive �sh-like diagrams: as a preparation we �rst 
ompute the violation of

homogeneous s
aling of the renormalized version tµν M
2 of the massless distribution

tµν ◦
2 (y) := ∂µDF (y) ∂νDF (y) ∈ D

′(R4 \ {0}) . (198)

This 
omputation 
an be tra
ed ba
k to the result (174) in the following way: �rst we

write tµν ◦
2 as

tµν ◦
2 (y) =

yµyν

48
�y�yt

◦
fish(y) ∈ D

′(R4 \ {0}) , (199)

whi
h follows from the expli
it formula DF (y) = −1
4π2 (y2−i0) by straightforward 
al
ula-

tion, taking into a

ount that �y 6= 0�. Then, by di�erential renormalization we get

tµν M
2 (y) =

yµyν

48
�y�yt

M
fish(y) ∈ D

′(R4) , (200)

where M > 0 is a �xed mass s
ale (method (A)). From this relation we 
on
lude that

(y∂y + 6) tµν M
2 (y) =

Cfish

48
yµyν �y�yδ(y) =

Cfish

12
(gµν �y + 2 ∂µ

y ∂
ν
y ) δ(y) ; (201)

the se
ond equality is obtained by straightforward 
al
ulation.
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We renormalize the massive �sh-like diagrams (181), (182) by using the sm-expansion

[Düt15℄. Due to that we know that the violation of homogeneous s
aling is of the form

(y∂y + 6−m∂m −mH∂mH
) tµν M

j m,mH
(y) =

(

Cj1 g
µν

�y + Cj2 ∂
µ
y ∂

ν
y

)

δ(y)

+ gµν
(

m2 Pj1(log
m
M , log mH

M ) +m2
H Pj2(log

m
M , log mH

M )
)

δ(y) , j = 1, 2, (202)

where Pjl(z1, z2) is a polynomial in z1 and z2. The term O(m0) 
an be 
omputed by

setting m := 0 =: mH ; hen
e, we know the values of the numbers (C2l)l=1,2 from (201).

We renormalize su
h that the relations

∂µ
y ∂

ν
y t

◦
m,mH

(y) = tµν ◦
1m,mH

(y) + tµν ◦
1mH ,m(y) + tµν ◦

2m,mH
(y) + tµν ◦

2mH ,m(y) ,

gµν t
µν ◦
1m,mH

(y) = −m2
H t◦m,mH

(y) and tµν ◦
2m,mH

(y) = tνµ ◦
2mH ,m(y) (203)

are maintained up to (lo
al) terms whi
h are in the kernel of the operator (y∂y + 6 −
m∂m −mH∂mH

); for the �rst and the last relation this is a term of the form

(

C1 g
µν

�y + C2 ∂
µ
y ∂

ν
y

)

δ(y) + gµν
(

m2 C3 +m2
H C4

)

δ(y) , Ck ∈ C arbitrary.

Due to the sm-expansion, this renormalization pres
ription restri
ts only the lo
al terms

O(m2,m2
H): without this pres
ription the numbers C3 and C4 may be repla
ed by poly-

nomials in log m
M and log mH

M .

By using the renormalized version of the relations (203) and (175) and (201), we

determine the numbers C1l and the polynomials Pjl. It results

ρ6 tµν M
1m/ρ,mH/ρ(ρy)− tµν M

1m,mH
(y)

= Cfish

[ 1

12

(

−gµν �y + 4 ∂µ
y ∂

ν
y

)

− gµν

4
m2

H

]

δ(y) log ρ , (204)

ρ6 tµν M
2m/ρ,mH/ρ(ρy)− tµν M

2m,mH
(y)

= Cfish

[ 1

12

(

gµν �y + 2 ∂µ
y ∂

ν
y

)

+
gµν

8
(m2 +m2

H)
]

δ(y) log ρ . (205)

B Computation of some 1-loop 
oe�
ients of the running

intera
tion

In this appendix we 
ompute some 1-loop 
oe�
ients e of zρ(L), de�ned by (19), (20)

and

e log ρ := e(1)ρ , (206)

by using the results of Appendix A. We assume that for all 
ontributing terms the

renormalization mass s
ale M is 
hosen a

ording to method (A), see Se
t. 6.1. Working
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in Feynman gauge, we may use the following 
onventions:

ω0

(

T2

(

B(x)⊗B(y)
)

)

= ~∆F
m(x− y) , ω0

(

T2

(

ϕ(x)⊗ ϕ(y)
)

