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Abstract

Various aspects of the geometric setting of Algebraic Quantum Field Theory (AQFT) models
related to representations of the Poincaré group can be studied for general Lie groups, whose
Lie algebra contains an Euler element, i.e., ad h is diagonalizable with eigenvalues in {−1, 0, 1}.
This has been explored by the authors and their collaborators during recent years. A key
property in this construction is the Bisognano–Wichmann property (thermal property for wedge
region algebras) concerning the geometric implementation of modular groups of local algebras.

In the present paper we prove that under a natural regularity condition, geometrically imple-
mented modular groups arising from the Bisognano–Wichmann property, are always generated
by Euler elements. We also show the converse, namely that in presence of Euler elements and
the Bisognano–Wichmann property, regularity and localizability hold in a quite general setting.
Lastly we show that, in this generalized AQFT, in the vacuum representation, under analogous
assumptions (regularity and Bisognano–Wichmann), the von Neumann algebras associated to
wedge regions are type III1 factors, a property that is well-known in the AQFT context.
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1 Introduction

This paper is part of a project by the authors and collaborators aiming to deepen the relations
between geometric properties of Algebraic Quantum Field Theory (AQFT), Lie theory and
unitary representation theory; see [MN21, MNO23a, MNO23b, NÓ21, NÓØ21, FNÓ23].

Starting from fundamental properties of a relativistic quantum theory, the Bisognano–
Wichmann (BW) property and the PT symmetry, a generalized setting to study AQFT models
has been developed, that starts from the geometry and representations of the symmetry group
as fundamental input. Through this description, it was possible to present a new large set
of mathematical models in an abstract way (nets on abstract wedge spaces) or a geometric
way (nets on open subsets of homogeneous spaces). A key role is played by the Bisognano–
Wichmann property which in AQFT models ensures that the vacuum state is thermal for any
geodesic observer in a wedge region (see e.g. [Lo97] and references therein). In our context
the Bisognano-Wichmann property serves to provide a geometric implementation of modular
groups of some local algebras. Along this analysis, a fundamental role has been played by
Euler elements that also have been extensively studied in Lie theory (see e.g. [MN21] and
[MNO23a]) and here creates a bridge between Lie theory, the AQFT localization properties,
and the modular theory of operator algebras.

Nets of standard subspaces (in the one-particle representation) are fundamental objects
to analyze properties of AQFT Models. In particular, they play a central role in the recent
study of entropy and energy inequalities (see [MTW22, Lo20, CLRR22, CLR20] and references
therein), new constructions in AQFT ([MN22, LL15, LMPR19, MMTS21]), and in a very large
family of models (see references in [DM20]). Due to the Bisognano–Wichmann property and
the PCT symmetry, the language of standard subspaces deeply relates the geometry of the
symmetry group with its representation theory and the algebraic objects related to the local
von Neumann algebras.

To introduce the main ideas of this paper, we first recall the key steps to understand the
setting we developed for this generalized AQFT.

Geometric setting : In the physics context, the underlying manifolds are relativistic spacetimes,
i.e., time-oriented Lorentzian manifolds. In Minkowski or de Sitter spacetime localization
regions are called wedges and they are specified by one-parameter groups of Lorentz boosts
fixing them. On 2-dimensional Minkowski spacetime, the conformal chiral components yield
fundamental localization regions, corresponding to circle intervals, which are also specified by
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one-parameter groups of dilations of the Möbius group. So one can describe fundamental
localization regions in terms of generators of certain one-parameter groups in the Lie algebra
of the symmetry group. This framework can be generalized to the context where G is a
(connected) Lie group whose Lie algebra g contains an Euler element h (ad h is diagonalizable
with eigenvalues in {−1, 0, 1}) to construct an abstract version of the correspondence between
wedge regions and boost generators. In particular, one can associate to every connected simple
Lie group G and any Euler element h ∈ g a non-compactly causal symmetric space M = G/H
(see Section 2.1.3 and [MNO23a] for details). For the Lorentz group G = SO1,d(R)e, we thus
obtain de Sitter space M = dSd. In this case we associate to every boost generator (=Euler
element) the corresponding wedge region, and, in the general context, a wedge region in M
associated to h is a connected component of the open subset on which the flow of h is “future
directed” (timelike in the Lorentzian case). More generally, for an Euler element in a reductive
Lie algebra g, there exists a non-compactly causal symmetric space G/H in which one can
identify wedge regions W , but localization extends to general non-empty open subsets, see
Section 2.1 for details.

AQFT setting : Models in AQFT are determined by nets of von Neumann algebras indexed by
open regions of the spacetime satisfying fundamental quantum and relativistic assumptions, in
particular isotony, locality, Poincaré covariance, positivity of the energy, and existence of the
vacuum vector with Reeh-Schlieder property. Nets of standard subspaces arise at least in two
natural ways: as the one-particle nets in irreducible Poincaré representations, from which the
free fields are obtained by second quantization, and by acting with the self-adjoint part of the
local von Neumann algebras on a cyclic separating vacuum vector. The Bisognano–Wichmann
property and the anti-unitary PCT symmetry determine the wedge subspaces and the key role
in this identification is played by Tomita–Takesaki theory. This technique has been established
by Brunetti, Guido and Longo in [BGL02] for cases of physical relevance.

This construction has been realized in a much wider generality by the authors in the current
project (cf. the references above) with the following idea: given an involutive automorphism σ
of a Lie group G, an (anti-)unitary representation U of the extended group Gσ = G⋊{1, σ} on
an Hilbert space H, an Euler element h in the Lie algebra g of G, and a G-transitive family W+

of abstract wedges (fiber-ed over the adjoint orbit of h), then one can associate an “abstract
net” (H(W ))W∈W+

of standard subspaces of H giving a net only depending on the symmetry
group. This construction builds on the Brunetti–Guido–Longo (BGL) construction ([BGL02]
and [LRT78]).

Often this net can be realized geometrically on a causal homogeneous spaceM , in such a way
that the abstract wedge acquires a geometric interpretation as wedge regions inM . Here we call
a G-space causal if it contains a family Cm ⊆ Tm(M) of a pointed, generating, closed convex
cones which is invariant under the G-action. Typical examples are time-oriented Lorentzian
manifolds on which G acts by time-orientation preserving symmetries or conformal maps. Given
a representation of Gσ, one can then try to extend the canonical net of standard subspaces
from the set of wedge regions to arbitrary open subsets O ⊆ M . A net of real subspaces
associates to open regions of a causal homogeneous space real subspaces of localized states
satisfying properties that are analogous to those of nets of von Neumann algebras: For a unitary
representation (U,H) of a connected a Lie group G and a homogeneous space M = G/H , we
consider families (H(O))O⊆M of closed real subspaces of H, indexed by open subsets O ⊆ M
with the following properties:

(Iso) Isotony: O1 ⊆ O2 implies H(O1) ⊆ H(O2)

(Cov) Covariance: U(g)H(O) = H(gO) for g ∈ G.

(RS) Reeh–Schlieder property: H(O) is cyclic if O 6= ∅.
(BW) Bisognano–Wichmann property: There exists an open subsetW ⊆M (called a wedge

region), such that H(W ) is standard with modular group ∆
−it/2π
H(W )

= U(exp th), t ∈ R, for

some h ∈ g, for which exp(Rh).W ⊆W .
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So one has to specify the real subspaces associated to wedge regions and identify their
properties. There are different possibilities to extend to larger classes of open subsets, that in
general do not coincide. One is based on specifying certain generator spaces in which a linear
basis may correspond to components of a field onM and then obtain local subspaces in terms of
test functions, see [NÓ21, FNÓ23] for irreducible representations and Theorem 4.24 for general
representations of reductive groups). Alternatively, one can specify maximal covariant nets
which are isotonic and have the (BW) property, here discussed in Section 2.2.4.

In this paper we discuss the necessity and the consequences of considering Euler elements as
fundamental objects for our constructions. We will further see how this choice will be consistent
with AQFT models. This will be done by facing the following three questions:

Question 1. Is it necessary to consider Euler elements determining fundamental localization
regions for one particle nets?

Yes, it is a consequence of the Bisognano–Wichmann property and a natural regularity
property: Given a standard subspace H whose modular group corresponds to a one-parameter
subgroup (exp th)t∈R of G (BW property), in Theorem 3.1 we show that h is an Euler element
if there exists an e-neighborhood N ⊆ G for which

⋂
g∈N U(g)V is cyclic. This result is abstract

and does not refer to any geometry of wedges or subregions but can be applied to any net
of real subspaces satisfying a minimal set of of axioms, such as (Iso), (Cov), (RS) and (BW).
Our Euler Element Theorem (Theorem 3.1) has particularly striking consequences for such
nets. In this setting, it implies in particular that all modular groups that are geometrically
implementable by one-parameter subgroups of finite-dimensional Lie groups in the sense of the
(BW) property, are generated by Euler elements. Similar regularity conditions are satisfied in
many AQFT models and an analogous property has been used also in [BB99, Def. 3.1] and
[Str08, Sect. IV.B].

The second question concerns the converse implication:
Question 2: Are the nets of standard subspaces associated to Euler elements regular? More
precisely, let h ∈ g be an Euler element, τh = eπi adh the corresponding involution on g, and
suppose that this involution on g integrates to an involution τGh on G, so that we can form
the group Gτh := G⋊ {idG, τGh }. Given an (anti-)unitary representation of this group Gτh , we
consider the canonical standard subspace V = V(h,U) ⊆ H, specified by

∆V = e2πi∂U(h) and JV = U(τGh )

(cf. [BGL02]). A natural way to address such regularity questions is to associate to V a net
H

max defined on open subsets of a homogeneous space M = G/H by

H
max(O) :=

⋂

O⊆g.W
U(g)V

(cf. (20)). If every g ∈ G with g.W ⊆ W satisfies U(g)V ⊆ V, this leads to a covariant,
isotone map with H

max(W ) = V. Regularity now corresponds to the existence of open subsets
O ⊆ W with N.O ⊆ W for which H

max(O) is cyclic (Reeh–Schlieder property). We show
that regularity follows if the representation satisfies certain positivity conditions, namely that
the “positive energy” cones C± in the abelian Lie subalgebras g±1(h) = ker(ad h ∓ 1) are
generating; see Theorem 4.10. This requirement can be weakened as follows. If G = N ⋊ L
is a semidirect product and we know already that the restriction U |L satisfies the regularity
condition, then it suffices that the intersections C± ∩ n±1(h) generate n±1(h) (Theorem 4.12).
This is in particular the case for positive energy representations of the connected Poincaré
group G = P = R

1,d
⋊ L↑

+. That representations of linear reductive groups always satisfy
the regularity condition can be derived from some localizability property asserting for every
(anti-)unitary representation the existence of a net on the associated non-compactly causal
symmetric space, satisfying (Iso), (Cov), (RS) and (BW) (Theorem 4.24). In particular, the
maximal net Hmax has this property. As every algebraic linear Lie group is a semidirect product
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G = N ⋊ L, where N is unipotent and L is reductive [Ho81, Thm. VIII.4.3], many questions
related to regularity can be reduced to representations of nilpotent groups. These regularity
results include all the physically relevant one-particle models; for instance the U(1)-current and
its derivatives (covariant under the Möbius group) satisfy the hypotheses of Theorem 4.10 and
so do the one-particle representations of the Poincaré group, to which Theorem 4.12 applies,
but not Theorem 4.10.

Question 3: What can we say on nets of von Neumann algebras? Once fundamental local-
ization regions are specified, it is natural to discuss nets of von Neumann algebras on causal
homogeneous spaces as above. Such nets exist because second quantization of one-particle nets
on causal homogeneous spaces produces nets of operator algebras. For a systematic construc-
tion of twisted second quantization functors, we refer to [CSL23]. Second quantization nets
correspond to bosonic second quantization in AQFT, in general a spin-statistics result is still
to be obtained. The results on von Neumann algebras presented here apply to general geo-
metric relative position of von Neumann algebras, and second quantization provides examples
of nets on causal G-spaces. In Section 5, Theorem 5.15 implies that, given a connected Lie
group G, when the BW property and a suitable regularity property hold, and there is a unique
G-fixed state (the vacuum state), then the wedge algebras are factors of type III1 with respect
to Connes’ classification of factors [Co73]. This extends the known results in AQFT dealing
with more specific groups and spaces (see for instance [Dr77, Lo82, Fr85, BDF87, BB99] and
references therein). Here the key property for an Euler element h ∈ g implementing the mod-
ular group through the BW property is to be anti-elliptic, i.e., any quotient q = g/n (n E g

an ideal), for which the image of h in q is elliptic1 is at most one-dimensional and linearly
generated by the image of h. If g is simple, then g has no non-trivial quotients, so that any
Euler element h ∈ g is anti-elliptic, but Theorem 5.15 covers much more general situations. We
actually do not need to start this discussion with a vacuum vector, but with a vector that is
invariant under U(exp(Rh)). The case of non-unique invariant vector is discussed in Section 5.4
in terms of a direct integral decomposition taking all structures into account.

Along the paper, only very few comments on locality, or its twisted version, will come up.
This is because the regularity property as well as the localization property merely refer to
a subspace, resp., a subalgebra. To implement (twisted-) locality conditions, suitable wedge
complements have to be introduced (cf. [MN21]). In our general setting, some work still has to
be done to adapt the second quantization procedure.

Recently, operator algebraic techniques have been very fruitful for the study of energy
inequalities. In many of these results the modular Hamiltonian is instrumental. This object
corresponds to the logarithm of the modular operator of a local algebra of a specific “wedge
region”, which in some cases can be identified with the generator of a one-parameter group of
spacetime symmetries by the Bisognano–Wichmann property (see for instance [MTW22, Lo20,
CLRR22, Lo19, CLR20, Ara76, LX18, LM23]). In our setting, we start with a general Lie
algebra element h ∈ g specifying the flow implemented by the modular operator through the
(BW) property. Then

log∆H(W ) = 2πi · ∂U(h)

is the corresponding modular Hamiltonian. In this case, we know from Theorems 3.1 and 5.15
that h has to be an Euler element. In particular we obtain an abstract algebraic characterization
of those elements in the Lie algebra of the symmetry group that may correspond to modular
Hamiltonians. The study of the modular flow on the manifold is particularly relevant. In order
to find regions where to prove energy inequalities, one may also need to deform the modular
flow ([MTW22, CF20]). Due to the recent characterization of modular flows on homogeneous
space, a specific geometric analysis is expected to be possible.

1We call x ∈ g elliptic if adx is semisimple with purely imaginary spectrum, i.e., diagonalizable over C with purely
imaginary eigenvalues.
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This paper is structured as follows: In Section 2 we recall the fundamental geometry of
Euler elements, both abstractly and on causal homogeneous spaces. In Section 2.1 we recall
the geometry of standard subspaces, properties of nets of standard subspaces and the axioms
(Iso), (Cov), (BW) and (RS). In particular, Section 2.2.4 introduces minimal and maximal nets
on open subsets of a causal homogeneous space M = G/H that are associated to an Euler
element h ∈ g and a corresponding wedge region W ⊆M .

In Sections 3, 4 and 5 we discuss Questions 1,2 and 3, respectively. Our key result, the
Euler Element Theorem (Theorem 3.1) is proved in Subsection 3.1. In Subsection 3.2 we
describe its implications for operator algebras with cyclic separating vectors (Theorems 3.7
and 3.9). The main results of Subsection 4.1 are Theorems 4.10 and 4.12, deriving regularity
from positive spectrum conditions. In Subsection 4.2, we turn to localizability aspects of
nets of real subspaces. Here our main results are Theorem 4.24, asserting localizability for
linear reductive groups in all representations in all non-empty open subsets of the associated
non-compactly causal symmetric space for a suitably chosen wedge region. This allows us to
derive that, for the Poincaré group, localizability in spacelike cones is equivalent to the positive
energy condition (Theorem 4.26). In Section 5 we continue the discussion of applications of our
results to standard subspace and von Neumann algebras M by systematically using Moore’s
Eigenvector Theorem 5.1. The first main result in this section are Theorem 5.11, characterizing
for (anti-)unitary representation (U,H) of Gτh the subspace VG =

⋂
g∈G U(g)V as the set of

fixed points of a certain normal subgroup specified in Moore’s Theorem. The second one is
Theorem 5.15 that combines Moore’s Theorem with Theorem 3.7 to obtain a criterion for M
to be a factor of type III1. If M is not a factor, but M′ and M are conjugate under G, we
show that all the structure we discuss survives the central disintegration of M.

We conclude this paper with an outlook section and four appendices, concerning background
on operator algebras, unitary Lie group representations, direct integrals, and some more specific
observations needed to discuss examples.

Notation

• Strips in C: Sβ = {z ∈ C : 0 < Im z < β} and S±β = {z ∈ C : | Im z| < β}.
• The neutral element of a group G is denoted e, and Ge is the identity component.

• The Lie algebra of a Lie group G is denoted L(G) or g.

• For an involutive automorphism σ of G, we write Gσ = {g ∈ G : σ(g) = g} for the
subgroup of fixed points and Gσ := G⋊ {idG, σ} for the corresponding group extension.

• AU(H) is the group of unitary or antiunitary operators on a complex Hilbert space.

• An (anti-)unitary representation of Gσ is a homomorphism U : Gσ → AU(H) with U(G) ⊆
U(H) for which J := U(σ) is antiunitary, i.e., a conjugation.

• Unitary or (anti-)unitary representations on the complex Hilbert space H are denoted as
pairs (U,H).

• U is the canonical unitary representation on the complex conjugate space H, where the
operators U(g) = U(g) are the same, but the complex structure is given by Iξ := −iξ.

• If (U,H) is a unitary representation of G and J a conjugation with JU(g)J = U(σ(g))
for g ∈ G, the canonical extension U ♯ of U to Gσ is specified by U ♯(σ) := J (cf. Defini-
tion 2.23).

• If G is a group acting on a set M and W ⊆ M a subset, then the stabilizer subgroup
of W in G is denoted GW := {g ∈ G : g.W =W }, and SW := {g ∈ G : g.W ⊆W }.

• A closed real subspace V of a complex Hilbert space H is called standard if V ∩ iV = {0}
and V+ iV is dense in H.
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• If g is a Lie algebra and h ∈ g, then gλ(h) = ker(ad h − λ1) is the λ-eigenspace of adh
and gλ(h) =

⋃
k ker(ad h− λ1)k is the generalized λ-eigenspace.

• An element h of a Lie algebra g is called

– hyperbolic if ad h is diagonalizable over R

– elliptic or compact if ad h is semisimple with purely imaginary spectrum, i.e., eR adh

is a compact subgroup of Aut(g).

• A causal G-space is a smooth G-space M , endowed with a G-invariant causal structure,
i.e., a field (Cm)m∈M of closed convex cones Cm ⊆ Tm(M).

• For a unitary representation (U,H) of G we write:

– ∂U(x) = d
dt

∣∣
t=0

U(exp tx) for the infinitesimal generator of the unitary one-parameter
group (U(exp tx))t∈R in the sense of Stone’s Theorem.

– dU : g → End(H∞) for the representation of the Lie algebra g on the space H∞ of
smooth vectors. Then ∂U(x) = dU(x) (operator closure) for x ∈ g.

Acknowledgment: The authors thank Roberto Longo and Detlev Buchholz for helpful dis-
cussions. VM was partially supported by the University of Rome through the MUN Excellence
Department Project 2023-2027, the “Tor Vergata” CUP E83C23000330006, Fondi di Ricerca
Scientifica d’Ateneo 2021, OAQM, CUP E83C22001800005, and the European Research Coun-
cil Advanced Grant 669240 QUEST. VM also thanks INdAM-GNAMPA. The research of K.-H.
Neeb was partially supported by DFG-grant NE 413/10-2.

2 Preliminaries

In this section we recall fundamental geometric structures related to Euler elements of Lie
algebras and corresponding symmetric spaces. Its main purpose is to introduce notation and
some general techniques that will be used throughout the paper. Subsection 2.1 deals with
abstract wedge spaces of graded Lie groups Gσ and how they can be related to sets of wedge
regions in homogeneous causal G-spaces M = G/H . Subsection 2.2 then turns to nets of real
subspaces H(O), associated to open subsets O of some homogeneous space of G. Here we
introduce the basic axioms (Iso), (Cov), (RS) and (BW). We also show that, if (BW) holds for
some h ∈ g and some wedge region W ⊆ M , for which g.W ⊆ W implies g.H(W ) ⊆ H(W ),
we obtain minimal and maximal isotone, covariant nets Hmin and H

max satisfying (BW), such
that any other net H with these properties satisfies

H
min(O) ⊆ H(O) ⊆ H

max(O)

on all open subsets O ⊆ M . We also study basic properties of intersections of standard
subspaces in G-orbits.

2.1 The geometry of Euler elements

In this subsection we recall some fundamental geometric structures related to Euler elements
in the Lie algebra g of a Lie group G. For more details and background, we refer to [MN21,
MNO23a, MNO23b, NÓ22].

2.1.1 Euler elements

Let G be a connected Lie group, the Lie algebra of a Lie group G is denoted L(G) or g. For an
involutive automorphism σ of G, we write Gσ = {g ∈ G : σ(g) = g} for the subgroup of fixed
points and Gσ := G ⋊ {idG, σ} for the corresponding group extension. Then

ε : Gσ → ({±1}, ·), (g, idG) 7→ 1, (g, σ) 7→ −1

7



is a group homomorphism that defines on Gσ the structure of a Z2-graded Lie group.

Remark 2.1. (a) The group Gσ depends on σ, but two involutive automorphisms σ1 and
σ2 lead to isomorphic extensions Gσ1 ∼= Gσ2 if and only if σ2σ

−1
1 is an inner automorphism

cy(x) = yxy−1 for some y ∈ G with σ1(y) = y−1 (hence also σ2(y) = y−1). Then

Φ: Gσ2 → Gσ1 , (g, idG) 7→ (g, idG), (e, σ2) 7→ (y, σ1)

defines an isomorphism because

(y, σ1)(g, idG)(y, σ1)
−1 = (yσ1(g)y

−1, idG) = (σ2(g), idG)

and
(y, σ1)

2 = (yσ1(y), idG) = (e, idG).