)

= ~∆F
mH

(x− y) ,

ω0

(

T2

(

u(x)⊗ ũ(y)
)

)

= ~∆F
m(x− y) , ω0

(

T2

(

ũ(x)⊗ u(y)
)

)

= −~∆F
m(x− y) ,

ω0

(

T2

(

Aµ(x)⊗Aν(y)
)

)

= −~ gµν ∆F
m(x− y) , (�+m2)∆F

m(x) = −i δ(x) . (207)

Coe�
ients of some bilinear �elds: to 
ompute a0, a1, a2, b1, b2, we have to take
into a

ount the following terms of T2(L

2
1
⊗2

) where L2
1 := mA2ϕ + BA∂ϕ − ϕA∂B −

m2
H

2m B2ϕ: the most 
ompli
ated is

ω0

(

T2

(

(B∂µϕ− ϕ∂µB)(x1)⊗ (B∂νϕ− ϕ∂νB)(x2)
)

)

Aµ(x1)Aν(x2)

=
(

−tµν M
1m,mH

(y)− tµν M
1mH ,m(y) + tµν M

2m,mH
(y) + tµν M

2mH ,m(y)
)

Aµ(x1)Aν(x2) , (208)

where y := x1−x2. Using (204)-(205), we �nd that (208) gives the following 
ontribution

to Z
(2)
ρ (L(g)⊗2) (96):

κ2~2 Cfish

∫

dx1dx2 g(x1)g(x2)
(

1
3 (g

µν
�y − ∂µ

y ∂
ν
y ) +

1
2 g

µν(m2 +m2
H)

)

δ(y)Aµ(x1)Aν(x2)

= κ2~2 Cfish

∫

dx (g(x))2
(

−1
6 F 2(x) + 1

2 (m
2 +m2

H)A2(x)
)

+ . . . , (209)

where the dots stand for terms with derivatives of g, whi
h do not 
ontribute to the

adiabati
 limit. The further 
ontributing terms are

m2 4ω0

(

T2

(

Aµϕ(x1)⊗Aνϕ(x2)
)

)

Aµ(x1)Aν(x2) , (210)

m4
H

4m2
4ω0

(

T2

(

Bϕ(x1)⊗Bϕ(x2)
)

)

B(x1)B(x2) , (211)

ω0

(

T2

(

A∂ϕ(x1)⊗A∂ϕ(x2)
)

)

B(x1)B(x2) = gµν t
µν M
1m,mH

(y)B(x1)B(x2) , (212)

−m 2ω0

(

T2

(

Aµϕ(x1)⊗Aνϕ(x2)
)

)

Aµ(x1)∂νB(x2) + (x1 ↔ x2)

+m 2ω0

(

T2

(

Aµϕ(x1)⊗A∂ϕ(x2)
)

)

Aµ(x1)B(x2) + (x1 ↔ x2) , (213)

− m2
H

2m
2ω0

(

T2

(

(B∂µϕ− ϕ∂µB)(x1)⊗Bϕ(x2)
)

)

Aµ(x1)B(x2) + (x1 ↔ x2) . (214)

The last term does not 
ontribute to the RG-�ow, be
ause in the sm-expansion of the per-

tinent unrenormalized expression the leading terms (whi
h are the 
orresponding massless

distributions) 
an
el,

∆F
m(y)∂µ∆F

mH
(y)− ∂µ∆F

m(y)∆F
mH

(y) = 0 + O(m2,m2
H) , (215)

and the terms O(m2,m2
H) have singular order ω ≤ −1.
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Now from (209) and (210) we obtain

a0 =
i

3
Cfish , a1 = i

(1

2
(1 +

m2
H

m2
)− 4

)

Cfish , a2 = 0 , (216)

and from (211), (212) and (213) we get

b1 = i
(m2

H

m2
− m4

H

m4

)

Cfish , b2 = 3i Cfish ; (217)

the 
omputation of b2 is analogous to the 
omputation of b0 given in Se
t. 6.1.

There are 5 terms 
ontributing to c1: one term is obtained from (212) by ϕ ↔ B and

four terms are ∼ ω0

(

T2

(

φ(x1)⊗ φ(x2)
)

)

ϕ(x1)ϕ(x2) where φ = ϕ2, B2, A2
and φ = ũu.

We �nd

c1 = −i
(

6
m2

m2
H

+ 5
m2

H

m2

)

Cfish . (218)

Coe�
ients of some trilinear �elds: the 
ontributions to l0, l3 and l4 
ome from

�sh diagrams (without derivatives) belonging to T2(L
0
1⊗L2) and from triangle diagrams

(with two derivatives) belonging to T3(L
1⊗2
1 ⊗L0

1), where L
0
1 := mA2ϕ− m2

H

2m (ϕ3+B2ϕ)
and L1

1 := BA∂ϕ− ϕA∂B. To 
ompute l0 we have to take into a

ount the terms

4mω0

(

T2

(

Aλϕ(x1)⊗Aνϕ(x2)
)

)

Aλ(x1)A
νϕ(x2) + 1permutation , (219)

−m2
H

4m
ω0

(

3T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ T2

(

B2(x1)⊗B2(x2)
)

)

ϕ(x1)A
2(x2) + 1permutation ,

(220)

−m2
H

2m
ω0

(

T3

(

(B∂µϕ− ϕ∂µB)(x1)⊗ (B∂νϕ− ϕ∂νB)(x2)⊗ (3ϕ2 +B2)(x3)
)

)

·Aµ(x1)Aν(x2)ϕ(x3) + 2permutations , (221)

− 2mω0

(

T3

(

Aµϕ(x1)⊗A∂B(x2)⊗ (B∂λϕ− ϕ∂λB)(x3)
)

)

·Aµ(x1)ϕ(x2)Aλ(x3) + 5permutations , (222)

where permutations of the verti
es are meant. These terms yield

l0 = −4i Cfish +
m2

H

m2
(−2i Cfish) +

m2
H

m2
2(3 + 1)C1△ + 4C1△ = −3i Cfish , (223)

where in the �rst step only C2△ = −C1△ is used, and the k-th summand 
omes from

the k-th term in (219)-(222) (k = 1, 2, 3, 4). In (228),(233), (240), (245) and (250) the

summands are ordered 
orrespondingly.

Turning to l3, the terms

m

2
ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

ϕ(x1)ϕ
2(x2) + 1permutation , (224)

m4
H

8m3
ω0

(

9T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ T2

(

B2(x1)⊗B2(x2)
)

)

ϕ(x1)ϕ
2(x2) + 1permutation ,

(225)
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−m2
H

2m
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ(x3) + 2permutations ,

(226)

mω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗A2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ(x3) + 2permutations , (227)

give

l3 =
m2

m2
H

(−8i Cfish) +
m2

H

m2
(−5i Cfish) + 4C1△ +

m2

m2
H

(−8C2△)

=iCfish

(

1− 6
m2

m2
H

− 5
m2

H

m2

)

. (228)

The 
ontributions to l4 
ome from the terms

m

2
ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

ϕ(x1)B
2(x2) + 1permutation , (229)

m4
H

8m3
ω0

(

3T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ 3T2

(

B2(x1)⊗B2(x2)
)

)

ϕ(x1)B
2(x2) + 1permutation

+
m4

H

8m3
8ω0

(

T2

(

ϕB(x1)⊗ ϕB(x2)
)

)

B(x1)ϕB(x2) + 1permutation , (230)

−m2
H

2m
3ω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗ ϕ2(x3)
)

)

B(x1)B(x2)ϕ(x3) + 2permutations

+
m2

H

2m
2ω0

(

T3

(

A∂B(x1)⊗A∂ϕ(x2)⊗ ϕB(x3)
)

)

ϕ(x1)B(x2)B(x3) + 5permutations ,

(231)

mω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗A2(x3)
)

)

B(x1)B(x2)ϕ(x3) + 2permutations , (232)

whi
h yield

l4 =
m2

m2
H

(−8i Cfish)+
m2

H

m2
(−(3+ 2)i Cfish)+ (12− 8)C1△ +

m2

m2
H

(−8C2△) = l3 . (233)

Coe�
ients of some quadrilinear �elds: the 
ontributions to l5, l7 and l8 
ome

from �sh diagrams (without derivatives) belonging to T2(L2⊗L2), from triangle diagrams

(with two derivatives) belonging to T3(L
1⊗2
1 ⊗L2) and from square diagrams (with four
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derivatives) belonging to T4(L
1⊗4
1 ). The following terms 
ontribute to l5:

−m2
H

8m2

[

3ω0

(

T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

)

+ ω0

(

T2

(

B2(x1)⊗B2(x2)
)

)]

A2(x1)ϕ
2(x2) + 1permutation , (234)