(b) If σ is inner, then the above argument shows that Gσ ∼= G × {±1} is a product group.
Therefore (anti-)unitary representations (U,H) of Gσ restrict to unitary representations U of
G for which there exists a conjugation J commuting with U(G). Then the real Hilbert space HJ

is U(G)-invariant, and (U,H) is simply the complexification of the so-obtained real orthogonal
representation of G on which J acts by complex conjugation.

Definition 2.2. (a) We call an element h of the finite dimensional real Lie algebra g an Euler
element if adh is non-zero and diagonalizable with Spec(ad h) ⊆ {−1, 0, 1}. In particular the
eigenspace decomposition with respect to ad h defines a 3-grading of g:

g = g1(h)⊕ g0(h)⊕ g−1(h), where gν(h) = ker(ad h− ν idg)

Then τh(yj) = (−1)jyj for yj ∈ gj(h) defines an involutive automorphism of g.
We write E(g) for the set of Euler elements in g. The orbit of an Euler element h under

the group Inn(g) = 〈ead g〉 of inner automorphisms is denoted with Oh = Inn(g)h ⊆ g. We say
that h is symmetric if −h ∈ Oh.
(b) The set

G:= G(Gσ) := {(h, τ ) ∈ g×Gσ : : τ
2 = e, ε(τ ) = −1,Ad(τ )h = h}

is called the abstract wedge space of Gσ. An element (h, τ ) ∈ G is called an Euler couple or
Euler wedge if h ∈ E(g) and

Ad(τ ) = τh. (1)

Then τ is called an Euler involution. We write GE ⊆ G for the subset of Euler couples.
(c) On g we consider the twisted adjoint action of Gσ which changes the sign on odd group
elements:

Adε : Gσ → Aut(g), Adε(g) := ε(g)Ad(g). (2)

It extends to an action of Gσ on G by

g.(h, τ ) := (Adε(g)h, gτg−1). (3)

(d) (Order structure on G) For a given Adε(G)-invariant pointed closed convex cone Cg ⊆ g, we
obtain an order structure on G as follows ([MN21, Def. 2.5]). We associate to W = (h, τ ) ∈ G
a semigroup SW whose unit group is SW ∩ S−1

W = GW , the stabilizer of W . It is specified by

SW := exp(C+)GW exp(C−) = GW exp
(
C+ + C−

)
.

Here the convex cones C± are the intersections

C± := ±Cg ∩ g
−τ ∩ g±1(h), where g

±τ := {y ∈ g : Ad(τ )(y) = ±y}. (4)

That SW is a semigroup follows from [Ne22, Thm. 2.16], applied to the Lie subalgebra

LW := (C+ − C+) + g0(h)
τ + (C− − C−),
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in which h is an Euler element. That LW is a Lie algebra follows from [C+, C+] = [C−, C−] = {0}.
To see this, observe that g+ :=

∑
λ>0 gλ(h) is a nilpotent Lie algebra, so that the subspace

n := (CU ∩ g+)− (CU ∩ g+) is a nilpotent Lie algebra generated by the pointed invariant cone
CU ∩ g+, hence abelian by [Ne99, Ex. VII.3.21].

Then SW defines a G-invariant partial order on the orbit G.W ⊆ G by

g1.W ≤ g2.W :⇐⇒ g−1
2 g1 ∈ SW . (5)

In particular, g.W ≤W is equivalent to g ∈ SW .
(e) (Duality operation) The notion of a “causal complement” is defined on the abstract wedge
space as follows: For W = (h, τ ) ∈ G, we define the dual wedge by W ′ := (−h, τ )= τ.W .
Note that (W ′)′ = W and (gW )′ = gW ′ for g ∈ G by (3). This relation fits the geometric
interpretation in the context of wedge domains in spacetime manifolds.

Remark 2.3. If h ∈ g is an Euler element in a simple real Lie algebra, then the cases where
the involution τh is inner are classified in [MNO23c].

Remark 2.4. Let W = (h, τ ) ∈ G and consider y ∈ g. Then exp(Ry) fixes W if and only if

[y, h] = 0 and y = Ad(τ )y.

If (h, τ ) is an Euler couple, then Ad(τ )y = τhy = y follows from y ∈ g0(h), so that

gW := {y ∈ g : exp(Ry) ⊆ GW } = g0(h) = ker(adh). (6)

Definition 2.5. (The abstract wedge space) For a fixed couple W0 = (h, τ ) ∈ G, the orbits

W+(W0) := G.W0 ⊆ G and W(W0) := Gσ.W0 ⊆ G

are called the positive and the full abstract wedge space containing W0.

Here is a classification theorem of real Lie algebra supporting Euler elements. The families
are determined by their root system:

Theorem 2.6. ([MN21, Thm. 3.10]) Suppose that g is a non-compact simple real Lie algebra
and that a ⊆ g is maximal ad-diagonalizable with restricted root system Σ = Σ(g, a) ⊆ a∗ of
type Xn. We follow the conventions of the tables in [Bo90] for the classification of irreducible
root systems and the enumeration of the simple roots α1, . . . , αn. For each j ∈ {1, . . . , n}, we
consider the uniquely determined element hj ∈ a satisfying αk(hj) = δjk. Then every Euler
element in g is conjugate under inner automorphism to exactly one hj. For every irreducible
root system, the Euler elements among the hj are the following:

An : h1, . . . , hn, Bn : h1, Cn : hn, Dn : h1, hn−1, hn, E6 : h1, h6, E7 : h7. (7)

For the root systems BCn, E8, F4 and G2 no Euler element exists (they have no 3-grading).
The symmetric Euler elements (see Definition 2.2(a)) are

A2n−1 : hn, Bn : h1, Cn : hn, Dn : h1, D2n : h2n−1, h2n, E7 : h7. (8)

Example 2.7. (Wedge regions in Minkowski and de Sitter spacetimes) The Minkowski space-
time is the manifold R

1,d endowed with the Minkowski metric

ds2 = dx2
0 − dx2

1 − . . .− dx2
d.

The de Sitter spacetime is the Minkowski submanifold dSd = {(x0,x) ∈ R
1,d : x2−x2

0 = 1}, en-
dowed with the metric obtained by restriction of the Minkowski metric to dSd. In the literature
the x0-coordinate is often denoted t as it is interpreted as a time coordinate. The symmetry
groups of isometries for these spaces are the (proper) Poincaré group P+ = R

1,d
⋊ SO1,d(R) on

Minkowski space R
1,d and the (proper) Lorentz group L+ = SO1,d(R) on dSd.

9



The generator h ∈ so1,d(R) of the Lorentz boost on the (x0, x1)-plane

h(x0, x1, x2, . . . , xd) = (x1, x0, 0, . . . , 0)

is an Euler element. It combines with the spacetime reflection

jh(x) = (−x0,−x1, x2, . . . , xd)

to the Euler couple (h, jh) ∈ G(L+) ⊆ G(P+), for the graded Lie groups L+ = SO1,d(R) and P+.
The spacetime region

WR = {x ∈ R
1,d : |x0| < x1}

is called the standard right wedge in Minkowski space, and

W dS
R :=WR ∩ dSd

is the corresponding wedge region in de Sitter space. Note that WR and therefore W dS
R are

invariant under exp(Rk1). Poincaré transformed regions W = g.WR, g ∈ P+, are called wedge
regions in Minkowski space; likewise the regionsW dS = g.W dS

R , g ∈ L+, are called wedge regions
in de Sitter space. To W = g.WR we associate the boost group ΛW (t) := exp(tAd(g)h).
They are in equivariant one-to-one correspondence with abstract Euler couples in GE(P+)
and GE(L+), respectively. Here the couple (h, jh) corresponds to WR and W dS

R , respectively
(cf. [NÓ17, Lemma 4.13], [MN21, Rem. 2.9(e)] and [BGL02, Sect. 5.2]).

2.1.2 Wedge domains in causal homogeneous spaces

In this subsection we recall how to specify suitable wedge regions W ⊆ M in a causal ho-
mogeneous space M = G/H . Motivated by the Bisognano–Wichmann property (BW) in
AQFT, the modular flow, namely the flow of the one-parameter group generated by an Euler
element on a causal homogeneous space M should be timelike future-oriented. Indeed, the
modular flow is correspond to the inner time evolution of Rindler wedges (see [CR94] and also
[BB99, BMS01, Bo09], [CLRR22, §3]). In our context this means that the modular vector field

XM
h (m) :=

d

dt

∣∣∣
t=0

exp(th).m (9)

should satisfy
XM
h (m) ∈ C◦

m for all m ∈ W,

where the causal structure onM is specified by the G-invariant field (Cm)m∈M of closed convex
cones Cm ⊆ Tm(M). If this condition is satisfied in one m ∈ M , we may always replace h by
a conjugate and thus assume that it holds in the base point m = eH . Then the connected
component

W := W+
M (h)eH (10)

of the base point eH ∈M in the positivity region

W+
M (h) := {m ∈M : XM

h (m) ∈ C◦
m} (11)

is the natural candidate for a domain for which (BW) could be satisfied. Note that this domain
depends on h and the causal structure on M and that W is invariant under the connected
stabilizer Ghe of h, hence in particular under exp(Rh). These “wedge regions” have been studied
for compactly and non-compactly causal symmetric spaces in [NÓ23] and [NÓ22, MNO23b],
respectively.
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Remark 2.8. If Z(G) = {e}, then each Euler element h ∈ g determines a pair (h, τh) ∈ GE
uniquely. So the stabilizers G(h,τh) and Gh coincide and we may identify W+(h, τh) ⊆ GE
with the adjoint orbit Oh = Ad(G)h. We thus obtain a natural map from W+(h, τh) ∼= Oh to
regions in M by g.(h, τh) 7→ g.W+

M (h). If, in addition, Gh preserves the connected component
W ⊆ W+

M(h) (which is in particular the case if W+
M (h) is connected, hence equal to W ), this

leads to a map from the abstract wedge space W+(h, τh) to the geometric wedge space on M .
Proposition 2.9 below implies that it is isotone if the order on W+(h, τh) is specified by the
invariant cone CM from (12).

The compression semigroup of a wedge region

Let M = G/H be a causal homogeneous space and (Cm)m∈M its causal structure. Writing
G × TM → TM, (g, v) 7→ g.v for the action of G on the tangent bundle, this means that
g.Cm = Cg.m for g ∈ G,m ∈ M . Identifying TeH(M) with g/h, we consider the projection
p : g → g/h and the cone C := CeH ⊆ g/h. For y ∈ g, the corresponding vector field on M is
given by

XM
y (gH) =

d

dt

∣∣∣
t=0

exp(ty).gH = g.
d

dt

∣∣∣
t=0

exp(tAd(g)−1y).eH = g.p(Ad(g)−1y).

The set
CM := {y ∈ g : (∀m ∈M)XM

y (m) ∈ Cm} =
⋂

g∈G
Ad(g)p−1(C) (12)

is a closed convex Ad(G)-invariant cone in g. If G acts effectively on M , then it is also pointed
because elements in CM ∩ −CM correspond to vanishing vector fields on M . This cone is a
geometric analog of the positive cone CU corresponding to a unitary representation of G (see
(19)). The following observation shows that it behaves in many respects similarly (cf. [Ne22]).

As any connected componentW ⊆W+
M (h) ⊆M is invariant under exp(Rh), the same holds

for the closed convex cone

CW := {y ∈ g : (∀m ∈ W ) XM
y (m) ∈ Cm} ⊇ CM .

Below we show that this cone determines the tangent wedge of the compression semigroup
of W .

Proposition 2.9. For a connected component W ⊆ W+
M(h), its compression semigroup

SW := {g ∈M : g.W ⊆W }

is a closed subsemigroup of g with GW := SW ∩ S−1
W ⊇ Ghe and

L(SW ) := {x ∈ g : exp(R+x) ⊆ SW } = g0(h) + CW,+ + CW,−, (13)

where the two convex cones CW,± are the intersections ±CW ∩g±1(h). In particular, the convex
cone L(SW ) has interior points if CM does.

Proof. As W ⊆M is an open subset, its complement W c :=M \W is closed, and thus

SW = {g ∈ G : g−1.W c ⊆W c}

is a closed subsemigroup of G, so that its tangent wedge L(SW ) is a closed convex cone in g

([HN93]).
Let m = gH ∈ W , so that p(Ad(g)−1h) ∈ C◦. For x ∈ g1(h) we then derive from

g2(h) = {0} that
et adxh = h+ t[x, h] for t ∈ R.
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This leads to

p(Ad(exp(tx)g)−1h) = p(Ad(g)−1e−t ad xh) = p(Ad(g)−1(h− t[x, h])

= p(Ad(g)−1(h+ tx)) = p(Ad(g)−1h) + tp(Ad(g)−1x).

For x ∈ CW,+, we have p(Ad(g)−1x) ∈ C, so that p(Ad(exp(tx)g)−1h) ∈ C◦ for t ≥ 0, which
in turn implies that exp(tx).m ∈ W for m ∈ W and t ≥ 0. So exp(R+x) ⊆ SW , and thus
x ∈ L(SW ). It likewise follows that CW,− ⊆ L(SW ). The invariance of W under the identify
component Ghe of the centralizer of h further entails g0(h) ⊆ L(SW ), so that

CW,+ + g0(h) + CW,− ⊆ L(SW ). (14)

We now prove the converse inclusion. If XM
x (m) 6∈ Cm, i.e., p(Ad(g)−1x) 6∈ C, then there exists

a t0 > 0 with
p(Ad(g)−1h) + t0 · p(Ad(g)−1x) 6∈ C

([Ne99, Prop. V.1.6]), so that exp(t0x).m 6∈W . We conclude that

L(SW ) ∩ g1(h) = CW,+.

Further, the invariance of the closed convex cone L(SW ) under eR adh implies that, for x =
x−1 + x0 + x1 ∈ L(SW ) and xj ∈ gj(h), we have

x±1 = lim
t→∞

e∓te±t adhx ∈ L(SW ) ∩ g±1(h) = CW,±,

which implies the other inclusion L(SW ) ⊆ CW,+ + g0(h) +CW,−, hence equality by (14).
Let p± : g → g±1(h) denote the projection along the other eigenspaces of ad h. Then

CW,± ⊇ CM,± := ±CM ∩ g±1(h) = ±p±(CM )

also follows from [NÓØ21, Lemma 3.2]. Therefore C◦
M 6= ∅ implies C◦

W,± 6= ∅, and this is
equivalent to L(SW )◦ 6= ∅.

Remark 2.10. In many situations, such as the action of PSL2(R) on the circle S
1 ∼= P1(R),

the cones CW,± ⊇ CM,± coincide, and we believe that this is probably always the case. It is
easy to see that, if x ∈ CW,+, then the positivity region

Ωx := {m ∈M : XM
x (m) ∈ Cm}

contains W (by definition), and it is also invariant under exp(Rh) and exp(Rx), to that

Ωx ⊇
⋃

t>0

exp(−tx).W. (15)

Clearly, Ωx = M follows if the right hand side of (15) is dense in M , but we now show that
Minkowski space provides an example where Ωx =M without the right hand side of (15) being
dense in M .

If G is the connected Poincaré group acting on Minkowski space M = R
1,d and

W =WR = {(x0,x) : x1 > |x0|},

then
SW =W ⋊

(
SOd−1(R)× SO1,1(R)

↑)

([NÓ17, Lemma 4.12]) implies that

CW,± = L(SW ) ∩ g1(h) = R+(±e0 + e1)

consists of constant vector fields, so that CW,± = CM,± in this case. Here we see that, for
x = e0 + e1 ∈ CW,+, the domain Ωx =W −R+x is an open half space, hence in particular not
dense in M . Therefore we cannot expect the domain Ωx in (15) to be dense in M .
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2.1.3 Non-compactly causal spaces

Let G be a connected simple Lie group and h ∈ g be an Euler element. The associated
non-compactly causal symmetric spaces are obtained as follows (see [MNO23a, Thm. 4.21]
for details). We choose a Cartan involution θ on g with θ(h) = −h, write K := Gθ for
the corresponding group of fixed points, and consider the involution τnc := τhθ ∈ Aut(g).
Assuming that the involution τnc integrates to an involution τGnc on G, we consider a subgroup

H ⊆ Fix(τGnc) = Gτ
G
nc that is open (hence has the same Lie algebra h = gτnc) and for which

H ∩K fixes h). Then M := G/H is the corresponding non-compactly causal symmetric space,
where the invariant causal structure is determined by the maximal pointed closed convex cone
C ⊆ g−τnc ∼= TeH(M) containing h. This construction ensures in particular that eH ∈W+

M (h).
Assume, in addition, that G = Inn(g) is centerfree. Then [MNO23b, Cor. 7.2] identifies W
from (11) with the “observer domain” W (γ) associated to the geodesic γ(t) = ExpeH(th)
in M . Further, [MNO23b, Prop. 7.3] thus implies that the stabilizer GW of W coincides with
the centralizer Gh of h:

GW = Gh,

so that, for centerfree groups, we may identify the wedge space

W(M,h) := G.W ∼= G/GW = G/Gh ∼= Oh

with the adjoint orbit Oh of h.
If, more generally, G is only assumed connected and M = G/H is a corresponding non-

compactly causal symmetric space, then the connected component W := W+
M(h)eH ⊆ M

containing eH is the natural wedge region and GWM ⊆ Gh may be a proper subgroup. Typical
examples arise naturally for g = sl2(R) (see [FNÓ23, Rem. 5.13]).

For non-compactly causal symmetric spaces, we typically have Gτnc 6∼= Gτh because the
product τncτh need not be inner (cf. Remark 2.1). If, for instance, g = hC and τnc is complex
conjugation with respect to h (non-compactly causal of complex type), then τh is complex linear
and τnc is antilinear, hence their product is antilinear and therefore not inner.

From τnc = θτh we derive τncτh = θ, which leads to the question when θ is inner. For a
characterization of these case, we refer to [MNO23c].

2.1.4 Compactly causal spaces

Let G be a connected Lie group and M = G/H be a compactly causal symmetric space, where
H ⊆ Gτcc is an open subgroup and τcc is an involutive automorphism of G. We assume that
there exists an Euler element h ∈ h = gτcc, so that we obtain a so-called modular compactly
causal symmetric Lie algebra (g, τcc, C, h) (cf. [NÓ22]). Here C ⊆ q := g−τcc is a pointed gener-
ating closed convex cone, invariant under Ad(H), whose interior C◦ consists of elliptic elements.
We further assume that the involution τh on g integrates to an involutive automorphism τGh
of G such that τGh (H) = H and the existence of a pointed generating Ad(G)-invariant cone
Cg ⊆ g such that

−τ (Cg) = Cg and C = Cg ∩ q.

Then eH ∈ M is a fixed point of the modular flow and there exists a unique connected
component

W =W+
M (h)eH

of the positivity domain W+
M (h) that contains eH in its boundary. Theorem 9.1 in [NÓ22] then

asserts that
SW := {g ∈ G : g.W ⊆W } = GW exp(Ccg),

where GW = {g ∈ G : g.W =W } and

Ccg := Cg,+ + Cg,−⊆ g
−τh for Cg,± := ±Cg ∩ g±1(h). (16)
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The cone Ccg is −τcc-invariant with

(Ccg)
−τcc = Ccg ∩ q = C+ + C− for C± := ±Cg ∩ q±1(h) = ±C ∩ q±1(h). (17)

Here
GW = GheH

h ⊆ Gh

is an open subgroup with the Lie algebra g0(h) and the wedge space

W(M,h) := G.W ∼= G/GW

carries the structure of a symmetric space ([NÓ22, Prop. 9.2]). Covering issues related to
W(M,h) are discussed in [NÓ22, Prop. 9.4].

Remark 2.11. In general τcc 6= τh and also τcc 6= τhθ for Cartan involutions θ with θ(h) = −h.
The latter products τhθ are precisely the involutions τnc, corresponding to non-compactly causal
symmetric spaces. In general we also have Gτcc 6∼= Gτh because the product τccτh need not be
inner (cf. Remark 2.1), as the following example shows. If (g, τcc) is compactly causal of group
type, then g ∼= h ⊕ h with τcc(x, y) = (y, x), whereas τh preserves both ideals. Therefore τccτh
flips the ideals, hence cannot be inner. If (g, τcc) is of Cayley type, then (by definition) τcc = τh
for an Euler element h.

If g is simple, then it is of hermitian type, so that all Euler elements in g are conjugate.
The relation

τcc Ad(g)τhAd(g)−1 = τccτhAd(τGh (g)g−1)

then shows that τccτh is inner for one Euler element if and only this is the case for all Euler
elements. As we have seen above, this is true for Cayley type spaces.

2.2 The geometry of nets of real subspaces

In this section we recall some fundamental properties of the geometry of standard subspaces
on generalized one-particle nets. We refer to [Lo08, MN21, NÓ17] for more details. Sections
2.2.5 and 2.2.4 contains some new observations that will become relevant below.

2.2.1 Standard subspaces

We call a closed real subspace H of the complex Hilbert space H cyclic if H+ iH is dense in H,
separating if H ∩ iH = {0}, and standard if it is cyclic and separating. We write Stand(H) for
the set of standard subspaces of H. The symplectic orthogonal of a real subspace H is defined
by the symplectic form Im〈·, ·〉 on H via

H
′ = {ξ ∈ H : (∀η ∈ H) Im〈ξ, η〉 = 0}.

Then H is separating if and only if H′ is cyclic, hence H is standard if and only if H′ is standard.
For a standard subspace H, we define the Tomita operator as the closed antilinear involution

H+ iH → H+ iH, ξ + iη 7→ ξ − iη.