4ω0

(

T2

(

Aµϕ(x1)⊗Aνϕ(x2)
)

)

Aµϕ(x1)Aνϕ(x2) , (235)

1

2
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)A
2(x3) + 2permutations , (236)

− 2ω0

(

T3

(

A∂B(x1)⊗ (B∂µϕ− ϕ∂µB)(x2)⊗Aνϕ(x3)
)

)

· ϕ(x1)Aµ(x2)Aνϕ(x3) + 5permutations , (237)

−m2
H

4m2
ω0

(

T3

(

(B∂µϕ− ϕ∂µB)(x1)⊗ (B∂νϕ− ϕ∂νB)(x2)⊗ (3ϕ2 +B2)(x3)
)

)

· Aµ(x1)Aν(x2)ϕ
2(x3) + 2permutations , (238)

ω0

(

T c
4

(

(B∂νϕ− ϕ∂νB)(x1)⊗ (B∂µϕ− ϕ∂µB)(x2)⊗A∂B(x3)⊗A∂B(x4)
)

)

· Aν(x1)Aµ(x2)ϕ(x3)ϕ(x4) + 5permutations , (239)

where the upper index '
' means 
onne
ted. We obtain

l5 =
m2

H

m2
(−2i Cfish)− 4i Cfish +4C1△ +8C1△ +

2(3 + 1)m2
H

m2
C1△ − 4i C1� = −2i Cfish ,

(240)

and in the �rst step only C2△ = −C1△ and C1� = −C2� = C3� are used.

The 
ontributions to l7 
ome from

[

1
4 ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

+ 36
(m2

H

8m2

)2
ω0

(

T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

)

+
(m2

H

4m2

)2
ω0

(

T2

(

B2(x1)⊗B2(x2)
)

)]

ϕ2(x1)ϕ
2(x2) , (241)

1

2
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗A2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ
2(x3) + 2permutations , (242)

−m2
H

4m2
ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)ϕ
2(x3) + 2permutations ,

(243)

ω0

(

T c
4

(

A∂B(x1)⊗A∂B(x2)⊗A∂B(x3)⊗A∂B(x4)
)

)

ϕ(x1)ϕ(x2)ϕ(x3)ϕ(x4) ; (244)

it results

l7 =− i Cfish

(

8
m2

m2
H

+
(9 + 1)

2

m2
H

m2

)

+
m2

m2
H

(−16C2△) + 8C1△ +
m2

m2
H

8i C2�

=iCfish

(

2− 6
m2

m2
H

− 5
m2

H

m2

)

. (245)
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Finally, to 
ompute l8 we have to take a

ount of

ϕ2(x1)B
2(x2)

[

1
4 ω0

(

T2

(

A2(x1)⊗A2(x2)
)

)

+
m4

H

8 · 4m4
6ω0

(

T2

(

ϕ2(x1)⊗ ϕ2(x2)
)

+ T2

(

B2(x1)⊗B2(x2)
)

)]

+ 1permutation

+ ϕB(x1)ϕB(x2) 16
(m2

H

4m2

)2
ω0

(

T2

(

ϕB(x1)⊗ ϕB(x2)
)

)

, (246)

1

2

[

ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗A2(x3)
)

)

ϕ(x1)ϕ(x2)B
2(x3)

+ ω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗A2(x3)
)

)

B(x1)B(x2)ϕ
2(x3)

]

+ 2permutations ,

(247)

−m2
H

8m2
6
[

ω0

(

T3

(

A∂B(x1)⊗A∂B(x2)⊗B2(x3)
)

)

ϕ(x1)ϕ(x2)B
2(x3)

+ ω0

(

T3

(

A∂ϕ(x1)⊗A∂ϕ(x2)⊗ ϕ2(x3)
)

)

B(x1)B(x2)ϕ
2(x3)

]

+ 2permutations

+
m2

H

4m2
4ω0

(

T3

(

A∂B(x1)⊗A∂ϕ(x2)⊗Bϕ(x3)
)

)

ϕ(x1)B(x2)ϕB(x3) + 5permutations ,

(248)

ω0

(

T c
4

(

A∂B(x1)⊗A∂B(x2)⊗A∂ϕ(x3)⊗A∂ϕ(x4)
)

)

· ϕ(x1)ϕ(x2)B(x3)B(x4) + 5permutations , (249)

and we get

l8 = −i Cfish

(

8
m2

m2
H

+(3+2)
m2

H

m2

)

− m2

m2
H

(8+8)C2△+(12+12−16)C1△+
m2

m2
H

8i C2� = l7 .