The polar decomposition JH∆
1
2

H
of this operator defines an antiunitary involution JH (a conju-

gation) and the modular operator ∆H. For the modular group (∆it
H )t∈R, we then have

JHH = H
′, ∆it

HH = H for every t ∈ R

and the modular relations

JH∆
it
HJH = ∆it

H for every t ∈ R.

One also has H = Fix(JH∆
1/2
H

) ([Lo08, Thm. 3.4]). This construction leads to a one-to-one
correspondence between couples (∆, J) satisfying the modular relation and standard subspaces:
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Proposition 2.12. ([Lo08, Prop. 3.2]) The map H 7→ (∆H, JH) is a bijection between the set of
standard subspaces of H and the set of pairs (∆, J), where J is a conjugation, ∆ > 0 selfadjoint
with J∆J = ∆−1.

From Proposition 2.12 we easily deduce:

Lemma 2.13. ([Mo18, Lemma 2.2]) Let H ⊂ H be a standard subspace and U ∈ AU(H)

be a unitary or anti-unitary operator. Then UH is also standard and U∆HU
∗ = ∆

ε(U)
UH

and
UJHU

∗ = JUH, where ε(U) = 1 if U is unitary and ε(U) = −1 if it is antiunitary.

Proposition 2.14. ([Lo08],[NÓØ21, Prop. 2.1]) Let V ⊆ H be a standard subspace with modular
objects (∆, J). For ξ ∈ H, we consider the orbit map αξ : R → H, t 7→ ∆−it/2πξ. Then the
following are equivalent:

(i) ξ ∈ V.

(ii) ξ ∈ D(∆1/2) with ∆1/2ξ = Jξ.

(iii) The orbit map αξ : R → H extends to a continuous map {z ∈ C : 0 ≤ Im z ≤ π} → H
which is holomorphic on the interior and satisfies αξ(πi) = Jξ.

(iv) There exists η ∈ HJ whose orbit map αη extends to a map {z ∈ C : | Im z| ≤ π/2} → H
which is continuous, holomorphic on the interior, and satisfies αη(−πi/2) = ξ.

2.2.2 The Brunetti–Guido–Longo (BGL) net

Here we recall a construction we introduced in [MN21] that generalize the algebraic construction
of free fields for AQFT models presented in [BGL02].

If (U,G) is an (anti-)unitary representation of Gσ, then we obtain a standard subspace
HU (W ) determined for W = (h, τ ) ∈ G by the couple of operators (cf. Proposition 2.12):

JHU (W ) = U(τ ) and ∆HU (W ) = e2πi∂U(h), (18)

and thus a G-equivariant map HU : G → Stand(H). This is the so-called BGL net

H
BGL
U : G(Gσ) → Stand(H).

In the following theorem, we need the positive cone

CU := {x ∈ g : − i · ∂U(x) ≥ 0}, ∂U(x) =
d

dt

∣∣∣
t=0

U(exp tx) (19)

of a unitary representation U . It is a closed, convex, Ad(G)-invariant cone in g.

Theorem 2.15. Let Cg ⊆ g be a pointed generating closed convex cone contained in the positive
cone CU of the (anti-)unitary representation (U,H) of Gσ. Then the BGL net

H
BGL
U : G(Gσ) → Stand(H)

is Gσ-covariant and isotone with respect to the Cg-order on G(Gσ).
The BGL net also satisfies twisted locality conditions and PT symmetry. We refer to [MN21]

for a detailed discussion. In this picture we have not required σ to be an Euler involution so
GE(Gσ) may in particular be trivial (see Example 2.16). This general presentation is motivated
by the results in Section 3 that will exhibit the existence of an Euler element in g and an
involution τGh , defining a graded group Gτh , as a consequence of a certain regularity condition
for associated standard subspaces in unitary representations of G.
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Example 2.16. It is easy to construct graded groups Gσ for which GE(Gσ) = ∅, i.e., no Euler
couples exist. For example, we may consider G = SL2(R) and the involutive automorphism
θ(g) = (g⊤)−1 (Cartan involution). We claim that Gθ = G⋊ {1, θ} contains no Euler couples.
In fact, if (h, τ ) is an Euler couple, then Ad(τ ) = τh. Identifying the Lie algebra sl2(R),
endowed with its Cartan–Killing form, with 3-dimensional Minkowski space R

1,2, we have
Ad(G) = Ad(Gθ) = SO1,2(R)e, a connected group. But the automorphisms τh are contained
in SO1,2(R)

↓ because they reverse the causal orientation. Hence no involution τ = (g, θ) ∈ Gθ
satisfies Ad(τ ) = τh. Clearly, the picture changes if we replace θ by an involution τGh , where
h ∈ sl2(R) ∼= so1,2(R) is an Euler element.

2.2.3 Nets on homogeneous spaces

For a unitary representation (U,H) of a connected a Lie group G and a homogeneous space
M = G/H , we are interested in families (H(O))O⊆M of closed real subspaces of H, indexed by
open subsets O ⊆M ; so-called nets of real subspaces on M . Below we work in a more general
context, where the connection between the abstract and the geometric wedges is less strict. For
such nets, we consider the following properties:

(Iso) Isotony: O1 ⊆ O2 implies H(O1) ⊆ H(O2)

(Cov) Covariance: U(g)H(O) = H(gO) for g ∈ G.

(RS) Reeh–Schlieder property: H(O) is cyclic if O 6= ∅.
(BW) Bisognano–Wichmann property: There exists an open subsetW ⊆M (called a wedge

region), such that H(W ) is standard with modular operator ∆H(W ) = e2πi∂U(h) for some
h ∈ g.

Nets satisfying (Iso), (Cov), (RS), (BW) on non-compactly causal symmetric spaces have been
constructed on non-compactly causal symmetric spaces in [FNÓ23], and on compactly causal
spaces in [NÓ23].

In some cases there is a one-to-one correspondence between the abstract wedge space W+ ⊆
GE(Gσ) and the set WM := {g.W : g ∈ G} of wedge regions in M , see Remark 2.8. In these
cases, the BGL net on W+ can be considered as a net on concrete wedge regions inM , satisfying
the previous assumptions, on the set WM of wedge regions in M . A general correspondence
theorem still has to be established. If V is a standard subspace with ∆V = e2πi∂U(h), then
H(g.W ) := U(g)V yields a well-defined net on WM if g.W = W implies U(g)V = V. If kerU is
discrete, the latter condition means that Ad(g)h = h and U(g)JVU(g)−1 = JV.

2.2.4 Minimal and maximal nets of real subspaces

To add a geometric context to the nets of standard subspaces that we have already encountered
in terms of the BGL construction (cf. Theorem 2.15), we now fix an Euler element h ∈ g and a
homogeneous space M = G/H of G, in which we consider an open subset W invariant under
the one-parameter group exp(Rh). We call W and its translates gW , g ∈ G, “wedge regions”.
At the outset, we do not assume any specific properties of W , but Lemma 2.17 will indicate
which properties good choices ofW should have. Let (U,H) be an (anti-)unitary representation
of Gτh and V = V(h,U) the corresponding standard subspace. For an open subset O ⊆ M , we
put

H
max(O) :=

⋂

g∈G,O⊆gW
U(g)V and H

min(O) :=
∑

g∈G,gW⊆O
U(g)V. (20)

We call Hmax the maximal net, in accordance with [SW87].
This leads to H

max(O) = H (the empty intersection) if there exists no g ∈ G with O ⊆ gW ,
i.e., O is not contained in any wedge region. We likewise get Hmin(O) := {0} (the empty sum)
if there exists no g ∈ G with gW ⊆ O, i.e., O contains no wedge region.
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We also note that, if we write

O∧ :=
( ⋂

gW⊇O
gW

)◦
⊇ O and O∨ :=

⋃

gW⊆O
gW ⊆ O,

then O∧ and O∨ are open subsets satisfying (O∧)∧ = O∧, (O∨)∨ = O∨, and

H
max(O∧) = H

max(O) and H
min(O∨) = H

min(O). (21)

So, effectively, the maximal net “lives” on all open subsets O satisfying O = O∧ (interiors of
intersections of wedge regions) and the minimal net on those open subsets satisfying O = O∨

(unions of wedge regions).

Lemma 2.17. The following assertions hold:

(a) The nets H
max and H

min on M satisfy (Iso) and (Cov).

(b) The set of all open subsets O ⊆M for which H
max(O) is cyclic is G-invariant.

(c) The following are equivalent:

(i) SW := {g ∈ G : gW ⊆W } ⊆ SV.

(ii) H
max(W ) = V.

(iii) H
max(W ) is standard.

(iv) H
max(W ) is cyclic.

(v) H
min(W ) = V.

(vi) H
min(W ) is standard.

(vii) H
min(W ) is separating.

(d) The cyclicity of a subspace H
max(O) is inherited by subrepresentations, direct sums, direct

integrals and finite tensor products.

Proof. (a) Isotony is clear and covariance of the maximal net follows from

H
max(g0O) =

⋂

g0O⊆gW
U(g)V = U(g0)

⋂

g0O⊆gW
U(g−1

0 g)V = U(g0)H
max(O).

The argument for the minimal net is similar.
(b) follows from covariance.
(c) (i) ⇔ (ii): Clearly, H

max(W ) ⊆ V, and equality holds if and only if W ⊆ gW implies
U(g)V ⊇ V, which is equivalent to S−1

W ⊆ S−1
V

, and this is equivalent to (i).
(ii) ⇒ (iii) ⇒ (iv) are trivial.
(iv) ⇒ (ii): By covariance and exp(Rh).W = W , the subspace H

max(W ) ⊆ V is invariant
under the modular group U(expRh) of V. If Hmax(W ) is cyclic, then it is also standard, as a
subspace of V, so that [Lo08, Prop. 3.10] implies H

max(W ) = V.
(i) ⇔ (v) follows with a similar argument as the equivalence of (i) and (ii).
(v) ⇒ (vi) ⇒ (vii) are trivial.
(vii) ⇒ (v): By covariance and exp(Rh).W = W , the subspace H

min(W ) ⊇ V is invariant
under the modular group U(expRh) of V. If Hmin(W ) is separating, then it is also standard,
because it contains V. Now [Lo08, Prop. 3.10] implies H

min(W ) = V.
(d) We use that

H
max(O) = VA for A := {g ∈ G : g−1O ⊆W }. (22)

Now (30) implies that, for U = U1 ⊕ U2, we have

H
max(O) = H

max
1 (O)⊕ H

max
2 (O).
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This proves that cyclicity of Hmax(O) is inherited by subrepresentations and direct sums. For
finite tensor products, the assertion follows from Lemma D.1. If U =

∫ ⊕
X
Um dµ(m) is a direct

integral, then (22) and Lemma C.3(a) imply that

H
max(O) =

∫ ⊕

X

H
max
m (O) dµ(m) (23)

for direct integrals. So Lemma C.1 implies that H
max(O) is cyclic if every H

max
m (O) is cyclic

in Hm.

Lemma 2.17(d) implies in particular that a direct integral representation (U,H) is (h,W )-
localizable in a family of subsets of M in the sense of Definition 4.18 if µ-almost all representa-
tions (Um,Hm) have this property. For the case where G is the Poincaré group and M = R

1,d,
a similar argument can be found in [BGL02, Lemma 4.3].

Remark 2.18. (The case where SW is a group) If the semigroup SW is a group, i.e., SW =
GW = {g ∈ G : g.W = W } is a group and ker(U) is discrete, then the inclusion SW ⊆ SV is
equivalent to

GW ⊆ GV = Gh,J = {g ∈ Gh : JU(g)J = U(g)} (24)

(cf. Lemma 2.13). In the context of causal homogeneous spaces, the definition of W as a
connected component of W+

M (h) (see § 2.1.2) implies that exp(Rh) ⊆ Ghe ⊆ GW , and we have

in many concrete examples that GW ⊆ Gh and L(GW ) = gh (see [NÓ22, NÓ23, MNO23b]
and §§ 2.1.3 and 2.1.4). However, U(GW ) need not commute with J , so that (24) may fail.
Examples arise already for g = sl2(R); see [FNÓ23, Rem. 5.13].

Lemma 2.19. Let (U,H) be an (anti-)unitary representation of Gτh and H a net of real
subspaces on open subsets of M satisfying (Iso), (Cov) and H(W ) = V with respect to h ∈ g and
W ⊆M . Then

H
min(O) ⊆ H(O) ⊆ H

max(O)

for each open subset O ⊆ M and equality holds for all domains of the form O = g.W , g ∈ G
(wedge regions in M).

If ∅ 6=W 6=M , then we have in particular

H
min(∅) = {0} ⊆ H

max(∅) =
⋂

g∈G
U(g)V and H

min(M) =
∑

g∈G
U(g)V ⊆ H

max(M) = H.

Proof. First we show that the three properties (Iso), (Cov) and H(W ) = V of the net H imply
that SW ⊆ SV. In fact, g.W ⊆W implies

U(g)V = U(g)H(W )
(Cov)
= H(g.W )

(Iso)

⊆ H(W ) = V.

From Lemma 2.17(c) we thus obtain H
max(W ) = H

min(W ) = V. Hence H(gW ) = U(g)V =
H

max(gW ) = H
min(gW ) by covariance for any g ∈ G (Lemma 2.17(a)). Further, isotony shows

that O ⊆ gW implies H(O) ⊆ H(gW ) = U(g)V, so that H(O) ⊆ H
max(O). Likewise, gW ⊆ O

implies U(g)V = H(gW ) ⊆ H(O), and thus Hmin(O) ⊆ H(O).

Definition 2.20. (a) (Causal complement) Let M = R
1,d be Minkowski space. Its causal

structure allows us to define the causal complement (or the spacelike complement) of an open
subset O ⊂M by

O′ = {x ∈M : (∀y ∈ O) (y − x)2 < 0}◦. (25)

This is the interior of the set of all the points that cannot be reached from E with a timelike
or lightlike curve.
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(b) (Spacelike cones) In Minkowski space R
1,d, we call an open subset O spacelike if x2

0 < x2

holds for all (x0,x) ∈ O. A spacelike open subset is called a spacelike (convex) cone if, in
addition, it is a (convex) cone.
(c) (Double cone) A double cone is, up to Poincaré covariance, the causal closure

B
′′
r = (re0 − V+) ∩ (−re0 + V+)

of an open ball of the time zero hyper-plane Br = {(0,x) ∈ R
1,d : x2 < r2}.

Remark 2.21. We continue to use the notation from Example 2.7 and Definition 2.20. Let
d ≥ 2 and M ⊃ D 7→ H(D) ⊂ H be a net of standard subspaces on double cones (cf. Defini-
tion 2.20(c)), let U be a representation of the Poincaré group P↑

+ satisfying (Iso), (Cov), (RS)
and the following properties

1. Positivity of the energy: The support of the spectral measure of the space-time translation
group is contained in

V+ = {(x0,x) ∈ R
1,d : x2

0 − x2 ≥ 0, x0 ≥ 0}.

2. Locality: D1 ⊂ D′
2 ⇒ H(D1) ⊂ H(D2)

′.

3. Bisognano–Wichmann property: Let W ⊂ M be a wedge region, as introduced in 2.7.
Then

H(W ) =
∑

D⊂W
H(D), (26)

is standard with ∆
−it/2π
H(W )

= U(ΛW (t)), where ΛW (t) is the corresponding one-parameter

group of boosts (cf. Example 2.7).

The Bisognano–Wichmann property implies wedge duality (or essential duality):

H(W ′) = H(W )′.

Here W ′ is the causal complement of the wedge W , as in (25) (see [Mo18, Prop. 2.7]).
For a double cone D we define

H(D′) :=
∑

D1⊂D′

H(D1) (27)

and obtain the following net on double cones

M ⊃ D 7−→ H
d(D) := H(D′)′ =

⋂

D1⊂D′

H(D1)
′.

By locality one has in general that H(D) ⊂ H
d(D). The net H

d(D) is called the dual net
of H. If H(D) = H

d(D), then the net H is said to satisfy Haag duality. Given two relatively
spacelike double cones D1 and D2, there always exists a wedge region W such that D1 ⊂ W
and D2 ⊂ W ′ ([TW97, Prop. 3.1]). For every double cone D, we further have D =

⋂
W⊃D W .

As a consequence H(D′) =
∑
W⊃D′ H(W ) (with the definition of H(W ) given in (26)). With

respect to V = H(WR), this leads to

H
min(D′) = H(D′) and H

d(D) = H
min(D′)′.

We further obtain

H
d(D) =

⋂

W⊃D
H(W ) =

⋂

g∈P↑
+
,gWR⊃D

H(gWR) = H
max(D).
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For the case d = 1 one still has

H
d(D) =

⋂

W⊃D
H(W ) =

⋂

g∈G,gWR⊃D
H(gWR) = H

max(D),

but, to this end, one has to consider the maximal net with respect to a unitary representation
(U,H) of the group G = P↑ = 〈P↑

+, r〉, where r(x0, x1) = (x0,−x1) and H is also covariant

for U(r). Indeed, every double cone is the intersection ofWR+a andW
′
R+b for some a, b ∈ R

1,d,
but WR and W ′

R belong to disjoint orbits of wedges with respect to P↑
+. However, they belong

to the same orbit of P↑ because W ′
R = rWR.

Alternatively, starting with a unitary representation (U,H) of P↑
+ for which H is covariant,

we can use Theorem 3.4 to extend U to an (anti-)unitary representation of P+ by U(τh) :=
JH(WR). Then P+ acts covariantly on the net on wedge regions.2 Hence τhWR = W ′

R implies
the equality

⋂

W⊃D
H(W ) =

⋂

g∈P+,gWR⊃D
U(g)H(WR) =

⋂

g∈P+,gWR⊃D
H(gWR) =: H̃max(D),

where H̃
max(D) now is defined with respect to the (anti-)unitary representation of P+. If both

constructions apply, then H
max(D) = H̃

max(D).
We can conclude a correspondence between the maximal net construction and the dual net

construction but, since we will not deal with locality in this paper, a more detailed analysis is
postponed to future works.

2.2.5 Intersections of standard subspaces

Standing assumption in the remainder of this section: Let G be a connected Lie group
with Lie algebra g and h ∈ g an Euler element. Assume that the involution τh integrates to an
involution τGh on G. For an (anti-)unitary representation (U,H) of Gτh := G ⋊ {idG, τGh }, we
call

V := V(h,U) := H
BGL
U (h, τGh ) (28)

the canonical standard subspace associated to (h,U). Its modular objects are J = U(τGh ) and
∆ = e2πi∂U(h).

For a subset A ⊆ G, we consider the closed real subspace

VA := VA(h,U) :=
⋂

g∈A
U(g)V. (29)

We shall be interested in criteria for these real subspaces to be cyclic. An important property of
these subspaces is that they are well adapted to direct sums and direct integrals (Lemma C.3).
For a direct sum representation U = U1 ⊕U2 we have in particular V = V1 ⊕ V2, which leads to

VA = V1,A ⊕ V2,A (30)

because U(g)−1(v1, v2) ∈ V is equivalent to Uj(g)
−1vj ∈ Vj for j = 1, 2.

These concepts require (anti-)unitary representations of Gτh , but often unitary represen-
tations of G are easier to deal with. The following lemma translates between unitary and
(anti-)unitary representations and their properties. It is our version of a closely related tech-
nique developed in [BGL02, Props. 4.1, 4.2], which is based on density properties of intersections
of dense complex subspaces of H.

Lemma 2.22. (The (anti-)unitary extension) Let (U,H) be a unitary representation of G
and write H for the Hilbert space H, endowed with the opposite complex structure. Then the
following assertions hold:

2One can also argue with Borchers’ Theorem, positivity of the energy and the Bisognano–Wichmann property.
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(a) On H̃ := H ⊕ H we obtain by Ũ(g) := U(g) ⊕ U(τGh (g)) a unitary representation which

extends by Ũ(τh)(v, w) := J̃(v, w) := (w, v) to an (anti-)unitary representation of Gτh .

The corresponding standard subspace Ṽ := V(h, Ũ) coincides with the graph

Ṽ = Γ(∆1/2), (31)

and its modular operator is ∆̃ := ∆⊕∆−1.

(b) If U extends to an (anti-)unitary representation of Gτh by J = U(τh), then the following
assertions hold:

(1) Φ: H⊕2 → H̃,Φ(v, w) = (v, Jw) is a unitary intertwiner of Ũ and the (anti-)unitary
representation U ♯ of Gτh on H⊕2, given by

U ♯|G = U⊕2 and U ♯(τh)(v, w) := J♯(v, w) := (Jw, Jv).

(2) The standard subspace V♯ := V(h,U ♯) coincides with the graph Γ(TV) of the Tomita
operator TV = J∆1/2 of V.

(3) The (anti-)unitary representation Ũ is equivalent to the (anti-)unitary representation
U⊕2 of Gτh on H⊕2.

(4) If A ⊆ G is a subset, then ṼA is cyclic in H̃ if and only if VA is cyclic in H.

Proof. (a) The first assertion is a direct verification (cf. [NÓ17, Lemma 2.10]). Since

∆̃ = e2πi∂Ũ(h) = ∆⊕∆−1,

the description of the standard subspace Ṽ = Fix(J̃∆̃1/2) follows immediately.
(b) (1) Clearly, Φ is a complex linear isometry that intertwines the (anti-)unitary representation

Ũ with the (anti-)unitary representation U ♯.

(2) As ∆♯ = Φ−1∆̃Φ = ∆⊕∆, the relation

(v, w) = J♯(∆♯)1/2(v, w) = (J∆1/2w, J∆1/2v) = (TVw, TVv)

is equivalent to w = TVv. Hence V♯ = Γ(TV).
(3) As the restrictions of U⊕2 and U ♯ to G coincide, [NÓ17, Thm. 2.11] implies their

equivalence as (anti-)unitary representations. However, in the present concrete case it is easy
to see an intertwining operator. The matrix

A :=
1

2

(
(1 + i)1 (1− i)1
(1− i)1 (1 + i)1

)
with A2 =

(
0 1
1 0

)

defines a unitary operator on H⊕2 commuting with U ♯(G). It satisfies J⊕2AJ⊕2 = A∗ = A−1,
so that

AJ⊕2A−1 = A2J⊕2 = J♯.