(250)

Note that (227), (232), (242) and (247) 
an be viewed also as �sh diagram 
on-

tributions, sin
e their unrenormalized versions are ∼ −gµν ∂
µ∂νDF (x1 − x2)D

F (x1 −
x3)D

F (x2 − x3) = i δ(x1 − x2) t
◦
fish(x1 − x3); however in Se
t. 6.5 we treat them as

triangle diagram 
ontributions.

C Working out PGI-tree for the running intera
tion

In this appendix we work out PGI-tree for the intera
tion L(g) = zρ(L)(g), as de�ned
after (169). We use that L(g) is of the form (66) with the expli
it expressions (73) and

(74), with unknown 
oe�
ients e
(j)
ρ in the L

(j)
k (k = 0, 1, 2) for j ≥ 1. About the Q-

vertex Pν(g; f) (67) we only know that it is of the form (75), the �eld polynomials P
(j)
k

are 
ompletely unknown.

It is well-known (see e.g. [DS99, S
h01, DGBSV10℄) that in the indu
tive Epstein-

Glaser 
onstru
tion of the time ordered produ
ts, PGI 
an be violated only by lo
al
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terms. Hen
e, we need to study only the lo
al 
ontributions. However, in prin
iple

the splitting of a distribution into a lo
al and a non-lo
al part is non-unique; hen
e,

some 
aution is 
alled for. Let x1, ..., xn be the verti
es of the 
onsidered 
onne
ted tree

diagram. Everywhere in our 
al
ulations we repla
e (∂)�∆F
m by (−m2(∂)∆F

m − i(∂)δ).
Then, outside the total diagonal x1 = x2 = ... = xn only terms with at least one

propagator ∆F
m, ∂µ∆

F
m, ∂ν∂µ∆

F
m and ∂ν∂µ∂λ∆

F
m (with no 
ontra
tion of Lorentz indi
es)


ontribute. Sin
e these terms 
an
el outside the total diagonal, they 
an
el also on the

total diagonal. The remaining terms are the lo
al terms, they are linear 
ombinations

of ∂aδ(x1 − xn, ..., xn−1 − xn). We write Ttree for the 
ontribution of the 
onne
ted tree

diagrams and T (...)|loc means the sele
tion of the lo
al terms. The latter is a rather

deli
ate issue. Considering

∂x
ν Ttree

(

P ν(x)⊗ L(y)
)

|loc , (251)

there appear the following possibilities how the divergen
e ∂x
ν generates lo
al terms

(
f. [DS99, DGBSV10℄):

Type 1 If P ν = ∂νφF + · · · and L = φE + · · · , then the 
ontra
tion of ∂νφ(x) with φ(y)
gives a propagator ~ ∂ν∆F

m(x − y), and on 
omputing its divergen
e we �nd the

lo
al 
ontribution −i~ δ(x− y)F (x)E(x).

Type 2 If P ν
is as before and L = ∂µφE + · · · , then analogously to type 1 we obtain the

lo
al 
ontribution i~ ∂µδ(x− y)F (x)E(y).

Type 3 If P ν = Aν F + · · · and L = (∂µA
µ)E + · · · , then the 
ontra
tion of Aν(x) with

∂µA
µ(y) gives a propagator ~ gνµ∂µ∆

F
m(x − y), and we get the lo
al 
ontribution

−i~ δ(x − y)F (x)E(x) .

Remark C.1.

(1) Usually intera
tions for spin-1 �elds do not 
ontain a ∂µA
µ
-�eld; hen
e, the type 3

me
hanism is non-standard, however it has been used already in the appli
ation of PGI

to spin-2 gauge theories [S
h01℄.

(2) In the literature about PGI mostly a di�erent normalization of the time ordered

produ
ts is used (denoted by TN
in the following). Considering S

(

iL(g)
)

, where L(g)
is of the form (66), the arguments of TN

are only the verti
es L(1)(xj) whi
h are of �rst

order in g. A higher order vertex

∫

dx (g(x))n L(n)(x) (n ≥ 2) is taken into a

ount as a

lo
al 
ontribution

n! (−i)n−1 δ(x1 − xn, ..., xn−1 − xn)L(n)(xn) to TN
n,tree

(

⊗n
j=1L(1)(xj)

)

. (252)

Analogously a higher order Q-vertex

∫

dx (g(x))(n−1) Pν
(n)(x) f(x) (n ≥ 2) appears as a

lo
al 
ontribution

(n−1)! (−i)n−1 δ(x1−xn, ..., xn−1−xn)P(n)(xn) to TN
n,tree

(

P(1)(x1)⊗(⊗n
j=2L(1)(xj))

)

(253)
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integrated out with f(x1)
∏n

j=2 g(xj). The relation between the time ordered produ
ts

TN
and T 
an generally be des
ribed in terms of the Main Theorem, see [Düt05, formula

(2.29)℄.