(4) If U |G extends to an (anti-)unitary representation U of Gτh on H, then (3) implies that

Ũ ∼= U⊕2, and any equivalence Ψ: (Ũ , H̃) → (U⊕2,H⊕2) maps ṼA to (V⊕ V)A = VA ⊕ VA (see
(30)). Therefore ṼA is cyclic if and only if VA is cyclic in H.

The following definition extends the classical type of irreducible complex representations
to the case where the involution on G is non-trivial. For a unitary representation (U,H),
we write (U,H) for the canonical unitary representation on the complex conjugate space H
by U(g) = U(g). We observe that, for an (anti-)unitary representation (U,H) of Gτh , its
commutant

U(Gτh)
′ = {A ∈ B(H) : (∀g ∈ Gτh)AU(g) = U(g)A}= {A ∈ U(G)′ : U(τGh )A = AU(τGh )}

is only a real subalgebra of B(H) because some U(g) are antilinear.
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Definition 2.23. ([NÓ17, Def. 2.12]) Let (U,H) be an irreducible unitary representation of G.
We say that U is (with respect to τh), of

• real type if there exists an antiunitary involution J on H such that U ♯(τh) := J extends U
to an (anti-)unitary representation U ♯ of Gτh on H, i.e., JU(g)J = U(τGh (g)) for g ∈ G.
Then the commutant of U ♯(Gτh) is R.

• quaternionic type if there exists an antiunitary complex structure I on H satisfying
IU(g)I−1 = U(τGh (g)) for g ∈ G. Then U ◦ τGh ∼= U , U has no extension on the same

space, and the (anti-)unitary representation (Ũ , H̃) of Gτh with Ũ |G ∼= U ⊕ (U ◦ τGh ) is
irreducible with commutant H.

• complex type if U ◦ τGh 6∼= U . This is equivalent to the non-existence of V ∈ AU(H) such

that U(τGh (g)) = V U(g)V −1 for all g ∈ G. Then (Ũ , H̃) is an irreducible (anti-)unitary
representation of Gτh with commutant C.

Example 2.24. (a) On the Poincaré group P = R
1,d

⋊L↑
+ we consider the involution τGh (g) =

jhgjh, corresponding to conjugation with

jh(x0, x1, . . . , xd) = (−x0,−x1, x2, . . . , xd),

so that Pτh ∼= P+. Then all irreducible positive energy representations of P are of real type
except the massless finite helicity representations that are of complex type (see [Mu01, App. A]
for m > 0, and [Va85, Thm. 9.10] for the general case).
(b) (cf. [NÓ17, Ex. 2.16(c)]) Consider the irreducible unitary representation of G = SU2(C) ∼=
Spin3(R) on C

2 ∼= H (by left multiplication) where the complex structure on H is defined by
the right multiplication with C. This representation is of quaternionic type with respect to
σ = id, but of real type with respect to the involution σ(g) = g.

Remark 2.25. (Antiunitary tensor products) Let G = G1 ×G2 be a product of type I groups
and τ an involutive automorphism of G preserving both factors, i.e., τ = τ1 × τ2. We want to
describe irreducible (anti-)unitary representations (U,H) of the group Gτ = G⋊{idG, τ} using
[NÓ17, Thm. 2.11(d)].
(a) The first possibility is that U |G is irreducible, so that U(G)′ ∼= R. Then

(U |G,H) ∼= (U1,H1)⊗ (U2,H2)

with irreducible unitary representations (Uj ,Hj) of Gj both extending to (anti-)unitary repre-
sentations U ♯j of Gj . Hence both U1 and U2 are of real type.
(b) The second possibility is that U |G is reducible with U(G)′ ∼= C or H, so that

U |G ∼= V ⊕ (V ◦ τ ),

where (V,K) is an irreducible unitary representation of G of complex or quaternionic type.
Now V = U1 ⊗ U2, and thus

H ∼= (H1 ⊗H2)⊕ (H1 ⊗H2), U |G ∼= (U1 ⊗ U2)⊕ (U1 ◦ τ1 ⊗ U2 ◦ τ2).

If Uj is of complex type, then Uj ◦ τj 6∼= Uj implies that V is of complex type. If both U1

and U2 are of quaternionic type, then Uj ◦ τj ∼= Uj for j = 1, 2 implies V ◦ τ ∼= V , so that V is
of quaternionic type.

Proposition 2.26. Assume that G has at most countably many connected components and
that A ⊆ G is a subset. Then the following are equivalent:

(a) For all (anti-)unitary representations (U,H) of Gτh , the subspace VA is cyclic.

(b) For all irreducible (anti-)unitary representations (U,H) of Gτh , the subspace VA is cyclic.

(c) For all irreducible unitary representations (U,H) of G, the subspace ṼA is cyclic in H̃.
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(d) For all unitary representations (U,H) of G, the subspace ṼA is cyclic in H̃

Proof. (a) ⇒ (b) is trivial.

(b) ⇒ (c): Let (U,H) be an irreducible unitary representation and (Ũ , H̃) its natural (anti-

)unitary extension. Then either Ũ is an irreducible (anti-)unitary representations (if U is of
complex or quaternionic type) or a direct sum of two irreducible representations (if U is of real
type) (cf. Definition 2.23). In view of (30), the cyclicity of VA is inherited by direct sums, so
that (c) follows from (b).
(c) ⇒ (d): Let (U,H) be a unitary representation of G. Decomposing U into a direct sum of
cyclic representations, we may assume that U is cyclic, hence that H is separable. Using [Di64,
Thm. 8.5.2, §18.7], we can write U as a direct integral

U =

∫ ⊕

X

Ux dµ(x)

of irreducible representations (Ux)x∈X . Then

Ũ =

∫ ⊕

X

Ũx dµ(x)

implies that ṼA =
∫ ⊕
X

Ṽx,A dµ(x) by (85) and Lemma C.3(a). Further, Lemma C.3(b) implies

that ṼA is cyclic because all subspaces Ṽx,A are cyclic by (c).
(d) ⇒ (a): If (U,H) is an (anti-)unitary representation of Gτh , then its restriction to G has an

(anti-)unitary extension (Ũ , H̃) which by Lemma 2.22(b)(1) is equivalent to U⊕2. Hence the
cyclicity of ṼA ∼= VA ⊕ VA implies that VA is cyclic.

3 Modular groups are generated by Euler elements

In this section we show that, if the modular group of a standard subspace V is obtained from
a unitary representation of a finite-dimensional Lie group G and a certain regularity condition
is satisfied, then its infinitesimal generator is an Euler element h ∈ g and the modular con-
jugation JV induces on G the involution corresponding to τh = eπi ad h on g (Theorem 3.1 in
Section 3.1). In Subsection 3.2 we describe the implications of this result in the context of
operator algebras with cyclic separating vectors (Theorem 3.7). In this context, we also obtain
an explicit description of the identity component of the subsemigroup SM of G leaving a von
Neumann algebra M invariant.

3.1 The Euler Element Theorem

The following theorem is a key result of this paper on which all other discussion builds. An
important consequence is relation (32) which provides an extension of U to an (anti-)unitary
representation of Gτh on the same space space. Note that, besides connectedness, no assump-
tions are made on the structure of G, in particular G does not have to be semisimple.

Theorem 3.1. (Euler Element Theorem) Let G be a connected finite-dimensional Lie group
with Lie algebra g and h ∈ g. Let (U,H) be a unitary representation of G with discrete kernel.
Suppose that V is a standard subspace and N ⊆ G an identity neighborhood such that

(a) U(exp(th)) = ∆
−it/2π
V

for t ∈ R, i.e., ∆V = e2πi ∂U(h), and

(b) VN :=
⋂
g∈N U(g)V is cyclic.

Then h is an Euler element and the conjugation JV satisfies

JVU(exp x)JV = U(exp τh(x)) for τh = eπi adh, x ∈ g. (32)
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In Theorem D.2 we characterize those Euler elements for which a standard subspace satis-
fying (a) exists in every unitary representation of G.

Proof. Part 1: ad h is diagonalizable with integral eigenvalues: For x ∈ g, we write

x(s) := es ad hx ∈ g.

Pick ξ ∈ VN . Then we have for ψ ∈ H

〈ψ,U(exp(sh) exp(tx))ξ〉 = 〈ψ,U(exp(tx(s)) exp(sh))ξ〉
= 〈U(exp(−tx(s)))ψ,U(exp(sh))ξ〉. (33)

By assumption, there exists a δ > 0 such that U(exp tx)ξ ∈ V for |t| < δ, so that U(exp tx)ξ

is contained in the domain of ∆
1/2
V

= eπi·∂U(h). Therefore the left hand side of (33) can be
continued analytically in s to a continuous function on the closure of the strip Sπ which is
holomorphic in the interior (Proposition 2.14).

To obtain an analytic extension of the right hand side, we assume that ψ ∈ Hω is an analytic
vector for U . Then there exists an open convex 0-neighborhood B ⊆ gC = g + ig (depending
on ξ) and a holomorphic map

ηψ : B → H with ηψ(x) = U(exp x)ψ for x ∈ B ∩ g

and

ηψ(z) =
∞∑

n=0

1

n!
(dU(z))nψ for z ∈ B. (34)

Writing H(B) for the set of all these vectors ψ, we know that
⋃
n∈N

H( 1
n
B) is dense in H

([Nel59]). Shrinking δ, we may assume that

ez ad htx ⊆ B for |t| ≤ δ, |z| ≤ 2π.

Then, for a fixed t with |t| ≤ δ, the function s 7→ U(exp(−tx(s)))ψ can be continued analytically
to the open disc D := {z ∈ C : |z| < 2π}. Further, s 7→ U(exp sh)ξ has an analytic continuation
to the strip Sπ. We conclude that both sides of (33) extend analytically to D ∩ Sπ with
continuous boundary values. We thus obtain for any fixed t with |t| ≤ δ and s = πi the
equality

〈ψ, eπi·∂U(h)U(exp tx)ξ〉 = 〈ηψ(−te−πi adhx), eπi·∂U(h)ξ〉. (35)

As U(exp tx)ξ ∈ V and ∆
1/2
V

= eπi·∂U(h), this is equivalent to

〈ψ, JVU(exp tx)ξ〉 = 〈ηψ(−te−πi adhx), JVξ〉. (36)

The real subspace VN spans a dense subspace of H, so that, for each analytic vector ψ ∈ Hω,
there exists a δψ > 0, such that

U(exp−tx)JVψ = JVηψ(−te−πi ad hx) for |t| ≤ δψ. (37)

Multiplication with JV on the left yields

JVU(exp−tx)JVψ = ηψ(−te−πi ad hx) (38)

For a fixed t0 = δψ, (37) shows in particular that the G-orbit map of JVψ is real analytic in an
e-neighborhood because

z 7→ ηψ(−te−πiad hz)
defines a holomorphic function on a 0-neighborhood of gC. We therefore have JVHω ⊆ Hω . As
both sides are differentiable in t = 0, we now obtain

JVdU(x)JVψ = dU(e−πi adhx)ψ for ψ ∈ Hω. (39)
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The left hand side is a skew-symmetric operator on Hω, so that dU(e−πi adhx) is skew-
symmetric on Hω . As ker(dU) = L(kerU) = {0}, it follows that

τh(x) := e−πi adhx ∈ g for x ∈ g (40)

because dU(z) is skew hermitian on Hω if and only if z ∈ g.
This means that the automorphism τh ∈ Aut(gC) preserves the real subspace g ⊆ gC and

that we have

JVdU(x)JV = dU(e−πi ad hx) on Hω for every x ∈ g. (41)

Applying this relation twice, we arrive at

dU(x) = J2
V dU(x)J2

V = dU(τ 2hx) on Hω for every x ∈ g. (42)

As dU is injective, this shows that e−2πi ad h = τ 2h = idg. This in turn implies that ad h is
diagonalizable with integral eigenvalues ([HN12, Exer. 3.2.12]). We also note that (41) entails

JVU(expx)JV = U(exp τh(x)) for x ∈ g

because any dense subspace consisting of analytic vectors is a core by Nelson’s Theorem.
Part 2: h is an Euler element: Let k ∈ Z be an eigenvalue of ad h. We have to show that
|k| ≤ 1. So let us assume that |k| ≥ 2 and show that this leads to a contradiction. Let x ∈ g be
a corresponding eigenvector, so that [h, x] = kx. In view of (b), there exists a δ > 0 such that

U(exp tx)U(exp sh)VN ⊆ V for |t|+ |s| < δ.

Let
M := ∂U(h) and Q := ∂U(x)

denote the infinitesimal generators of the 1-parameter groups U(exp th) and U(exp tx), respec-
tively. Suppose that ξ = U(exp rh)η = erMη for η ∈ VN and |r| < δ, so that ξ ∈ V. As in
Part 1, for |t|+ |r| < δ and any entire vector ψ ∈ H of Q, both sides of

〈ψ,U(exp(sh) exp(tx))ξ〉 = 〈ψ,U(exp(teskx) exp(sh))ξ〉 (43)

extend analytically in s into Sπ. For s := πi
|k| we have Im s < π, so that we obtain for any

η ∈ VN

〈ψ, e
πi
|k|
M
etQerMη〉 = 〈ψ, e−tQe

πi
|k|
M
erMη〉 for |t|+ |r| < δ. (44)

As this holds for a dense set of vectors ψ, we derive that

e
πi
|k|
M
etQerMη = e−tQe

πi
|k|
M
erMη for |t|+ |r| < δ. (45)

Now let E ⊆ R be a bounded Borel subset and PiM (E) the corresponding spectral projection
of the selfadjoint operator iM on H. We multiply the relation (45) on the left with PiM (E) to
obtain

e
πi
|k|
M
PiM (E)etQerMη = PiM (E)e−tQe

πi
|k|
M
erMη. (46)

Next we observe that e
πi
|k|
M
PiM (E) is a bounded operator and, as π ≥ 2π

|k| , the vector η is

contained in the domain of e
2πi
|k|

M
, so that its orbit map t 7→ etMη extends analytically to the

strip S 2π
k
. So both sides of (46) have analytic continuations in r to the strip S π

|k|
. Hence by

uniqueness of analytic continuation, (46) also holds for all real r and |t| < δ. Let

Hη := span{erMη : r ∈ R}
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denote the cyclic subspace generated by η under eRM = U(expRh). We then obtain from (46)
that

e
πi
|k|
M
PiM (E)etQζ = PiM (E)e−tQe

πi
|k|
M
ζ for ζ ∈ Hη. (47)

As Hη is invariant under the von Neumann algebra generated by eRM , it is invariant under all
spectral projections, i.e. PiM (E)Hη ⊂ Hη. This shows that

e
πi
|k|
M
PiM (E)etQPiM (E)η = PiM (E)e−tQe

πi
|k|
M
PiM (E)η. (48)

As all operators in this identity are bounded and VN spans a dense subspace of H, we arrive
at the relation

e
πi
|k|
M
PiM (E)etQPiM (E) = PiM (E)e−tQPiM (E)e

πi
|k|
M

for |t| < δ. (49)

Hence
PiM (E)e

2πi
|k|

M
PiM (E) =

(
PiM (E)e

πi
|k|
M
PiM (E)

)2

commutes with PiM (E)etQPiM (E) for |t| < δ. As the von Neumann algebra on PiM (E)H gen-

erated by PiM (E)e
2πi
|k|

M
PiM (E) contains the unitary one-parameter group PiM (E)eRMPiM (E),

it follows that

PiM (E)esMetQPiM (E) = PiM (E)esMPiM (E)etQPiM (E)

= PiM (E)etQPiM (E)esMPiM (E)

= PiM (E)etQesMPiM (E) for s ∈ R, |t| < δ.

As E was arbitrary, this implies that eRM commutes with eRQ, contradicting the assumption
|k| ≥ 2. We therefore have |k| ≤ 1 and thus h is an Euler element.

Remark 3.2. If N is an e-neighborhood in G, then so is N−1. Therefore condition (b) in
Theorem 3.1 is equivalent to the following:
(b’) There exists a cyclic subspace K ⊂ H such that U(g)K ⊂ V for every g ∈ N .

Indeed, if (b) holds, then K := VN satisfies (b’) for the e-neighborhood N−1. If, conversely,
(b’) holds, then VN−1 ⊇ K is cyclic. When nets of standard subspaces are considered in the
next sections, then Property (b) and (b’) will be related to regularity and localizability in a
specific region, respectively (cf. Definition 4.1 and Lemma 4.21)

Starting points for the development of the proof of Theorem 3.1 were [BB99] for Part 1 and
[Str08] for Part 2. Accordingly, we recover one of R. Strich’s results as the following corollary.

Corollary 3.3. (Strich’s Theorem for standard subspaces) Let λ ∈ R
× and consider a two-

dimensional connected Lie group G whose Lie algebra is g = Rx + Rh with [h, x] = λx. Let
(U,H) be a unitary representation of G with ∂U(x) 6= 0. Suppose that H ⊆ V are standard
subspaces such that

(a) U(exp(−βth)) = ∆it
V for t ∈ R.

(b) U(exp tx)U(exp sh)H ⊆ V for |s|+ |t| < δ and some δ > 0.

Then β = 2π
|λ| .

Proof. Theorem 3.1 implies that β
2π
h is an Euler element in g, so that β|λ|

2π
= 1.

Theorem 3.4. Let (U,H) be a unitary representation of the connected Lie group G with ker(U)
discrete. If (H(O))O⊆M is a net of real subspaces on (the open subsets of) a G-manifold M
that satisfies (Iso), (Cov), (RS) and (BW), then the Lie algebra element h satisfying

∆H(W ) = e2πi ∂U(h)

is an Euler element, and the conjugation J := JH(W ) satisfies

JU(exp x)J = U(exp τh(x)) for τh = eπi ad h, x ∈ g.
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Proof. Let O ⊆ W be a non-empty open, relatively compact subset. Then O is a compact
subset of the open set W , so that

N := {g ∈ G : g.O ⊆W }

is an open e-neighborhood in G. For every g ∈ N we have by (Cov) and (Iso)

g.H(O) = H(g.O) ⊆ H(W )
(BW)
= V.

Further (RS) implies that H := H(O) is cyclic, hence standard because it is contained in V.
Now the assertion follows from Theorem 3.1.

Theorem 6.2 in [BB99] can be rephrased for standard subspaces. Then it becomes a con-
sequence of our Theorem 3.4. With the notations introduced in Example 2.7, we state the
following corollary:

Corollary 3.5. (Borchers-Buchholz Theorem for standard subspaces) Let U be a unitary rep-
resentation of the Lorentz group G = SO1,d(R)

↑ on a Hilbert space H, acting covariantly on an
isotone net (H(O))O⊆dSd of standard subspace on open regions of de Sitter spacetime. If β > 0
is such that

U(exp(th)) = ∆
− it

β

H(WdS
R

)
for t ∈ R, (50)

then β = 2π.

Proof. The net of standard subspaces (H(O))O⊂dSd with the Lorentz group representation

(U,H) fit the hypotheses of Theorem 3.4 with respect to the Lie algebra element h̃ = β
2π
h, as

∆H(WdS
R

) = e2πi∂U(h̃).

We conclude that h̃ is an Euler element. Since h is also an Euler element in so(1, d) and β > 0,
we must have β = 2π.

Remark 3.6. (a) An important consequence of Theorem 3.1 is that τh integrates to an invo-
lutive automorphism τGh on the group U(G) ∼= G/ ker(U) that is uniquely determined by

τGh (expx) = exp(τh(x)) for x ∈ g.

To see this, let qG : G̃ → G denote the universal covering of G and τ G̃h the automorphism of
G̃ integrating τh ∈ Aut(g). Replacing G by G̃ and U by U ◦ qG, we may assume that G = G̃.
Then (32) implies that

JU(g)J = U(τGh (g)) for g ∈ G. (51)

It follows that τGh (kerU) = kerU , and hence that τGh factors through an automorphism of the
quotient group G/ kerU ∼= U(G).

Whenever τGh exists (which by the preceding is the case if G is simply connected or if U is
injective), U extends to an (anti-)unitary representation of the Lie group

Gτh = G ⋊ {idG, τGh } by U(τGh ) := J. (52)

In the setting of Theorem 3.1, (U,H) cannot be a multiple of an irreducible representation
of complex type. Indeed, in this case there exists no anti-unitary operator J on H such that

U(τh(g)) = JU(g)J−1 for g ∈ G. (53)

So the conclusion of Theorem 3.1 fails, and therefore one of the two assumptions (a) and (b)
must be violated. Given h ∈ g, it is easy to construct a standard subspaces satisfying (a) by
taking ∆V := e2πi∂U(h) as Tomita operator and any conjugation J commuting with ∂U(h). The
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existence of such a conjugation only requires the unitary equivalence of the selfadjoint operators
i∂U(h) and −i∂U(h) ([NÓ15, Prop. 3.1]). This is much weaker than (53) and satisfied in all
unitary representations if g is semisimple and h an Euler element (Theorem D.2). So Hypothesis
(b) has to fail and thus regularity is lost. However, the doubling process from Lemma 2.22(a)
leads to a context where (53) can be implemented.

This accords with the comment after Theorem 4.13 in [DM20], where is has been argued,
with a similar argument, that factorial representations with finite non-zero helicity of the
Poincaré group P↑

+ of R1,3 cannot act on a net of standard subspaces on spacelike cones (cf. no-
tation in Def. 2.20). We briefly recall the ideas here. Let (U,H) be a factorial representation
of finite non-zero helicity, acting covariantly on a net of standard subspaces on spacelike cones
C 7→ H(C). By [DM20, Cor. 4.4], H has the (BW) property with respect to the pair (h,WR)
(see Example 2.7).3 Following [GL95, Prop. 2.4] (or in our general setting [MN21, Thm. 4.28]),
a representation of finite non-zero helicity acting on a net of standard subspaces on spacelike
cones extends to a covariant (anti-)unitary representation of the proper Poincaré group P+ as
in (53). As representations of finite non-zero helicity are of complex type ([Va85, Thm. 9.10]),
we arrive at a contradiction.

Clearly, this example is compatible with the (BW) property in the form of condition (a)
in Theorem 3.1. By continuity of the Poincaré action on R

1,3, there always exists a spacelike
cone C ⊆ ⋂

g∈N gW if N ⊂ P↑
+ is a sufficiently small neighborhood of the identity and W is

a wedge region. For V = H(W ), we then obtain H(C) ⊂ VN =
⋂
g∈N gH(W ), and thus VN is

cyclic whenever H(C) is (which follows from (RS)). In particular, spacelike cone localization
of standard subspaces ensures the regularity condition (b) in the setting of Theorem 3.1 and
this regularity condition for H(C) ensures the geometric property used in [GL95, Prop. 2.4] to
obtain an extension to an (anti-)unitary representation of P↑. As stressed for this specific case
in [DM20], one needs to couple finite non-zero helicity representations with opposite helicities
to provide an environment for non-trivial nets of standard subspaces.

(b) If VN = V, then V is U(G)-invariant because the connected Lie group G is generated by the
identity neighborhood N . In this case h ∈ g is central, which follows from the discreteness of
ker(U) because U(G) commutes with ∆V. Then we obtain on HJ a real representation of G.

(c) If g is a compact Lie algebra, then every Euler element h ∈ g is central, so that τh = idg.
Therefore the cyclicity of VN as in Theorem 3.1 implies that JV and ∆V commute with U(G), and
thus U(g)V = V for g ∈ G. Therefore, a standard subspace V associated to a pair (h, τ ) ∈ G(Gσ)
by the BGL construction can only satisfy the regularity condition in Theorem 3.1(b) if V and
HJV are U(G)-invariant. Therefore the representation (U,H) is the complexification of the real
representation of U on HJ = V. Conversely, for every real representation (U, E) of G, the real
subspace E ⊆ EC is standard with ∆E = 1 and UC(G) leaves E invariant, so that the regularity
condition is satisfied for trivial reasons.

3.2 An application to operator algebras

The following theorem is a version of the Euler Element Theorem 3.1 for operator algebras.
We consider the following setup:

(Uni) Let (U,H) be a unitary representations of the connected Lie group G with discrete
kernel, so that the derived representation dU is injective.

(M) Let Ω be a unit vector and M ⊆ B(H) be a von Neumann algebra for which Ω is cyclic
and generating. We write (∆M,Ω, JM,Ω) for the corresponding modular objects.

(Fix) Ω ∈ HG, i.e., Ω is fixed by U(G).

(Mod) Modularity: There exists an element h ∈ g for which e2πi∂U(h) = ∆M,Ω. As ker(U) is
discrete, h is uniquely determined.

3It actually suffices to require the net to assign standard subspaces to wedge regions.
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(Reg) Regularity: For some e-neighborhood N ⊆ G, the vector Ω is still cyclic (and obviously
separating) for the von Neumann algebra

MN :=
⋂

g∈N
Mg, where Mg = U(g)MU(g)−1.

This implies that (MN )′ is a von Neumann algebra containing M′
g = U(g)M′U(g)−1 for

g ∈ N and that Ω is cyclic and separating for (MN)′.

Theorem 3.7. Assume (Uni), (M), (Fix), (Reg) and (Mod). Then h is an Euler element and
the modular conjugation J = JM,Ω of the pair (M,Ω) satisfies

JU(exp x)J = U(exp τh(x)) for τh = eπi adh.

Proof. Clearly, Ω is also separating for MN . Let Msa := {M ∈ M : M∗ =M} be the subspace
of hermitian elements in M. Then we obtain the two standard subspaces

V := MsaΩ ⊇ H := (MN)saΩ. (54)

Further U(g)−1MNU(g) ⊆ M for g ∈ N implies U(g)−1
H ⊆ V. Hence H ⊆ VN , and the

assertion follows from Theorem 3.1

Example 3.8. (The minimal group) For G = R, g = Rh, and the unitary one-parameter group

U(t) := ∆
−it/2π
M,Ω , the conditions (Uni), (M), (Fix), (Mod) and (Reg) are satisfied because

the Tomita–Takesaki Theorem ensures that Mg = M for every g ∈ G. The conclusion of
Theorem 3.7 then reduces to the fact that JM.Ω commutes with the modular group.

Endomorphism semigroups

We consider the context from Theorem 3.7, where G is a connected finite-dimensional Lie group
with Lie algebra g, h ∈ g is an Euler element, (U,H) is an (anti-)unitary representation of Gτh
with discrete kernel, J = U(τGh ), and V = V(h, U) ⊆ H is the associated standard subspace.
We also have a von Neumann algebra M with cyclic separating vector Ω for which

V = VM := MsaΩ.

Here the equality of V and VM follows from the equality of their modular objects and Proposi-
tion 2.12.

We consider the endomorphism semigroup of M in G by

SM := {g ∈ G : U(g)MU(g)−1 ⊆ M}.

Typically it is hard to get fine information on the semigroup SM, but combining results from
[Ne22] with Theorem 3.7, we actually get a full description of its identity component by com-
paring it with the endomorphism semigroup

SV := {g ∈ G : U(g)V ⊆ U(g)}.

Theorem 3.9. (The endomorphism semigroup) Suppose that (Uni), (M), (Fix), (Reg) and
(Mod) are satisfied. With the pointed cones C± := ±CU ∩ g±1(h), we have the following
description of the identity component of the semigroup SM:

(SM)e = (GM)e exp(C+ + C−) = exp(C+)(GM)e exp(C−) and L(GM) = g0(h).

In particular (GM)e = 〈exp g0(h)〉.
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Proof. As U has discrete kernel, h is an Euler element and V = VM, [Ne22, Thms. 2.16, 3.4]
imply that

SVM = GVM exp(C+ + C−) = exp(C+)GVM exp(C−). (55)

Further, g ∈ SM yields U(g)VM = VMg ⊆ VM because U(g) fixes Ω, and therefore

SM ⊆ SVM . (56)

Let N be an e-neighborhood as in (Reg) and g ∈ SVM ∩ N . Then M′
N contains both

algebras M′ and M′
g = U(g)M′U(g)−1, and U(g)VM ⊆ VM implies U(g)V′M ⊇ V′M. Further,

Ω is cyclic and separating for M′
N and

VM′
g
= U(g)VM′ = U(g)V′M ⊇ V

′
M = VM′ .

As Ω is cyclic and separating for M′
g and M′, [Lo08, Prop. 3.24] implies that M′

g ⊇ M′, which
leads to Mg ⊆ M, i.e., g ∈ SM. This proves that

SM ∩N = SVM ∩N.

Since the semigroups exp(C±) and (GVM )e are generated by their intersections with N , it
follows that (SVM )e = exp(C+)(GVM )e exp(C−) ⊆ SM. Now the assertion follows from the
fact that the connected components of SVM are products of connected components of the group
GVM and exp(C+ +C−) (polar decomposition of SVM).

Remark 3.10. Davidson’s paper [Da96] contains interesting results on the relation between
the stabilizer groups GM and GVM , also on the level of endomorphism semigroups.
(a) [Da96, Thm. 4] considers a unitary one-parameter group Ut = eitH that fixes Ω and leaves
the standard subspace VM invariant. It asserts that, if the set

D(δ) := {X ∈ M : [H,X] ∈ M}

is such that D(δ)Ω is a core for H in H, then Ad(Ut)M = M for all t ∈ R.
(b) [Da96, Thm. 5] considers a unitary one-parameter group Ut = eitH fixing Ω such that
UtVM ⊆ VM for t ≥ 0. He shows that, if

Vε :=
⋂

0≤t≤ε
UtVM

is cyclic for some ε > 0, then Ad(Ut)M ⊆ M for t ≥ 0. This condition is rather close to the
assumption in our Theorem 3.1 and the regularity conditions discussed in the following section.

4 Regularity and Localizability

If (U,H) is a unitary representation of the Lie group G and V ⊆ H a standard subspace with
∆V = e2πi∂U(h) for some h ∈ g, then the Euler Element Theorem (Theorem 3.1) describes a
sufficient condition for h to be an Euler element, and in this case it even implies the extension
of U to an (anti-)unitary extension of Gτh by JV. In this section we study the converse problem:
Assuming that h is an Euler element and (U,H) an (anti-)unitary representation of Gτh , when
is VN cyclic for some e-neighborhood N ⊆ G. We then call U regular with respect to h. In Sub-
section 4.1 we discuss various permanence properties of regularity and also sufficient conditions,
such as Theorems 4.10 and 4.12, deriving regularity from positive spectrum conditions.

In Subsection 4.2, we turn to localizability aspects of nets of real subspaces. Starting with
an (anti-)unitary representation of Gτh and the corresponding standard subspace V = V(h,U),
we consider an maximal net H

max associated to some wedge region W ⊆ M = G/H . We
then say that (U,H) is (h,W ) localizable in those subsets O ⊆ M for which the real subspace
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H
max is cyclic. Here the starting point is to assume this for W , which by Lemma 2.17 implies

that H
max(W ) = V, so that the net H

max satisfies (Iso), (Cov) and (BW), but not necessarily
the Reeh–Schlieder condition. In this context our main results are Theorem 4.24, asserting
localizability for linear reductive groups in all representations in all non-empty open subsets
of the associated non-compactly causal symmetric space for a suitably chosen wedge region.
For the Lorentz group SO1,d(R)e and its simply connected covering Spin1,d(R), this leads to

localization in open subsets of de Sitter space dSd. Relating open subsets of dSd with open
spacelike cones in Minkowski space R

1,d, this allows us to derive that, for the Poincaré group,
localizability in spacelike cones is equivalent to the positive energy condition (Theorem 4.26).

4.1 Regularity

Definition 4.1. We call an (anti-)unitary representation (U,H) of Gτh regular with respect to
h, or h-regular, if there exists an e-neighborhood N ⊆ G such that VN =

⋂
g∈N U(g)V is cyclic.

Replacing N by its interior, we may always assume that N is open.

Remark 4.2. In these terms, Theorem 3.1 asserts that, if U is a unitary representation with
discrete kernel, V is a standard subspace and h ∈ g with ∆V = e2πi ∂U(h), then h-regularity
implies that h is an Euler element and that the prescription U(τh) := J extends U to an
(anti-)unitary representation of Gτh .

This leads us to the problem to determine which (anti-)unitary representations (U,H) of Gτh
are h-regular. We start with a few general observations

Examples 4.3. (a) If G is abelian, then τh = idg and J commutes with U(G). Therefore
U(g)V = V for all g ∈ G and thus all representations are regular.
(b) From [FNÓ23] it follows that all irreducible (anti-)unitary representations are regular for
any Euler element if G is a simple linear Lie group or g ∼= sl2(R). In Corollary 4.25 below, this
is extended to all connected linear real reductive Lie groups.
(c) Let L = SO1,d(R)e be the connected Lorentz group and h ∈ so1,d(R) a boost generator.
Then all (anti-)unitary representations of the proper Lorentz group L+

∼= Lτh are h-regular.
This follows from d = 1 from (a) and, for d ≥ 2, from (b).

Lemma 4.4. For an (anti-)unitary representation (U,H) of Gτh , the following assertions hold:

(a) If U = U1⊕U2 is a direct sum, then U is h-regular if and only if U1 and U2 are h-regular.

(b) If U is h-regular, then every subrepresentation is h-regular.

Proof. (a) If U ∼= U1 ⊕ U2, then (30) implies that VN = V1,N ⊕ V2,N for every e-neighborhood
N ⊆ G. In particular, VN is cyclic if and only if V1,N and V2,N are.
(b) follows immediately from (a).

Applying Lemma C.3(b) to A := N , we obtain the following generalization to direct inte-
grals:

Lemma 4.5. Assume that G has at most countably many components. Then a direct integral
U =

∫ ⊕
X
Um dµ(m) is regular if and only if there exists an e-neighborhood N ⊆ G such that, for

µ-almost every m ∈ X, the subspace Vm,N is cyclic.

To deal with tensor products, we need the following observations from [LMR16]:

Lemma 4.6. Let Vj ⊆ Hj , j = 1, . . . , n, be standard subspaces with the modular data (∆j , Jj).
Then the closed real span

V := V1 ⊗ · · · ⊗ Vn

of the elements v1 ⊗ · · · ⊗ vn, vj ∈ Vj, is a standard subspace of

H := H1 ⊗ · · · ⊗ Hn
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with modular data
∆ = ∆1 ⊗ · · · ⊗∆n and J = J1 ⊗ · · · ⊗ Jn.

Moreover,
V
′ = V

′
1 ⊗ · · · ⊗ V

′
n.

Proof. The first assertion follows easily by induction from the case n = 2 ([LMR16, Prop. 2.6]).
The second assertion follows by induction from [LMR16, Prop. 2.5].

Example 4.7. Consider the group G = S̃L2(R), an Euler element h ∈ g = sl2(R) (they
are all conjugate) and an irreducible (anti-)unitary representation (U1,H1) of Gτh for which
U1(Z(G)) 6⊆ {±1}. We then consider the antiunitary representation

U := U1 ⊗ U1 of Gτh on H1 ⊗H1

and observe that U1(Z(G)) ⊆ T1 implies that U factors through the group G/Z(G) ∼= PSL2(R).
For V1 := V(h, U1), V

′
1 = V(h, U1), and V := V(h,U), we then have

VZ(G) = V = V1 ⊗ V
′
1 ⊆ H = H1 ⊗H1.

However, U1(Z(G)) ⊆ T1 is a subgroup containing non-real numbers, so that

V1,Z(G) =
⋂

z∈Z(G)

U1(z)V1 = {0}.

We therefore have
VZ(G) = V 6= V1,Z(G) ⊗ V

′
1,Z(G) = {0}.

Example 4.8. Another example from AQFT, where strict inclusions of the type (87) arise,
is contained in [MT19, Sect. 4.2.2]. We present the example in a slightly different way from
[MT19] in order to fit it with the language introduced in this paper. It is obtained by second
quantization of the tensor product of U(1)-current chiral one-particle nets. Consider the 1+ 1-
dimensional Minkowski spacetime R

1,1 with the quadratic form x2 = x2
0 − x2

1, where spacetime
events are denoted x = (x0, x1). One can now pass to chiral coordinates:

(x+, x−) =
(x0 + x1√

2
,
x0 − x1√

2

)
(57)

In these coordinates, the right and left wedge in R
1,1 are given by

WR = R+ × R− and WL = R− × R+.

Consider the BGL net (H(I))I⊆R∞ indexed by intervals on the compactified real line R∞ =
R∪{∞}, associated with the (anti-)unitary lowest weight 1 representation (U,H) of the Möbius
group Möbτh with respect to the Euler element h ∈ sl2(R), the generator of the dilations, acting
by exp(th)x = etx. We form the tensor product net

R
1,1 ⊃ I1 × I2 7→ H̃(I1 × I2) := H(I1)⊗ H(I2) ⊂ H⊗H,

where I1 and I2 are intervals in R∞. A pair of intervals specifies a region

DI1,I2 := {(x+, x−) ∈ R
1,1 : x+ ∈ I1, x− ∈ I2}.

Here we only consider intervals I1, I2 ⊆ R, so that the product set I1×I2 ⊆ R
2
∞ can be identified

with DI1,I2 , and this set is connected.

The net H̃ on “rectangles” in R
2
∞ is covariant for the representation U ⊗ U of the group

Möb
2
τh

:= (Möb×Möb)(τh,τh). Note that the identity component of the Poincaré group P↑
+ and

the dilation group (D(t))t∈R+ are contained in the group Möb
2. Let r be the space reflection
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r(x0, x1) = (x0,−x1), resp., by r(x+, x−) = (x−, x+). We consider the group Möb
2
r,τh

, gener-
ated by Möb

2
τh

and r. We implement the reflection r unitarily on H⊗H as the flip, acting on
simple tensors by U(r)(ξ ⊗ η) = η⊗ ξ. This extends U ⊗U to an (anti-)unitary representation

U (2) of Möb
2
r,τh

for which the net H̃ is covariant. Now let

G ∼= R
1,1

⋊ (R+ ×O1,1(R))
↑ ∼= P↑

⋊ R
+

be the subgroup of Möb
2
r generated by P↑ = R

1,1
⋊O1,1(R)

↑ and positive dilations. Clearly,

H̃(WR) = H(R+)⊗ H(R−) and H̃(WL) = H(R−)⊗ H(R+).

Let I1 = (a, b) and I2 = (c, d) be bounded real intervals. Then

I1 × I2 =WR
a,c ∩WL

b,d,

where
WR
a,c = (R+ + a)× (R− + c) and WL

b,d = (R− + b)× (R+ + d).

Let A = {g1, g2} ⊆ Möb ×Möb, where g1WR =WR
a,c and g2WR =WL

b,d. For

V := H̃(WR),

we now derive from isotony

VA = H̃(WR
a,c) ∩ H̃(WL

b,d) ⊃ H̃(I1 × I2) = H(I1)⊗ H(I2) = H̃(WR
a,c ∩WL

b,d). (58)

We now consider H̃max, the maximal net with respect to G. In [MT19, Sect. 4.4.2] it is proved

that H̃
max(I1 × I2) = VA properly contains H̃(I1 × I2) = H(I1) ⊗ H(I2). The idea of the proof

is that the net H̃ is Möb×Möb-covariant by construction, but the net on Minkowski space

R
1+1 ⊃ I1 × I2 7−→ H̃

max(I1 × I2) ⊂ H, I1, I2 ⊂ R

is only G-covariant and. Consequently, they have to be different. It is easy to see (again by

construction) that the net H̃
max is G-covariant with respect to U (2)|G. In order to prove that

it is not Möb ×Möb-covariant, one can argue as follows: The representation

(U ⊗ U)|P↑ =

∫ ⊕

R+

Umdν(m)

disintegrates to a direct integral of all positive mass representations (Um,Hm),m > 0, of P↑.
On wedge regions, the net is the BGL net, hence disintegrates into the BGL nets Hm over
R+ = (0,∞)

H̃(W ) =

∫ ⊕

R+

Hm(W )dν(m) ⊂
∫ ⊕

R+

Hmdν(m).

By (DI2) from Appendix C, we also have

H̃
max(D) =

∫ ⊕

R+

H
max
m (D) dν(m) ⊂

∫ ⊕

R+

Hmdν(m)

for all open doublecones D = I1 × I2. We associate the following subspace to the forward light
cone:

K(V+) :=
∑

D⊂V+

H̃max(D),

where the union is extended over all double cones D contained in V+.
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Following [MT19, Prop. 4.3], we have
∑

D⊂V+ H̃m(D) = Hm, so that K
max(V+) is not

separating because

K(V+) =
∑

D⊂V+

H̃max(D)) =

∫ ⊕

R+

∑

D⊂V+

Hm(D)dν(m) =

∫ ⊕

R+

Hmdν(m) = H.

Let g ∈ Möb×Möb such that gD = V+ for some bounded interval D. We conclude that there is
no unitary operator Q ∈ U(H), implementing g in the sense that QH̃

max(D) ⊇ H̃
max(D̃) holds

for all double cones D̃ ⊆ V+. In fact, the former is a standard subspace and sum of the spaces
on the right is not separating.

Lemma 4.9. Let (U,H) be an (anti-)unitary representation of Gτh for which the cones

C± := ±CU ∩ g±1(h)

have interior points in g±1(h) with respect to the subspace topology. Then, for V = V(h, U), the
semigroup SV = {g ∈ G : U(g)V ⊆ V} has dense interior, i.e., SV = S◦

V
.

Note that, if CU has interior points, then so do the cones C±, because they are the projec-
tions of ±CU onto g±1(h).

Proof. Let Gr := G/ ker(U) and n := L(kerU) = ker(dU). We write Ur : Gr → U(H) for the
unitary representation of Gr defined by U . Then

CU = CU + n and CU/n = CUr .

Moreover, for nλ(h) = n ∩ g±λ(h) we have

g
r
λ(h) ∼= gλ(h)/nλ(h) for λ = 1, 0,−1.

Therefore the cones
Cr± := ±CUr ∩ g

r
±1(h) = C±/n±1(h)

are generating and

SrV := {g ∈ Gr : Ur(g)V ⊆ V} = GrV exp(C
r
+ + Cr−)

by [Ne22, Thm. 3.4]. To see that this semigroup has dense interior, it suffices to show that e
can be approximated by interior points. Since both cones Cr± have dense interior and the map

g0(h)× g1(h)× g−1(h) → G, (x0, x1, x−1) 7→ exp(x0) exp(x1 + x−1)

is a local diffeomorphism around (0, 0, 0), the semigroup SrV has dense interior. As SV ⊆ G
is the full inverse image of SrV under the quotient map G → Gr, which has continuous local
sections, it has dense interior as well.

Theorem 4.10. (Regularity via positive energy) If (U,H) is an (anti-)unitary representation
of Gτh for which the cones

C± := ±CU ∩ g±1(h)

are generating in g±1(h), then (U,H) is regular.

Proof. For a subset N ⊆ G and g0 ∈ G, we note that

U(g0)V ⊆ VN ⇔ N−1g0 ⊆ SV. (59)

From Lemma 4.9 we infer that SV has an interior point g0, so that the above condition is
satisfied for some e-neighborhood N . As U(g)V is cyclic, it follows in particular that VN is
cyclic.
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Remark 4.11. (a) The condition on the cone C± to be generating holds for positive energy
representations of the Möbius group. Up to sign, the only pointed, generating (in the sense of
having interior points) closed convex Ad-invariant cone is

C := {X ∈ g : VX ≥ 0} =
{
X =

(
a b
c −a

)
: b ≥ 0, c ≤ 0, a2 ≤ −bc

}
.