Now we are going to work out PGI-tree. Sele
ting the lo
al terms whi
h are of order

~
0
and of a 
ertain order in τ and κ, we obtain the following equations:

~
0τ0κ1 : i

~
[Q,L1(g)] ≈ −(∂P1)(g) , (254)

~
0τ0κ2 : i

~
[Q,L2(g

2)] ≈ − i
2(∂P2)(g

2)

− i
~

∫

dxdy g(x)g(y) ∂xTtree

(

P1(x)⊗ L1(y)
)

|loc , (255)

~
0τ0κ3 : 0 ≈ − i

~

∫

dxdy g(x)(g(y))2
(

∂x Ttree

(

P1(x)⊗ L2(y)
)

|loc

+ 1
2∂y Ttree

(

L1(x)⊗ P2(y)
)

|loc
)

, (256)

~
0τ1κ2 : i

~
[Q,L

(1)
0 (g2)] ≈ −1

2 (∂P
(1)
0 )(g2) , (257)

~
0τ1κ3 : i

~
[Q,L

(1)
1 (g3)] ≈ −1

3(∂P
(1)
1 )(g3)

− i
~

∫

dxdy (g(x))2g(y)
(

∂yTtree

(

L
(1)
0 (x)⊗ P1(y)

)

|loc

+ 1
2∂x Ttree

(

P
(1)
0 (x)⊗ L1(y)

)

|loc
)

, (258)

~
0τ1κ4 : i

~
[Q,L

(1)
2 (g4)] ≈ −1

4(∂P
(1)
2 )(g4)

− i
~

∫

dxdy (g(x))3g(y)
(

1
3 ∂xTtree

(

P
(1)
1 (x)⊗ L1(y)

)

|loc

+ ∂yTtree

(

L
(1)
1 (x)⊗ P1(y)

)

|loc
)

− i
2 ~

∫

dxdy (g(x))2(g(y))2
(

∂x Ttree

(

P
(1)
0 (x)⊗ L2(y)

)

|loc

+ ∂yTtree

(

L
(1)
0 (x)⊗ P2(y)

)

|loc
)

+ 1
~2

∫

dydx1dx2 g(y)(g(x1))
2g(x2) ∂y Ttree

(

P1(y)⊗ L
(1)
0 (x1)⊗ L1(x2)

)

|loc ,

(259)
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~
0τ1κ5 : 0 ≈ − i

~

∫

dxdy (g(x))3(g(y))2
(

1
3 ∂xTtree

(

P
(1)
1 (x)⊗ L2(y)

)

|loc

+ 1
2 ∂yTtree

(

L
(1)
1 (x)⊗ P2(y)

)

|loc
)

− i
~

∫

dxdy g(x)(g(y))4
(

∂x Ttree

(

P1(x)⊗ L
(1)
2 (y)

)

|loc

+ 1
4 ∂yTtree

(

L1(x)⊗ P
(1)
2 (y)

)

|loc
)

+ 1
~2

∫

dydx1dx2 g(y)(g(x1))
2(g(x2))

2 ∂y Ttree

(

P1(y)⊗ L
(1)
0 (x1)⊗ L2(x2)

)

|loc .

(260)

This list 
ontains all lo
al terms of (169) whi
h are of order ~
0τ0κl or ~

0τ1κl for l
arbitrary. On 
omputing the terms appearing in this list, we repla
e �φ by −m2

φ φ.

• PGI-equations (254)-(256). The τ0-equations express PGI-tree for the (ρ = 1)-
theory, they have a unique solution for P1 and P2 given in (70) (
f. [ADS97, GB11℄).

• PGI-equation (257). (Tree diagrams with 2 external lines.) Throughout this ap-

pendix we use the notation e log ρ := e
(1)
ρ (206). With that (257) is equivalent

to

a1 − a2 + b2 − c2 = 0 ∧ b2 + b0 − b1 + c2 = 0 (261)

and a non-unique expression for P
(1)
0 :

1
2 P

(1)ν
0 = (c2 + a2)m

2 Aνu+ (b2 + b0)(σmu∂νB + (1− σ)mB∂νu) , (262)

where σ ∈ C is an arbitrary number.

• PGI-equation (258). (Tree diagrams with 3 external lines.) A type 3 term appears

only in ∂yTtree

(

L
(1)
0 (x)⊗P1(y)

)

|loc. The equation (258) is equivalent to the following
relations: P

(1)
1 is of the form

1
3 P

(1)ν
1 = αϕB∂νu+ β ϕu∂νB + γ uB∂νϕ+ λmAνuϕ , α, β, γ, λ ∈ C ; (263)

and

mA∂uϕ : 0 = −2l0 + l2 + λ− σ
3 (b2 + b0)− 2

3 b2 , (264)

mAu∂ϕ : 0 = −l1 + λ+ 5σ
3 (b2 + b0)− 2

3 b2 , (265)

m∂Auϕ : 0 = λ+ 2σ
3 (b2 + b0)− a2 +

1
3 b2 , (266)

B∂u∂ϕ : 0 = −l1 + α+ γ + 2
3 c0 , (267)

∂B∂uϕ : 0 = l2 + α+ β − 2
3 b0 , (268)

∂Bu∂ϕ : 0 = β + γ + 2
3 c0 − 2

3 b0 , (269)

uBϕ : 0 = m2
H(l4 − γ − σ (b2 + b0)− c1 +

1
3 c0)

+m2(−α− β − (1− σ)(b2 + b0) + b1 − 1
3 b0) . (270)
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The equations (264)-(270) are obtained by setting the 
oe�
ient of the indi
ated

�eld monomial to zero.

• PGI-equation (259). (Tree diagrams with 4 external lines.) A type 3 
ontribution

appears only in ∂yTtree

(

L
(1)
0 (x)⊗ P4(y)

)

|loc. There is only one type 1 
ontribution


oming from a 
ontra
tion of ∂u with ũ, namely in ∂xTtree

(

P
(1)
1 (x) ⊗ L1(y)

)

|loc.
The last term in (259) is the most di�
ult one; we explain the 
omputation: the

lo
al 
ontributions 
ome from terms of the form

1
~2

∫

dydx1dx2 g(y)(g(x1))
2g(x2) ∂

y
ν Ttree

(

(G∂νφ)(y)⊗1
2 (∂φ)

2(x1)⊗(Fτ∂
τφ)(x2)

)

|loc ,
(271)

where φ = B or φ = ϕ. The 
ontra
tion of ∂νφ(y) with ∂µφ(x1) is of type 2; the


ontra
tion of ∂µφ(x1) with ∂τφ(x2) gives a propagator i~ ∂µ∂
τ∆F (x1−x2). With

that (271) is equal to

=− i

∫

dydx1dx2 g(y)(g(x1))
2g(x2)G(y) ∂µδ(y − x1) ∂µ∂

τ∆F (x1 − x2)Fτ (x2)|loc

=i

∫

dydx2
∂µ
y (g(y))3

3 g(x2)G(y) ∂µ∂
τ∆F (y − x2)Fτ (x2)|loc

=−1
3

∫

dydx2 (g(y))
3 g(x2)G(y) ∂τ δ(y − x2)Fτ (x2)

=1
3

∫

dy
(

3
4 ∂τ (g(y))

4 G(y)Fτ (y) + (g(y))4 ∂τG(y)Fτ (y)
)

=

∫

dy (g(y))4
(

1
12 ∂

τG(y)Fτ (y)− 1
4 G(y)∂τFτ (y)

)

, (272)

where non-lo
al terms are omitted. If the x2-vertex is of the simpler form (Fφ)(x2),
then ∂τ∆F (x1 − x2)Fτ (x2) is repla
ed by −∆F (x1 − x2)F (x2) and it results

1
3

∫

dy (g(y))4 G(y)F (y) .