For the Euler element h = 1
2

(
1 0
0 −1

)
we have

C± = ±C ∩ g±1(h), C+ = R+

(
0 1
0 0

)
, C− = R+

(
0 0
1 0

)
,

and the half lines C± in g±1(h) also have interior points. In general the generating property
of the cones C± in g±1(h) is rather strong. For instance it is not satisfied by positive energy
representations of the Poincaré group on R

1,3. Theorem 4.12 will show how to derive regularity
if the cones C± are not generating; see Remark 4.13.
(b) From the proof of Theorem 4.10 one can derive some more specific quantitative information.
If N is an e-neighborhood contained in g−1

0 SV for some g0 ∈ SV, then the argument implies that
VN is cyclic.
(c) If [g1(h), g−1(h)] = {0}, then B := exp(g1(h) + g−1(h)) is an abelian subgroup of G and
SV ⊇ Ghe exp(C+ + C−). If C ⊆ B is any compact e-neighborhood, then there exists a b0 ∈ SV

with C−1b0 ⊆ SV, so that GheC
−1b0 ⊆ SV and thus VCGh

e
= VC ⊇ U(b0)V is cyclic. It follows that

N can be chosen arbitrarily large, whenever the cones C± are generating. A typical example
is given by the 3-dimensional Poincaré algebra in dimension 1 + 1.

Note that the subgroups G±1(h) := exp(g±1(h)) ⊆ G are abelian.

Theorem 4.12. Suppose that G = R⋊L is a semidirect product. Let (U,H) be an antiunitary
representation such that

• (U |L,H) is regular, and

• the cones C± := ±CU ∩ r±1(h) generate r±1(h).

Then (U,H) is regular.

Proof. First, let NL ⊆ L be an e-neighborhood for which H := VNL is cyclic. Our assumption
implies that SV ∩ R has interior points in R (Lemma 4.9). Hence there exists r0 ∈ (SV ∩ R)◦
and an e-neighborhood NR ⊆ R with r0N

−1
R ⊆ SV. Then

U(ℓ)U(r)U(r0)
−1

V ⊇ U(ℓ)V ⊇ H for ℓ ∈ NL, r ∈ NR,

and so regularity follows.

Remark 4.13. The condition on the cones C± in Theorem 4.10 is stronger than the positive
energy condition CU 6= {0}. The latter assumes the existence of a positive cone C in the
Lie algebra that −i∂U(x) ≥ 0 for every x ∈ C but does not require the generating property.
Theorem 4.12 shows that, in order to recover the regularity of the net on Minkowski spacetime,
one has to look at the representation of the Poincaré group P↑

+ = R
1,3

⋊ L↑
+ and to check the

non-triviality of the one-dimensional cones C± in the eigenspaces r±1(h) = R(e0 ± e1) (light
rays) in the subalgebra r ∼= R

1,3 corresponding to translations, and the regularity property for
the restriction of the representation to the identity component L↑

+ of the Lorentz group. The
first property is equivalent to the usual positive energy condition on Poincaré representations,
namely the joint spectrum of the translations is contained in {x ∈ R

1,3 : x2 ≥ 0, x0 ≥ 0}.
The second one holds for every representation of the Lorentz group, see Example 4.3 and
Theorem 4.24 below.
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Remark 4.14. (a) IfG is simply connected, thenG ∼= R⋊S, where S is semisimple and R is the
solvable radical. In view of Theorem 4.24, which guarantees localizability for representations
of S, Theorem 4.12 applies whenever the cones CU ∩ r±1(h) are generating, i.e., the restriction
of the representation to the abelian subgroups R± := exp(r±1(h)) have a generating positive
cone.
(b) A similar remark applies to (coverings of) identity components of real algebraic groups.
They are semidirect products G = N ⋊ L, where N is unipotent and L is reductive ([Ho81,
Thm. VIII.4.3]). For these groups Theorem 4.12 applies whenever the cones CU ∩ n±1(h) are
generating.
(c) Presently we do not know if all (anti-)unitary representations of Lie groups of the form
Gτh , h ∈ g an Euler element, are regular. The preceding discussion shows that, to answer this
question, a more detailed analysis of the case of solvable groups has to be undertaken.

Proposition 4.15. Let h ∈ g be an Euler element and Gτh as above. An (anti-)unitary
representation (U,H) of Gτh is regular if and only if its restriction to the connected normal
subgroup N ♮

h with Lie algebra

n
♮
h := g1(h) + (Rh+ [g1(h), g−1(h)]) + g−1(h)

is regular.

Note that the equality of g = n
♮
h is equivalent to the Euler element h being anti-elliptic in g

(cf. Definition 5.3 below).

Proof. Since g = n
♯
h+g0(h) on the Lie algebra level, we obtain G = N ♮

hG
h
e for the corresponding

integral subgroups, where N ♯
h is a normal subgroup with Lie algebra n

♯
h and L(Ghe ) = g0(h).

Then Ghe ⊆ Gh,τh implies that Ghe ⊆ GV. For any e-neighborhood N ⊆ N ♮
h, we therefore have

⋂

g∈NGh
e

U(g)V =
⋂

g∈N
U(g)V.

Therefore U is regular if and only if U |
N

♮
h

is regular.

Proposition 4.16. We consider a group G = E ⋊ R, where E is a finite-dimensional vector
space with Lie algebra of the form

g = E ⋊ Rh,

where h is an Euler element. Then all (anti-)unitary representations of G are regular.

Proof. Let Ej := {v ∈ E : [h, v] = jv} be the h-eigenspaces in E. By Proposition 4.15, it suffices
to verify regularity on the subgroup N ♯

h = (E1 ⊕ E−1)⋊ R. Using systems of imprimitivity, it
follows that all irreducible unitary representations of such groups factor through representations
of groups for which dimE±1 ≤ 1. In fact, all all orbits of eR ad h in E∗ = E∗

−1⊕E∗
1 are contained

in an at most 2-dimensional subspace because, for α = α−1 + α1, we have

ead h.α = e−tα−1 + etα1 ∈ Rα−1 + Rα1.

As irreducible unitary representations of G are build from exp(Rh)-ergodic covariant projection-
valued measures on E∗, we can mod out kerα±j to reduce to the situation where dimE±1 ≤ 1.

This reduces the problem to the cases where g is abelian, aff(R) or p(2) = R
1,1

⋊ so1,1(R).
The simple orbit structure for R on the dual space E∗ implies that in this case the cones

C± := ±CU ∩E±1

are always non-trivial, hence generating. Now regularity of all irreducible (anti-)unitary repre-
sentations follows from Theorem 4.10.
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Moreover, Remark 4.11 implies that, for all compact e-neighborhoods N ⊆ G (which project
to compact identity neighborhoods in the three types of quotient groups), the subspaces VN
are cyclic. As N is independent of the representation, we can use Lemma 4.5 to obtain the
result in general.

Remark 4.17. Let (U,H) be an irreducible (anti-)unitary representation of the connected Lie
group G and 0 6= v ∈ D(∆1/2) be an analytic vector. If ξ ∈ VA, then U(g)−1ξ ∈ V holds for all
g in A and, if A◦ 6= ∅, then the analyticity of the map G→ V, g 7→ U(g)−1v and the closedness
of V imply that U(G)v ⊆ V, so that

VA ∩ Hω ⊆ VG.

If VA ∩Hω is dense in VA and VA is cyclic, it follows that VG is cyclic. Its invariance under the
modular group of V then implies that V = VG ([Lo08, Prop. 3.10]). Therefore V is G-invariant
and thus h is central in g if ker(U) is discrete. In view of [BN23, Thm. 7.12], one should not
expect that V contains non-zero analytic vectors if VG = {0}. For more details on the subspace
VG, we refer to Section 5.2 below.

4.2 Localizability

In this section we study localizability properties of unitary representations of a connected Lie
group G.

Definition 4.18. We say that the (anti-)unitary representation (U,H) of Gτh is (h,W )-
localizable in those open subsets O ⊆M for which H

max(O) is cyclic.

The following remark show that already the localizability condition in the wedge region W
has consequences for the representation.

Remark 4.19. By Lemma 2.17(c) the property of (h,W )-localizability implies SW ⊆ SV. From
[Ne22, Thm. 3.4] we recall that

SV := {g ∈ G : U(g)V ⊆ V} = GV exp(C+ + C−) with C± = ±CU ∩ g±1(h) (60)

if ker(U) is discrete. If the Lie wedge

L(SW ) = {x ∈ g : exp(R+x) ⊆ SW }

is not contained in g0(h) (see Proposition 2.9 for a description of this cone for positivity do-
mains), this implies that one of the two cones

L(SV) ∩ g±1(h) = C± = ±CU ∩ g±1(h)

is non-zero and thus CU 6= {0}. If SW = GW is a group, this conclusion is not possible, so that
localizability does not require any spectral condition, in particular CU = {0} is possible.

Remark 4.20. For the canonical nets obtained from pairs (h,W ) on a homogeneous space
M = G/H through two (anti-)unitary representations U1, U2 of Gτh , as in (20), Lemma D.1
shows that, for a tensor product representation U = U1 ⊗ U2, we have

H
max(O) ⊇ H

max
1 (O)⊗ H

max
2 (O),

and in general equality does not hold (Example 4.7).

Lemma 4.21. (Localizability implies regularity) Let ∅ 6= O ⊆ W ⊆ M be open subsets
such that N := {g ∈ G : g−1O ⊆ W } is an e-neighborhood. If (U,H) is an (anti-)unitary
representation for which H

max(W ) = V and H
max(O) is cyclic, then it is regular.
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Proof. By assumption H
max(O) is cyclic, and

H
max(O) ⊆

⋂

g∈N
H

max(gW ) =
⋂

g∈N
U(g)Hmax(W ) =

⋂

g∈N
U(g)V = VN .

It follows that VN is cyclic.

Nets satisfying (Iso) and (Cov) can easily be constructed as follows. Given an (anti-)unitary
representation (U,H) of Gτ , the subspace H∞ ⊆ H of vectors v ∈ H for which the orbit map
Uv : G → H, g 7→ U(g)v, is smooth (smooth vectors) is dense and carries a natural Fréchet
topology for which the action of G on this space is smooth ([Go69, Ne10], [NÓ21, App. A], and
Appendix B). The space H−∞ of continuous antilinear functionals η : H∞ → C (distribution
vectors) contains in particular Dirac’s kets 〈·, v〉, v ∈ H, so that we obtain complex linear
embeddings

H∞ →֒ H →֒ H−∞,

where G acts on all three spaces by representations denoted U∞, U and U−∞, respectively.
All of the three above representations can be integrated to the convolution algebra C∞

c (G,C)
of test functions, for instance U−∞(ϕ) :=

∫
G
ϕ(g)U−∞(g) dg, where dg stands for a left Haar

measure on G. The operators U(ϕ) are continuous maps H → H∞, so that their adjoints
U−∞(ϕ) define maps H−∞ → H. For any real subspace E ⊆ H−∞, we can therefore associate
to every open subset O ⊆ G, the closed real subspace

H
G
E (O) := span

R
U−∞(C∞

c (O,R))E. (61)

On a homogeneous space M = G/H with the projection map q : G → M , we now obtain a
“push-forward net”

H
M
E (O) := H

G
E (q

−1(O)). (62)

This assignment satisfies (Iso) and (Cov), so that a key problem is to specify subspaces E of
distribution vectors for which (RS) and (BW) hold as well.

Suppose that g is simple and h ∈ g an Euler element, and that M = G/H is the corre-
sponding non-compactly causal symmetric space (cf. Subsection 2.1.3). In [FNÓ23] a net of
standard subspaces H

M
E has been constructed on open regions of M , satisfying (Iso), (Cov),

(RS), (BW), where W =W+
M (h)eH . The following lemma applies in particular to these nets:

Lemma 4.22. Let (U,H) be an (anti-)unitary representation and E ⊆ H−∞ be a real subspace
with V = H

M
E (W ). If the net HME has the Reeh–Schlieder property (RS), then H

max(O) is cyclic
for any non-empty open subset O ⊆M .

Proof. Since H
M
E (O) is cyclic for each non-empty open subset O ⊆ M by (RS), it suffices to

verify that HME (O) ⊆ H
max(O). As the net HME is covariant, isotone and has the BW property

with respect to h and W , this follows from Lemma 2.19.

Example 4.23. We now describe an example of a net H
M
E constructed from a standard sub-

space V = V(h, U) for which the corresponding maximal net H
max is strictly larger on some

open subsets. Here M = R, with its natural causal structure, on which we consider the group
G = Aff(R)e, acting by affine maps.

On the space C∞
c (R,R) of real-valued test functions on R, we consider the positive definite

hermitian form, given by

〈f, g〉1 :=

∫

R+

pf̂(p)ĝ(p) dp =

∫

R+

pf̂(−p)ĝ(p) dp
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where the Fourier transform is defined f̂(p) =
∫
R
eipxf(x) dx. We write H(1) for the real Hilbert

space obtained by completion with respect to this scalar product and η : C∞
c (R,R) → H(1) for

the canonical inclusion. The symplectic form corresponding to its imaginary part is

σ1(f, g) = Im

∫

R+

pf̂(−p)ĝ(p) dp = 1

2i

∫

R

pf̂(−p)ĝ(p) dp = π

∫

R

f(x)g′(x) dx. (63)

Let G := Aff(R)e be the connected affine group. Then the canonical action of G on
C∞
c (R,R) by (g.f)(x) := f(g−1x) preserves the hermitian form and the Fourier transform

intertwines it with the unitary representation on L2(R+, pdp) by

(Ũ(b, a)F )(p) = eibpaF (ap), b ∈ R, a, p ∈ R+.

As Ũ extends to an irreducible unitary representation Ũ of PSL2(R) (cf. [FNÓ23, §5.4]), Corol-

lary D.7 implies that Ũ is irreducible over R. It follows in particular that the Fourier transform
C∞
c (R,R) → L2(R+, p dp) has dense range. We thus obtain a real linear isometric bijection

H(1) → L2(R+, p dp). Bypassing the Fourier transform, we can also write the scalar product,
extended to complex-valued test functions, as

〈f, g〉1 =

∫

R+

f̂(p)ĝ(p) pdp =

∫

R

∫

R

f(x)g(y)
(−1)

(y − x+ i0)2
dx dy.

We consider the unitary representation U (1) of G on H(1), for which the Fourier transform is
an intertwining operator onto L1(R+, p dp). Note that H(1) may also be considered as a Hilbert
subspace of S ′(R) via the map ι(g)(f) = 〈f, g〉1 for f, g ∈ S(R), i.e.,

ι(g) = g ∗D with D(x) =
(−1)

(−x+ i0)2
.

The antilinear involution (jf)(x) := −f(−x) on C∞
c (R) induces a conjugation on H(1) that

extends U (1) to an (anti-)unitary representation Gτh
∼= R⋊R

× = Aff(R) for the Euler element
h = (0, 1) ∈ g. On L2(R+, p dp), j corresponds to the conjugation defined by JF = −F . Here
(h,−1) ∈ GE(Aff(R)) and W+ = G.(h,−1) can be identified with the set of open real half-lines,
bounded from below.

Clearly,
H

(1)(O) := η(C∞
c (O,R))

defines a net of real subspaces in H(1) that is isotone and G-covariant. Furthermore (63) implies
that this net is local in the sense that disjoint open intervals map to symplectically orthogonal
real subspaces. It also satisfies the Reeh–Schlieder property and also the BW property in the
sense that

V = V(h,U) = H
(1)(R+)

(cf. [Lo08, NÓØ21]). Here the main point is to verify that the constant function 1, a distribution
vector for the representation on L2(R+, p dp) satisfies the abstract KMS condition

J1 = −1 = ∆1/21 for ∆ = e2πi∂U(0,1) (64)

(cf. [BN23]). As Ũ(0, et)1 = et, the relation (64) follows immediately. For k ≥ 2, we also have
the following subnets, generated by the derivatives of test functions via

H
(k)(O) = {η(f (k−1)) : f ∈ C∞

c (O,R)} ⊆ H
(1)(O).

These nets are also isotone and G-covariant. It is known from [Lo08, Prop. 4.2.3] and [GLW98]
that, for every bounded interval I ⊆ R and k < ℓ, the subspace H

(ℓ)(I) ⊆ H
(k)(I) is proper

with
dim

(
H

(k)(I)/H(ℓ)(I)
)
= ℓ− k.
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On the other hand, when I = (a,∞) is an unbounded interval, then H
(k)(I) = H

(1)(I) for every
k ∈ N. Furthermore, on intervals, H(k) is a restriction of the BGL net associated to the unitary
positive energy representation Ũ (k) of PSL2(R) of lowest weight k ([Lo08, Thm. 3.6.7]).

Finally, we explain how to write these nets in the form H
R
Ek

for suitable one-dimensional

subspaces Ek = Rαk ⊆ H−∞ of distribution vectors of the representation (U (1),H(1)). To this
end, we consider the Fourier transform L2(R+, p dp) → O(C+),F1(F )(z) =

∫
R+
eipzF (p)pdp,

which maps unitarily onto the reproducing kernel Hilbert space H1 ⊆ O(C+) with reproducing
kernel

Q(z, w) =
−1

(z −w)2
for z, w ∈ C+ = R+ iR+

([NÓØ21]). Here J acts by (JF )(z) := −F (−z) and the affine group by

(U1(b, a)F )(z) = a−1F (a−1(z + b)).

The discussion in [FNÓ23, §5.4] shows that

α1(x) := (x+ i0)−2, resp. α1(z) =
1

z2
,

is a distribution vector that is an eigenvector for the dilation group, satisfying U−∞
1 (a)α1 = aα1

and Jα1 = −α1. For E1 := Rα1, the corresponding standard subspace H
R
E1
(O) is therefore

generated by the elements U−∞
1 (ϕ)α1 = ϕ∨ ∗ α1, ϕ ∈ C∞

c (O,R), so that we obtain for each
open subset O ⊆ R:

H
R

E1
(O) = H

(1)(−O).

We also note that
U (1)(ϕ(k))α1 = ϕ(k),∨ ∗ α1 = (−1)kϕ∨ ∗ α(k)

1 ,

so that we obtain

H
(k)(−O) = H

R

Ek
(O) for Ek = Rαk, αk := α

(k−1)
1 .

An example on 1+1-dimensional Minkowski spacetime is described in Remark 4.8.

Localizability for reductive groups

In this section we assume that g is reductive and that G is a corresponding connected Lie group.
We choose an involution θ on g in such a way that it fixes the center pointwise and restricts
to a Cartan involution on the semisimple Lie algebra [g, g]. Then the corresponding Cartan
decomposition g = k⊕ p satisfies z(g) ⊆ k. We write K := Gθ for the subgroup of θ-fixed points
in G.

We write
g = g0 ⊕

⊕

γ∈Γ

gγ ,

where g0 = z(g) is the center and each ideal gγ is simple. Accordingly, we have

h = h0 +
∑

γ

hγ ,

where hγ ∈ gγ either vanishes or is an Euler element in gγ . We assume that θ(hγ) = −hγ for
each γ ∈ Γ. We decompose Γ as

Γ = Γ0∪̇Γ1 with Γ0 := {γ ∈ Γ: hγ = 0}, (65)
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so that h = h0 +
∑
γ∈Γ1

hγ . Then we obtain an involutive automorphism τ on g by

τ (x) =





x for x ∈ g0 = z(g),

x for x ∈ gγ , γ ∈ Γ0,

τhθ(x) for x ∈ gγ , γ ∈ Γ1,

and we assume that τ integrates to an involutive automorphism τG of G. We write h := gτ

and q := g−τ for the τ -eigenspaces in g. Then there exists in q a unique maximal pointed
generating ead h-invariant cone C containing h′ :=

∑
γ∈Γ1

hγ in its interior ([MNO23a]) We
choose an open θ-invariant subgroup H ⊆ Gτ satisfying Ad(H)C = C. By [MNO23a, Cor. 4.6],
this is equivalent to HK = H ∩ K fixing h. Here we use that H has a polar decomposition
H = HK exp(hp), so that the above condition implies that Ad(H)h = ead hph. Then

M = G/H (66)

is called the corresponding non-compactly causal symmetric space. The normal subgroups
G0 = Z(G)e and Gj for hj = 0, are contained in H , hence act trivially onM . The homogeneous
spaceM carries a G-invariant causal structure, represented by a field (Cm)m∈M of closed convex
cones Cm ⊆ Tm(M), which is uniquely determined by CeH = C ⊆ q ∼= TeH(M).

The modular vector field

XM
h (m) =

d

dt

∣∣∣
t=0

exp(th).m (67)

on M determines a positivity region

W+
M (h) := {m ∈M : XM

h (m) ∈ C◦
m} (68)

and the connected component W := W+
M (h)eH of the base point eH ∈ M is called the wedge

region in M .
Note that the following theorem does not require any assumption concerning the irreducibil-

ity of the representation. Although its proof draws heavily from [FNÓ23], which deals with
irreducible representations, Proposition 2.26 is a convenient tool to reduce to this situation.

Theorem 4.24. (Localization for real reductive groups) If the universal complexification
η : G → GC of the connected reductive group G is injective and (U,H) is an (anti-)unitary
representation of Gτh , then the canonical net H

max on the non-compactly causal symmetric
space M = G/H associated to h as in (66) satisfies

(a) V = H
max(W ), i.e., SW ⊆ SV, and

(b) H
max(O) is cyclic for every non-empty open subset O ⊆ M .

Proof. In view of Lemma 2.17(c), assertion (a) follows from (b). So it suffices to verify (b). By
Proposition 2.26 we may further assume that (U,H) is irreducible. Replacing G by a suitable
covering group, we may assume that the universal complexification GC is simply connected,
and then

GC
∼= G0,C ×

∏

γ∈Γ

Gγ,C

leads to the product structure

G ∼= G0 ×
∏

γ∈Γ

Gγ .