Pro
eeding as for (258), the PGI-equation (259) is equivalent to the following: P
(1)
2

is of the form

1
4 P

(1)ν
2 = Υuϕ2Aν + ΞuB2Aν , Υ,Ξ ∈ C , (273)
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and

A2A∂u : 0 = l11 , (274)

Bϕ2u : 0 = −mα+
m2

H

2m (l8 − 3l3 + 2l4 − σ(b2 + b0)− 3γ − 2β + c0 − 2
3b0) ,
(275)

mA2Bu : 0 = −l6 + l0 + σ(b2 + b0) + γ − 1
3c0 , (276)

m2
H

2m B3u : 0 = l9 − l4 − σ(b2 + b0)− γ + 1
3c0 , (277)

Aϕ2∂u : 0 = Υ− l5 +
3
4 l2 − 1

4β − 1
12b0 , (278)

∂Aϕ2u : 0 = Υ− 1
4 l2 − 1

2a2 +
3
4β + 1

4b0 , (279)

2Auϕ∂ϕ : 0 = Υ + 1
4 l2 − 1

2 l1 +
3
4β + 1

4b0 , (280)

AB2∂u : 0 = Ξ− l6 +
3
4 l1 +

1
4γ − 1

12c0 , (281)

∂AB2u : 0 = Ξ− 1
4 l1 − 1

2a2 − 3
4γ + 1

4c0 , (282)

2AuB∂B : 0 = Ξ + 1
4 l1 − 1

2 l2 − 3
4γ + 1

4c0 . (283)

• PGI-equation (260). (Tree diagrams with 5 external lines.) Note that

∂yTtree

(

L
(1)
1 (x)⊗ P2(y)

)

|loc = 0 = ∂yTtree

(

L1(x)⊗ P
(1)
2 (y)

)

|loc , (284)

sin
e Aν(y) (appearing in P2(y) and P
(1)
2 (y)) has no partner �eld ∂µA

µ(x) whi
h
is needed for a type 3 
ontribution. Pro
eeding as above we get

uBA2ϕ : 0 = l5 − l6 + β + γ + 1
3(b0 − c0) , (285)

m2
H

2m2uϕ
3B : 0 = l8 − l7 − β − γ + 1

3(c0 − b0) , (286)

m2
H

2m2uϕB
3 : 0 = l9 − l8 − β − γ + 1

3(c0 − b0) . (287)

The system of equations (261), (264)-(270), (274)-(283) and (285)-(287) 
ontains a

lot of redundan
ies; the most general solution is given in (171). To 
omplete this result

we add

α = 0 , β = −l1 +
2b0
3 , γ = l1 − 2c0

3 , λ = b0 + c2 − b1 − 2l1
3 ,

Υ = l1 − 3b0
4 , Ξ = l1 − 3c0

4 (288)

and the relation determining σ,

σ(b1 − c2) = l1 − b0 + b1 − c2 . (289)

The most general solution of the BRST-
ondition (54) (given in (59)-(61) and for the

pertinent Q-vertex see (170)) is a true subset of the PGI-tree solution 
omputed here, due

to Remark 7.1. This subset property is a good 
he
k of the 
al
ulations in this appendix.

The result (171) gives the restri
tions from PGI-tree on the 1-loop 
oe�
ients e
(1)
ρ .

The 
orresponding restri
tions on the higher loop 
oe�
ients e
(2)
ρ , e

(3)
ρ , . . . 
an be ob-

tained by 
ontinuing the 
al
ulations in this appendix: one has to sele
t the lo
al terms

of (169) whi
h are of order ~
0τ rκl for l arbitrary and r = 2, 3, . . . .
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Remark C.2. We now are able to see, why the 
laim (134) holds true. First note that

PC for S
(

izρ(L)(g)
)

(133) implies PC for the 
onne
ted time-ordered produ
ts:

lim
ε↓0

[Q,Sc
(

izρ(L)(gε)
)

]⋆ ≈ 0 , (290)

this follows analogously to (169). Now, using the τ -tri
k in this equation, the terms ∼ τ0

vanish separately, be
ause they are the U(1)-Higgs model, whi
h ful�lls PGI and, hen
e,

also (290). Therefore, taking τ = ~ into a

ount, there 
annot be a 
an
ellation of terms

∼ ~
0τ1κ4 with terms ∼ ~

1τ0κ4; hen
e, the terms ∼ ~
0τ1κ4 (whi
h are tree-terms) must

ful�ll (290) separately. Moreover, as explained above, the non-lo
al 
onne
ted tree terms

ful�ll PGI separately and, hen
e, they ful�ll also (290) separately. Now, as we see from

(274), there is only one lo
al 
onne
ted (tree) term ∼ ~
0τ1κ4 A2A∂u 
ontributing to the

l.h.s. of (290), namely the r.h.s. of (134); therefore, the latter must be ≈ 0 individually.
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