Moreover,

q =
⊕

γ∈Γ1

qγ and C =
∑

γ∈Γ1

Cγ with Cγ = C ∩ qγ

(cf. (65)).
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We first consider irreducible representations of the factor groups Gγ,τh . If hγ ∈ gγ is trivial
or central, then the standard subspace V is Gj-invariant, so that V = VGj . For all other simple
factors (hγ ,Wγ)-localizability in the family of all non-empty open subsets of the associated
non-compactly causal symmetric space follows from [FNÓ23, Thm. 4.10]. This implies the
assertion for all irreducible (anti-)unitary representations of the factor groups Gγ,τh and G0,τh .

Let U0 ⊗ ⊗
γ∈Γ Uγ be an irreducible unitary representation of G and extend it by some

conjugation of the form J = J0 ⊗ ⊗
γ∈Γ Jγ to an irreducible (anti-)unitary representation

(U,H) of Gτh on a Hilbert space that is a subspace of the tensor product of the spaces

H̃γ = Hγ ⊕Hγ .

By Remark 2.25, all irreducible (anti-)unitary representations of Gτh are subrepresentations
of tensor products of irreducible (anti-)unitary representations of the factor groups. We thus
obtain all irreducible (anti-)unitary representations of Gτh . Therefore the assertion follows
from the fact that (b) is inherited by subrepresentations, direct sums, and finite tensor products
(Lemma 2.17(d)).

Corollary 4.25. (Regularity for linear reductive groups) Let G be a connected linear reductive
Lie group, i.e., its universal complexification is injective and GC is a complex reductive algebraic
group. Then there exists an e-neighborhood N ⊆ G such that for every separable (anti-)unitary
representation (U,H) of Gτh , the real subspace

V(h, U)N =
⋂

g∈N
U(g)V(h,U)

is cyclic. In particular, (U,H) is h-regular.

Proof. Let O ⊆ W ⊆ M = G/H be an open subset whose closure O is relatively compact. In
Theorem 4.24 we have seen that Hmax(O) is cyclic. Further

N := {g ∈ G : gO ⊆W } ⊇ {g ∈ G : gO ⊆ W }

is an e-neighborhood because O ⊆W is compact. Theretofore the h-regularity of (U,H) follows
from Lemma 4.21.

Localizability for the Poincaré group

The following result is well-known ([BGL02, Thm. 4.7]). Here we derive it naturally in the
context of our theory for general Lie groups. It connects regularity, resp., localizability with
the positive energy condition.

Theorem 4.26. (Localization for the Poincaré group) Let (U,H) be an (anti-)unitary repre-
sentation of the proper Poincaré group P+ = R

1,d
⋊ L+ (identified with Pτh) and consider the

standard boost h and the corresponding Rindler wedge WR ⊆ R
1,d. Then (U,H) is (h,WR)-

localizable in the set of all spacelike open cones if and only if it is a positive energy representa-
tion, i.e.,

CU ⊇ V+ := {(x0,x) : x0 ≥ 0, x2
0 ≥ x2}. (69)

These representations are regular.

Note that Ad(P↑
+) acts transitively on the set E(p) of Euler elements, so that the choice of

a specific Euler element h is inessential.

Proof. First we show that the positive energy condition is necessary for localizability in space-
like cones. In fact, the localizability condition implies in particular that H(WR) is cyclic, so
that Lemma 2.17 implies SWR ⊆ SV. As a consequence, e1 + e0 ∈ CU , and thus V+ ⊆ CU by
Lorentz invariance of CU . Therefore (U,H) is a positive energy representation.
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Now we assume that (U,H) is a positive energy representation. For the standard boost
we have h ∈ l ∼= so1,d(R), and the restriction (U |L+

,H) is (h,W )-localizable in the family

of all non-empty open subsets of dSd, where W = WR ∩ dSd is the canonical wedge region
(Theorem 4.24).

Next we recall from [NÓ17, Lemma 4.12] that

SWR = {g ∈ P↑
+ : gWR ⊆ WR} =WR ⋊ SO1,d(R)

↑
WR

,

where
SO1,d(R)

↑
WR

= SO1,1(R)
↑ × SOd−2(R)

is connected, hence coincides with Lhe . It follows that

SWR = Ghe exp([0,∞)(e0 + e1)) exp([0,∞)(−e0 + e1)).

Let us assume that (U,H) is a positive energy representation, i.e., that CU ⊇ V+ (cf. (69)).
Then

C± = [0,∞)(e1 ± e0) ⊆WR, so that SWR ⊆ SV.

By Lemma 2.17(c), the net Hmax satisfies H
max(WR) = V.

Now suppose that C ⊆WR is a spacelike cone, so that

C = R+(C ∩ dSd),

where C ∩ dSd is an open subset of the wedge region W = WR ∩ dSd in de Sitter space. For
g−1 = (v, ℓ) ∈ P↑

+, the condition C ⊆ g.WR is equivalent to

g−1.C = v + ℓ.C ⊆WR,

which in turn means that v ∈WR and ℓ.C ⊆WR. Then

U(g)V = U(ℓ)−1U(v)−1
V ⊇ U(ℓ)−1

V

follows from WR ⊆ SV, and therefore

H
max(C) =

⋂

C⊆g.WR

U(g)V ⊇
⋂

C⊆ℓ−1.WR

U(ℓ)−1
V

=
⋂

C∩dSd⊆ℓ−1.(WR∩dSd)

U(ℓ)−1
V = H

max
U|L (C ∩ dSd).

We conclude that, on spacelike cones with vertex in 0, the net H
max coincides with the net

H
max
U|L on de Sitter space. As the latter net has the Reeh–Schlieder property by Theorem 4.24,

and all spacelike cones can be translated to one with vertex 0, localization in spacelike cones
follows.

Finally we show that (U,H) is regular. For v ∈ WR and a pointed spacelike cone C with
v + C ⊆ W , there exists an e-neighborhood N ⊆ G with v + C ⊆ g.W for all g ∈ N . This
implies that Hmax(v +C) ⊆ VN , so that (U,H) is regular.

Remark 4.27. Infinite helicity representations (U,H) of P+ in R
1,d are not localizable in

double cones (Definition 2.20). Let V = H
BGL
U (W ) for W = (h, jh) be as in Example 2.7. In

[LMR16, Thm. 6.1] it is proved that, if O ⊆ R
1,d is a double cone, then

H
max(O) =

⋂

O⊆g.WR

U(g)V = {0}. (70)
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The argument to conclude (70) can be sketched as follows. Infinite spin representations are
massless representations, i.e., the support of the spectral measure of the space-time translation
group is

∂V+ = {(x0,x) ∈ R
1,d : x2

0 − x2 = 0, x0 ≥ 0}.
Covariant nets of standard subspaces on double cones in massless representations are also
dilation covariant in the sense that the representation of P+ extends to the Poincaré and dilation
group R

1,d
⋊ (R+ ×L), and that the net is also covariant under this larger group, cf. [LMR16,

Prop. 5.4]. When d = 3, this follows from the fact that due to the Huygens Principle, one can
associate by additivity a standard subspace to the forward lightcone H(V+) =

∑
O⊂V+ H(O)

(sum over all double cones in V+) and the modular group of H(V+) is geometrically implemented
by the dilation group. As massless infinite helicity representations are not dilation covariant,
it follows that they do not permit localization in double cones. Properties of the free wave
equation permit to extend this argument to any space dimension d ≥ 2 including even space
dimensions, and the Huygens Principle fails ([LMR16, Sect. 8.2]). However, in Theorem 4.26,
we recover in our general setting the result contained in [BGL02, Thm. 4.7] that all positive
energy representations of P+ are localizable in spacelike cones.

5 Moore’s Theorem and its consequences

In this section we continue the discussion of applications of our results to von Neumann algebras
M with cyclic separating vector Ω, started in Subsection 3.2. First we explain the consequences
of Moore’s Eigenvector Theorem 5.1 (cf. [Mo80, Thm. 1.1]). Here the main point is that the
properties (Mod) and (M) (from Subsection 3.2) imply that Ω is fixed by the one-parameter
group U(exp(Rh)) and Moore’s Theorem allows us to find conditions for G under which this
always implies that Ω is fixed under G. Note that, for semisimple Lie groups Moore’s Theorem
also follows from the Howe–More Theorem on the vanishing of matrix coefficients at infinity
for all unitary representations non containing non-zero fixed vectors (cf. [Zi84, Thm. 2.2.20]).

The first main result in this section are Theorem 5.11, characterizing for (anti-)unitary
representation (U,H) of Gτh the subspace VG =

⋂
g∈G U(g)V as the set of fixed points of a

certain normal subgroup specified in Moore’s Theorem. The second one is Theorem 5.15 that
combines Moore’s Theorem with Theorem 3.7 to obtain a criterion for M to be a factor of type
III1. The third one is Proposition 5.22 which shows that all the structure we discuss survives
the central disintegration of M, provided M′ and M are conjugate under U(G).

5.1 Moore’s Theorem

Theorem 5.1. (Moore’s Eigenvector Theorem) Let G be a connected finite-dimensional Lie
group with Lie algebra g and h ∈ g. Further, let nh E g be the smallest ideal of g such that the
image of h in the quotient Lie algebra g/nh is elliptic.

Suppose that (U,H) is a continuous unitary representation of G and Ω ∈ H an eigenvector
for the one-parameter group U(expRh). Then

(a) Ω is fixed by the normal subgroup Nh := 〈exp nh〉 E G, and

(b) the restriction of i · ∂U(h) to the orthogonal complement of the space HNh of Nh-fixed
vectors has absolutely continuous spectrum.

The ideal nh E g has the property that the corresponding closed normal subgroup Nh E Ge
generated by exp(nh) fixes Ω, hence acts trivially on the projective orbit G.[Ω] ⊆ P(H). As adh
induces an elliptic element on g/nh, the group G/Nh has a basis of e-neighborhoods invariant
under exp(Rh).
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Corollary 5.2. Let G be a connected finite-dimensional Lie group. Suppose that (U,H) is
a unitary representation of G with discrete kernel and that h ∈ g is such that ∂U(h) has a
G-cyclic eigenvector in H. Then ad(h) is elliptic.

Proof. It suffices to show that nh = {0}. As the subgroup Nh E G is normal, the subspace
HNh of Nh-fixed vectors is G-invariant: For ξ ∈ HNh , g ∈ G and n ∈ Nh, we have

U(n)U(g)ξ = U(g)U(g−1ng)ξ = U(g)ξ.

The G-cyclic eigenvector Ω of ∂U(h) is contained in HNh by Moore’s Theorem, so that H =
HNh . Therefore nh ⊆ ker(dU) = {0}.

In many situations, Moore’s Theorem implies that eigenvectors of one-parameter subgroups
are actually fixed by G. These cases are easily detected with the following concept:

Definition 5.3. We call h ∈ g anti-elliptic if nh + Rh = g.

Remark 5.4. In [Str08] a closely related property has been introduced for Lie algebra elements:
An element x ∈ g for which ad x is diagonalizable is said to be essential if

g = Rx+ [x, g] + span[[x, g], [x, g]].

As g =
∑
λ∈R

gλ(x) and [x, g] =
∑
λ 6=0 gλ(x), this is equivalent to

g0(x) = Rx+
∑

λ 6=0

[gλ(x), g−λ(x)].

In this case the ideal nx contains all eigenspaces gλ(x) for λ 6= 0, hence also the brackets
[gλ(x), g−λ(x)]. As

i :=
∑

λ 6=0

gλ(x) +
∑

λ 6=0

[gλ(x), g−λ(x)]

is an ideal of g for which the image of x in g/i is central, it follows that i = nx. Therefore an
ad-diagonalizable element is essential if and only if it is anti-elliptic. In this sense our concept
of intrepidity extends Strich’s concept of essentiality to general Lie algebra elements.

Remark 5.5. The assumption of h to be anti-elliptic holds if h is an Euler element in a simple
Lie algebra. But h = 1

2
diag(1,−1) is an Euler element in the reductive Lie algebra gl2(R) with

nh = sl2(R) ∋ h. So it is not anti-elliptic.

Moore’s Theorem immediately yields:

Corollary 5.6. If h ∈ g is anti-elliptic and (U,H) is a unitary representation of a connected
Lie group G with Lie algebra g, then ker(∂U(h)) = HG.

Proof. As ker(∂U(h)) consists of eigenvectors for U(expRh), Moore’s Theorem implies that
they are fixed by U(Nh). Anti-ellipticity of h further implies that G = Nh exp(Rh), so that
they are fixed by G.

Examples 5.7. (a) If g is simple and h ∈ g is not elliptic, then nh 6= {0} implies nh = g,
so that h is anti-elliptic. If, more generally, g is reductive such that g = Rh + [g, g] and no
restriction of ad h to a simple ideal of g is elliptic, then h is anti-elliptic.
(b) Consider a semidirect sum of Lie algebras g = r ⋊ l and an element h ∈ l such that

Spec(ad h|r) ∩ iR = ∅ (71)

and h is anti-elliptic in l. Then h is anti-elliptic in g. In fact, our assumption implies that
r ⊆ nh, so that g/nh ∼= l/(l ∩ nh) ∼= l/lh is linearly generated by the image of h. This implies
that g = nh + Rh.
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(c) If g = Rx + Rh with [h, x] = λx and λ 6= 0, then nh = Rx, so that h is anti-elliptic (cf.
[Str08]).
(d) Consider the boost generator h ∈ so1,1(R) ⊆ p(2) = R

1,1
⋊ so1,1(R), the 2d-Poincaré–Lie

algebra. Then nh = R
1,1 and g = nh + Rh, so that h is anti-elliptic.

(e) From (a) and (b) it follows immediately that, for d ≥ 3, any boost generator h ∈ so1,d−1(R) ⊆
p(d) = R

1,d−1
⋊ so1,d−1(R) is anti-elliptic. Here we use that the representation of so1,d−1(R)

on R
1,d−1 is irreducible.

(f) Suppose that g is reductive and h ∈ g is an Euler element. Since every ideal of a reductive
Lie algebra possesses a complementary ideal ([HN12, Def. 5.7.1]), we can write g = nh⊕ b. We
write accordingly h = h0+h1 with h0 ∈ nh and h1 ∈ b. If nh is not central, then h0 is an Euler
element of nh. Further, h1 is elliptic in b ∼= g/nh. From the direct sum decomposition we thus
infer that h0 is an Euler element of g and that h1 is elliptic.

Lemma 5.8. If h ∈ g is an Euler element, then

nh = g1(h) + [g1(h), g−1(h)] + g−1(h).

In particular, h is anti-elliptic if and only if

g0(h) ⊆ Rh+ [g1(h), g−1(h)].

Proof. Clearly, g±1(h) ⊆ nh implies that nh contains the ideal

n := g1(h) + [g1(h), g−1(h)] + g−1(h).

As the image of h in g/n is central, we have nh = n. Hence h is anti-elliptic if and only if
g0(h) ⊆ Rh+ [g1(h), g−1(h)].

Remark 5.9. If h is an Euler element, then Lemma 5.8 shows that

g = nh + g0(h),

so that the summation map is a surjective homomorphism nh ⋊ g0(h) →→ g. Hence g is a
quotient of nh ⋊ g0(h), where h ∈ g0(h) is central.

Remark 5.10. If h is an Euler element, then

n
♮
h := nh + Rh = g1(h) + (Rh+ [g1(h), g−1(h)]) + g−1(h)

is an ideal of g. It is the minimal ideal containing h, and therefore the corresponding integral
subgroup of G is generated by exp(Ad(G)h). Therefore h is anti-elliptic if and only if the
modular groups exp(Ad(g)Rh) generate G.

5.2 Non-degeneracy

Let (U,H) be an (anti-)unitary representation of Gτh , where h ∈ g is an Euler element and
V = V(h, U) is the canonical standard subspace.

We consider the G-invariant closed real subspace

VG =
⋂

g∈G
U(g)V.

We call the couple (U, V) non-degenerate if VG = {0}. We shall see in this context how this
property is related to the structure introduced in the previous section.

Theorem 5.11. Suppose that G is connected, h ∈ g is an Euler element, (U,H) an
(anti-)unitary representation of Gτh , and V = V(h, U) the corresponding standard subspace.
Then VG = V ∩ HNh , where Nh is the normal subgroup from Moore’s Theorem 5.1.
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Proof. Let H1 := HNh and H2 := H⊥
1 . As Nh E G is a normal subgroup of Gτh , the decom-

position H = H1 ⊕H2 is U(Gτh)-invariant, so that U = U1 ⊕U2, accordingly. Since this group
contains JV and the modular group, it follows that

V = V1 ⊕ V2 with V1 = V ∩HNh and V2 = V ∩ (HNh)⊥,

where V1 = V(h, U1).
“⊇”: On H1 the group Nh acts trivially, so that g = nh + g0(h) (Lemma 5.8) implies that
U1(G) = U1(〈exp g0(h)〉) commutes with the modular group U1(expRh) of V1. Further g0(h) =
gτh shows that U1(G) also commutes with J1 = U1(τ

G
h ), and therefore V1 is U1(G)-invariant.

This proves that V1 ⊆ VG.
“⊆”: We consider the closed U(G)-invariant subspace H0 := VG + iVG and note that VG is a
standard subspace of H0. As VG is invariant under U(expRh) = ∆iR

V , the modular group of V,
it follows from [Lo08, Cor. 2.1.8] that

∆VG = e2πi ∂U0(h) for U0(g) := U(g)|H0 .

The U0(G)-invariance of the standard subspace VG implies that U0(G) commutes with its
modular operator, hence with ∂U0(h), and thus ∂U([h, x]) = 0 for x ∈ g. This implies that
[h, g] ⊆ ker dU0, so that the ideal ker(dU0) E g contains g±1(h), hence also

nh = g1(h) + [g1(h), g−1(h)] + g−1(h)

(cf. Lemma 5.8). This is turn shows that H0 ⊆ HNh , hence VG ⊆ V ∩ HNh .

Corollary 5.12. If G is connected and h ∈ nh, then

VG = V ∩ V
′.

Proof. Theorem 5.11 shows that VG ⊆ HNh , and since h ∈ nh by assumption, VG is fixed by
its modular group, hence contained in Fix(∆V) ∩ V = V ∩ V′.

If, conversely, v ∈ V∩ V′, then v is fixed by U(expRh) = ∆iR
V , hence by definition of Nh also

by Nh, so that v ∈ V ∩HNh = VG (Theorem 5.11).

With the standard subspace VG ⊆ HNh , the preceding corollary yields an orthogonal de-
composition

V = VG ⊕ Vsymp,

where Vsymp ⊆ (HR, ω) is a symplectic subspace for ω = Im〈·, ·〉 and Vsymp = V(h, Us) for the
(anti-)unitary representation Us of Gτh on (HNh)⊥.

Corollary 5.13. If G is connected and nh = g, then the following are equivalent:

(a) VG = {0}, i.e. (U, V) is non-degenerate.

(b) HG = {0}.
(c) V ∩ V′ = {0}.
(d) The closed real subspace Ṽ generated by U(G)V coincides with H.

Proof. Theorem 5.11 implies that VG = V ∩ HG, which is a standard subspace of the Gτh -
invariant subspace HG. This implies the equivalence of (a) and (b). The equivalence of (a) and
(c) follows from Corollary 5.12. To connect with (d), we note that

JVVG =
⋂

g∈G
JVU(g)V =

⋂

g∈G
U(τ (g))JVV =

⋂

g∈G
U(τ (g))V′ =

⋂

g∈G
U(g)V′ = (U(G)V)′

shows that (d) is equivalent to (a).
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Remark 5.14. (a) Let h ∈ g be an Euler element, if h is symmetric then the condition h ∈ nh
is satisfied. Indeed in this case there exists a subalgebra h ⊂ g such that h ≃ sl2(R) and h is
an Euler element of h [MN21, Corollary 3.14]. Then h ∈ [h1, h−1] ⊂ nh.
(b) If h is not symmetric, then Corollary 5.12 does not hold. Indeed let (H(O))O be the one-
particle net associated to the free field mass in dimension 1+1 with massm > 0 and let U be the
mass m representation of the identity component P↑

+ = R
1,1

⋊ L↑
+ of the Poincaré group. The

wedge subspaces V := H(WR) and H(WL) are mutually orthogonal symplectic factor subspaces
satisfying

H(WR)
′ = H(WL) and H(WR) ∩ H(WL) = {0}.

Here the wedge WR is associated to an Euler couple (h, τh) (cf. Example 2.7), and since h is
neither symmetric in P↑

+ nor in L↑
+ (note that so1,1(R) ∼= R is abelian), there is no g such that

gWR = WL. One can restrict the symmetry group to H := Le as well as the representation
U |H , acting as automorphisms of H(WR). We conclude that VH = V 6= V ∩ V′ = {0} since the
subspace V = H(WR) is symplectic.
(c) The containment h ∈ nh does not imply that h is symmetric: For instance no Euler element
h ∈ sl3(R) is symmetric, but h ∈ g = nh follows from the simplicity of sl3(R).

5.3 Consequences of Moore’s Theorem for operator algebras

For the discussion in this section, we recall the conditions (Uni), (M), (Fix), (Mod) and (Reg)
from Section 3.2.

Theorem 5.15. Let G be a connected Lie group with Lie algebra g and h ∈ g anti-elliptic. Let
(U,H) be a unitary representation of G with discrete kernel, N ⊂ M ⊆ B(H) an inclusion of
von Neumann algebras, and Ω ∈ H a unit vector which is cyclic and separating for N and M.
Assume that

(Mod) e2πi∂U(h) = ∆M,Ω, and

(Reg’) {g ∈ G : Ad(U(g))N ⊆ M} is an e-neighborhood in G.

Then the following assertions hold:

(a) h is an Euler element.

(b) The conjugation J := JM,Ω satisfies

JU(exp x)J = U(exp τh(x)) for τh = eπi ad h, x ∈ g. (72)

(c) HG = ker(∂U(h)).

(d) The restriction of i∂U(h) to the orthogonal complement of the subspace HNh of fixed
vectors of the codimension-one normal subgroup Nh, has absolutely continuous spectrum.

If, in addition, HG = CΩ 6= H, then M is factor of type III1.

Proof. Our assumptions clearly imply (Uni), (M) and (Mod). LetN ⊆ G be the e-neighborhood
specified by (Reg’). Then MN ⊇ N , so that (Reg) is also satisfied. As h is anti-elliptic and
Ω ∈ ker(∂U(h)) by (Mod), Corollary 5.6 implies that

Ω ∈ HG = ker(∂U(h)),

which is (c). Now Theorem 3.7 implies (a) and (b). Further, (d) follows from Moore’s Theorem.
If, in addition, HG = CΩ 6= H, then

CΩ = ker(∂U(h)) = ker(∆M,Ω − 1),

so that M is a factor of type III1 by Proposition A.1(e) because H = MΩ implies M 6= C1
and CΩ = ker(∆M,Ω − 1) implies ∆M,Ω 6= 1.
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In our context, Theorem 6.2 of [BB99] becomes the following corollary. We use the notation
from 2.7.

Corollary 5.16. (Borchers–Buchholz Theorem) Let (U,H) be a unitary representation of
the Lorentz group G = SO1,d(R)

↑ acting covariantly on an isotone net (A(O))O⊆dSd of von
Neumann algebras on open non-empty subsets of de Sitter spacetime, i.e., O1 ⊂ O2 implies
A(O1) ⊂ A(O2) (isotony) and Ad(U(g))(A(O)) = A(gO) with g ∈ G (G-covariance). Let
Ω ∈ H be a fixed vector of U(G) that is cyclic and separating for any A(O). Assume that the
vacuum state ω(·) = 〈Ω, ·Ω〉 is a KMS state for A(WR) with inverse temperature β > 0 with
respect to the one-parameter group (U(exp th))t∈R, namely for every pair X,Y ∈ A(WR), there
exists an analytic function FX,Y on the strip {z ∈ C : 0 < Im z < β} with continuous boundary
values satisfying

F (t) = ω(X Ad(U(exp th))(Y )), F (t+ iβ) = ω(Ad(U(exp th))(Y )X), t ∈ R.

Then β = 2π

Proof. For O ⋐ WR, there exists an open neighborhood of the identity N ⊂ SO1,d(R)
↑ such

that O ⊂ gW dS
R for all g ∈ N . Let M := A(W dS

R ). By covariance, N := A(O) satisfies (Reg’)

in Theorem 5.15. The KMS property implies that Ad(U(exp th)) = Ad(∆
−it/β
A,Ω ) (cf. [Bl06,

Thm.III.4.7.2 ]) and, since the representation of A(W dS
R ) on H is the GNS representation for

w.r.t. ω, we have that U
(
exp

(
βt
2π
h
))

= ∆
− it

2π

A(WdS
R

),Ω
, and Theorem 5.15 applies. We conclude

that β
2π
h is an Euler element, but since h is also an Euler element in so1,d(R), it follows that

β = 2π.

Definition 5.17. We write A :=
( ⋃

g∈G
Mg)

′′ ⊆ B(H) for the von Neumann algebra generated

by all algebras Mg = U(g)MU(g)−1. Let (M′)G :=
⋂
g∈GM′

g and note that

A′ =
⋂

g∈G
M′

g = (M′)G. (73)

We also write Ã for the von Neumann algebra generated by A and JAJ with J = JM,Ω, i.e.,
by all algebras Mg and (M′)g , g ∈ G. Then Ã′ ⊆ M∩M′ = Z(M) and, more precisely,

Ã′ = Z(M)G =
⋂

g∈G
Z(M)g (74)

is the maximal G-invariant subalgebra of Z(M).

Lemma 5.18. Let αt := Ad(∆it) ∈ Aut(M) be the modular automorphisms of the von Neu-
mann algebra M corresponding to the cyclic separating vector Ω. If (Uni), (M), (Fix), (Reg)
and (Mod) are satisfied and h is anti-elliptic, then

(a) A′ ⊆ M′ is invariant under Ad(U(G)).

(b) (M′)G = (M′)α = (A′)G.

(c) Z(M) ⊆ MG = Mα.

Proof. (a) A′ ⊆ M′ holds by definition, and A′ is U(G)-invariant.
(b) By (Mod), we have (M′)G ⊆ (M′)α. To show the converse, suppose that A ∈ M′ is fixed
by α. As h is anti-elliptic, AΩ ∈ H∆ = HG (Corollary 5.6), which implies that

U(g)AU(g)−1Ω = U(g)AΩ = AΩ.
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If g ∈ N , with N as in (Reg), then M′ ∪M′
g ⊆ M′

N and Ω is separating for M′
N , so that we

obtain
U(g)AU(g)−1 = A.

We conclude that A commutes with U(N), and since the connected group G is generated
by the identity neighborhood N , it follows that A commutes with U(G). This shows that
(M′)G = (M′)α.

As A is G-invariant, so it holds A′ ⊆ M′. Further,

(A′)G ⊆ (M′)G ⊆ (M′)G = A′

by (73). This implies that (A′)G = (M′)G.
(c) Using the relation M = JM′J and the fact that J normalizes U(G) (Theorem 3.7) and
commutes with U(expRh), the equality MG = Mα follows from (b) by conjugating with J .
Further Z(M) ⊆ Mα follows from the fact that modular automorphisms fix the center point-
wise ([BR96, Prop. 5.3.28]).

Proposition 5.19. Suppose that (Uni), (M), (Fix), (Mod) and (Reg) are satisfied, that h is
anti-elliptic, and that ∆ 6= 1. For the assertions

(a) The net (Mg)g∈G is irreducible, i.e., A = B(H).

(b) A′ = (M′)G =
⋂
g∈GM′

g = C1.

(c) MG =
⋂
g∈GMg = C1.

(d) HG = CΩ.

(e) M is a type III1 factor.

we have the implications:
(a) ⇔ (b) ⇔ (c) ⇒ (d) ⇒ (e).

Note that (d) is stronger than Z(M) = C1.

Proof. (a) ⇔ (b) follows from A′ =
⋂
g∈G(Mg)

′ = (M′)G.

(b) ⇔ (c): As JU(G)J = U(G) by Theorem 3.7 and JMJ = M′, we have JMGJ = (M′)G.
Therefore (b) and (c) are equivalent.
(c) ⇒ (d): From Proposition A.1(a) and Lemma 5.18(c), we know that

HG = H∆ A.1
= MαΩ = MGΩ. (75)

Therefore MG ⊆ MG = C1 implies that HG = CΩ.
(d) ⇒ (e): As h is anti-elliptic, we have HG = H∆ (Corollary 5.6), so that Proposition A.1(e)
implies that M is a factor of type III1.

Remark 5.20. If G = R acts as the modular group of (M,Ω), then A = M, Ã = (M∪M′)′′,

and Ã′ = Z(M). So Ã′ = C1 is equivalent to M being a factor, but, in general, this does not
imply that HG = H∆ = CΩ because we may have Mα 6= C1 (cf. Remark 5.21(b)).

Remark 5.21. (a) The implication (e) ⇒ (c) holds if there exists a g ∈ G such that Mg =
U(g)MU(g)−1 ⊆ M′. Then MG ⊆ Z(M), and if M is a factor, it follows that MG = C1, so
that (e) implies (c).

If the Euler element h is not symmetric, i.e., there exists no g ∈ G such that Ad(g)h = −h,
then (e) does not always imply (a). For instance, let R1,1 ⊃ O → M(O) be the free field of mass
m > 0 in 1 + 1 dimensions and let U be the mass m representation of the identity component
of the Poincaré group P↑

+ = R
1,1

⋊ L↑
+. The algebras M(WR) and M(WL) corresponding to

the right and left wedges are invariant under the Lorentz action and of type III1. This follows
from uniqueness of the vacuum state and Proposition 5.19. In particular, the “one wedge net”
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WR → M(WR) together with the representation U |L↑
+

satisfies (Uni), (M), (Fix), (Mod) and

(Reg) but the algebra generated by Ad(U(L↑
+))M(WR) = M(WR) is properly contained in

B(H) (see also Example 3.8).
(b) The implication “(e) ⇒ (d)” is related to the ergodicity of the state on he type III1-factor
M specified by Ω: By (75), ergodicity of the state defined by Ω is equivalent to HG = CΩ.
This does in general not follow from (e) because non-ergodic states always exist for a type III1-
factors (Remark A.2). Concretely, such states can be obtained as follows: Consider a type III1

factor M ⊂ B(H) and the algebra M2(C) of complex 2× 2-matrices. Then M̃ = M⊗M2(C)
is a type III1 factor ([Ta02, Thm. V.2.30]). For a faithful normal state ω on M, we consider

the state on M̃ specified by
(ω ⊗ ϕ11)(m⊗ x) = ω(x)x11.

This is a non-ergodic (non-faithful) state on the type III1 factor M̃.
(c) Suppose that M = MG, i.e., that M is normalized by U(G). Then G = GM and Ω ∈ HG

imply G = GVM , so that h is central in g and therefore τh = idG. The example described in
point (a) with G = Le is of this type.

5.4 The degenerate case

Proposition 5.19 describes the non-degenerate case, where HG = CΩ. If HG is not one-
dimensional, we now obtain a direct integral decomposition, in accordance with the AQFT
literature, see [Lo08b, Cor. 6.2.10], [Ara76, Sect. 4.4], [BB99, Sect. 5].

The following proposition extends 5.19 to the case where the vacuum Ω is not cyclic. We
will comment on conditions (a) and (b) in Remark 5.23 below.

Proposition 5.22. Suppose that H is separable. Let (αt)t∈R be the modular automorphisms
of M with respect to the cyclic separating vector Ω and (U,H) a unitary representation of G,
such that:

(a) (Uni), (M), (Fix), (Reg) and (Mod) and h is anti-elliptic in g.

(b) M′ = Mg0 for some g0 ∈ G.

Then we have direct integral decompositions

M =

∫ ⊕

X

Mx dµ(x), U =

∫ ⊕

X

Ux dµ(x), and A =

∫ ⊕

X

B(Hx)dµ(x).

We have a measurable decomposition X = X0∪̇X1, where dimHx = 1 for x ∈ X0 and the
representations (Ux)x∈X0 are trivial. For x ∈ X1, the algebras Mx are factors of type III1 and
(Mx,Ωx, Ux) satisfies (Uni), (M), (Fix), (Reg) and (Mod), where Ux is the representation of
G/ ker(Ux) induced by Ux.

Proof. From M′ = Mg0 for some g0 ∈ G, we derive that A′ ⊆ Z := M ∩ M′. Using
Lemma 5.18(b),(c), we obtain

A′ = (A′)G ⊆ Z = ZG ⊆ (M′)G = (M′)α = (A′)G = A′, (76)

so that
ZG = Z = (M′)α = A′. (77)

By [BR87, Thm. 4.4.3], there exists a finite standard measure space (X,µ), a unitary Φ
such that

ΦH =

∫ ⊕

X

Hxdµ(x)
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and UZU∗ acts on the direct integral as the algebra L∞(X,µ) of diagonal operator. From
[BR87, Thm. 4.4.6(a)], passing to the commutant one can easily see that A= Z ′ can be repre-
sented as the direct integral von Neumann algebra xof decomposable operators:

ΦAΦ∗ =

∫ ⊕

X

B(Hx) dµ(x).

If C is a von Neumann subalgebra of A, then ΦCΦ∗ ⊂ ΦAΦ∗ and there exists a measurable
family of von Neumann algebras X ∋ x 7→ Cx ⊂ B(Hx) for almost every x ∈ X [Ta02,
Thms. 8.21, 8.23] . In particular UCU∗ =

∫ ⊕
X

Cx dµ(x). Since U does not depends on the
subalgebra hereafter in the proof we will work on the direct integral Hilbert space, i.e. we will
assume H =

∫ ⊕
X

Hx dµ(x).
With this argument we can also assume that on the same standard finite measure space

(X,µ) we have

(M,H) =

∫ ⊕

X

(Mx,Hx) dµ(x), (78)

for which Z ∼= L∞(X,µ) is the diagonal algebra and almost every Mx is a factor [Ta02, Cor.
8.20].

As Z commutes with U(G), we have

U(G) ⊆ Z ′ = A′′ = A. (79)

Hence the separable C∗-algebra C∗(U(G)) is contained in Z ′ = A, so that [BR87, Cor. 4.4.8]
yields a direct integral decomposition of the unitary representation

(U,H) =

∫ ⊕

X

(Ux,Hx) dµ(x).

For x ∈ X, the kernel kerUx may not be discrete, so that (Uni) holds for (Ux,Hx) only as a
representation Ux of G/ ker(Ux).

Since U is a direct integral representation, we have

(Mg,H) =

∫ ⊕

X

((Mg)x,Hx) dµ(x). (80)

By Proposition A.1(a), Ω ∈ HG ⊆ H∆ is a cyclic separating vector for Z = (M′)α. Writing
Ω = (Ωx)x∈X , it follows that almost no Ωx vanishes, and thus

HG =

∫ ⊕

X

CΩx dµ(x) ∼= L2(X,µ).

Replacing N in (Reg) by the von Neumann algebra MN =
⋂
g∈N Mg, where N ⊆ G is

an e-neighborhood satisfying (Reg), we see that MN ⊆ Z ′ also decomposes according to the
direct integral. We also obtain

MN =

∫ ⊕

X

(Mx)N dµ(x),

from Lemma C.4. Theorem 5.15 now shows that ∂U(h) also decomposes in such a way that

ker(∂Ux(h)) = CΩx (81)

for almost every x ∈ X.
Since Ω is cyclic and separating for M, the vectors Ωx ∈ Hx must be cyclic separating

for the von Neumann algebras Mx for almost every x ∈ X (easy argument by contradiction,
we also refer to [Ta03, Thm. VIII.4.8] for a more general case). We therefore obtain (Uni),
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(M), (Fix), (Mod) and (Reg) for the algebras Mx ⊆ B(Hx) and the representations Ux of
G/ ker(Ux) on Hx. Finally, since A′ is the diagonal algebra

C1 = (Ax)
′ =

⋂

g∈G
(M′

x)g

holds for almost every x ∈ X (Lemma C.4 and [BR87, Thm. 4.4.5]).
The condition ∆x 6= 1 is by (81) equivalent to dimHx > 1, and in this case Proposition 5.19

applies to the configuration in the Hilbert space Hx and shows that Mx is a type III1-factor.
If dimHx = 1, then Mx = C1 and ∂Ux(h) = 0 implies the triviality of the representation Ux
because

HG
x = ker(∂U(h))x = CΩx = Hx

(Theorem 5.15(c)).
We now define X1 := {x ∈ X : dimHx > 1} and X0 := {x ∈ X : dimHx = 1}. Then the

triples (Mx,Hx, Ux) satisfy (M), (Fix), (Reg), (Mod), and (Uni) for the representation Ux of
G/ ker(Ux).

Remark 5.23. (a) If h is not a symmetric Euler element, the condition M′ ⊂ Mg0 may not
hold (Remark 5.21(a)).
(b) In Proposition 5.22 it was crucial that M′ = Mg0 for some g0 ∈ G, in order to obtain
the disintegration. Furthermore, A′ = Z = ZG implies U(G) ⊂ A. In the general case it is
not clear when the group U(G) is contained in A. In [BB99, Prop. 4.1], this follows from the
KMS property of the wedge modular groups together with their geometric action, where it is
used that boosts generate the Lorentz group to see that U(G) ⊆ A′′ = A. In our argument
U(G) ⊆ A′′ = A does not need that G is generated by an orbit of Euler elements.
(c) In the proof of Proposition 5.22, we disintegrated M =

∫ ⊕
X

Mx dµ(x) and U =
∫ ⊕
X
Ux dµ(x)

in order to apply Proposition 5.19 fiberwise and conclude that, for almost every x ∈ X1, the
algebra Mx is a type III1 factor. We actually have deduced (M), (Fix), (Reg) , (Mod) for
almost every the triple (Mx, Ux,Ωx) and (Uni) for (Mx, Ux,Ωx). In particular we could apply
Proposition 5.19 for almost every triple (Mx, Ux,Ωx), where all the properties (M), (Fix),
(Reg), (Mod) and (Uni) hold. Actually, it is not needed to assume (Uni) on Ux to conclude the
type III1 property of Mx. Along this paper, (Uni) is necessary to ensure that dU is injective
and in particular that dU(h) determines h uniquely. In the proof of Proposition 5.22 we only
need that

(Z)x = (Mα)x = C · 1Hx (82)

to apply Proposition A.1(e). We can conclude (82) as follows: let g0 ∈ G, such that M′ =
Mg0 ∈ A, then we have M′

x = (Mg0)x, hence Z(Mx) = Z(M)x = Zx for a.e. x ∈ X.
Furthermore, Mα =

∫ ⊕
X
(Mα)x dµ(x), and since Z = Mα = C·1, then (Z)x = (Mα)x = C·1Hx

for almost every x ∈ X.
(d) Condition (b) in Proposition 5.22 implies that M′ ⊂ A. If M′ 6⊂ A then Proposition 5.22

does not hold in the present form. One may to consider the larger von Neumann algebra Ã
generated by the G-transforms of M and M′. Lemma 5.18(c) then implies that G acts trivially

on Z(M), so that (74) entails Ã′ = Z(M). Then Ã contains U(G), and one can repeat large

portions of the proof of Proposition 5.22 to disintegrate the triple (M, U, Ã). However, in this
situation the conclusion one can draw from Z(Mx) = C1, i.e., if Mx is a factor, are weaker. In
particular, Mα

x can be larger than C1, so that Mx need not be of type III1 (cf. Remark 5.20).

6 Outlook

This paper develops a language concerning properties of nets of standard subspaces that pro-
vides descriptions on several levels of abstraction. It also incorporates a series of recent results
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from a new point of view. [BB99, BEM98] aim to deduce properties of QFT on de Sitter/anti-
de Sitter spacetime from the thermal property of the vacuum state for a geodesic observer. In
[BS04], the authors deduce AQFT properties from the assumption on the state on the quasi-
local algebra to be passive for a uniformly accelerated observer in n-dimensional anti-de Sitter
spacetime for n ≥ 2. [Str08] aims to unify the previous approaches by considering passive
states for an observer traveling along worldlines in order to prove the thermal property of the
vacuum and the Reeh-Schlieder property. His purpose was also to look for an abstract setting
that, at the end, was lacking concrete examples. Our context may provide the proper setting
in which such questions can be investigated and where one has a large zoo of diverse examples.

If one starts with a standard subspace V and a unitary representation (U,H) of G, then
there are many ways to formulate conditions on a net of standard subspaces containing V that
ensure the Bisognano–Wichmann property, or at least modular covariance, in the sense that
the modular groups associated to wedge regions act geometrically; see [Mo18, MN21]. Results
in these directions have recently been established in [MN22], and our Euler Element Theorem
(Theorem 3.1) can also be considered as a tool to verify the Bisognano–Wichmann property.
However, a satisfying answer to the long-standing questions related to modular covariance for
nets of standard subspaces and the Bisognano–Wichmann property in free and interacting nets
of von Neumann algebras requires further research. For a recent approach to the situation for
Minkowski spacetime through scattering theory, we refer to [DM20] and references therein.

In this paper, we do not analyze locality properties. Indeed, in our AQFT context it may
happen that, on the same symmetric space M , there are no causally complementary wedge
regions. This happens if the Euler element corresponding to the wedge W is not symmetric, so
that there exists no g ∈ G with gW = W ′ (cf. [MNO23b]). If h is a symmetric Euler element
and the center of G is non-trivial, many complementary wedges appear. This has been studied
in [MN21] at the abstract level, but an analysis on symmetric spaces is still missing. Once a
one-particle net is established one would aim to make a second quantization procedure which
should take care of a one-particle Spin-Statistics Theorem anticipated in [MN21]. Interesting
new possibilities for twisted second quantization procedures may be derived from the recent
paper [CSL23].

Wedges on causal homogeneous space have been described in [NÓ23, MNO23a, MNO23b].
Then the construction of covariant local nets of standard subspaces on open regions have been
described in [FNÓ23, NÓ23]. Having now understood that Euler elements are the natural
generators of the geometric flows of modular Hamiltonians (see Theorem 3.1 and Theorem
5.15) on a causal homogeneous space, one is interested in a general geometric description of
entropy and energy inequalities on symmetric spaces and their relation with the representation
theory of Lie groups ([MTW22, CF20, CLRR22]).

A Factor types and modular groups

We assume that Ω ∈ H is a cyclic and separating unit vector for the von Neumann algebra
M ⊆ B(H). We consider the automorphism group (αt)t∈R of M defined by the modular group
via

αt(M) = ∆itM∆−it, t ∈ R,M ∈ M.

We write Mα for the subalgebra of α-fixed elements and H∆ := ker(∆ − 1) for the subspace
of fixed vectors of the modular group.

Proposition A.1. The following assertions hold:

(a) MαΩ ⊆ H∆ is a dense subspace.

(b) H∆ = CΩ if and only if Mα = C1, i.e., that (M,R, α) is ergodic.

(c) Mα ⊇ Z(M) = M∩M′. In particular, M is a factor if (M,R, α) is ergodic.
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(d) The von Neumann algebra M is semi-finite if and only if the modular automorphisms
(αt)t∈R are inner, i.e., can be implemented by a unitary one-parameter group of M. If ∆
is non-trivial and inner, then Mα 6= C1.

(e) If H∆ = CΩ and ∆ 6= 1, then M is a factor of type III1.

Proof. (a) The inclusion MαΩ ⊆ H∆ is clear. That MαΩ is dense in H∆ follows from [Lo08b,
Prop. 6.6.4], applied with G = R and Ut = ∆it.
(b) This follows from (a) and the fact that Ω is a separating vector.
(c) Here we use that modular groups fix the center pointwise; see [BR96, Prop. 5.3.28].
(d) The first assertion follows from [Su87, Thm. 3.1.6]. If (αt)t∈R is inner and non-trivial,
then the spectral projections of the corresponding infinitesimal generator are contained in Mα,
showing that Mα 6= C1.
(e) From (b) we infer that Mα = C1, so that (c) implies that M is a factor. By (d) it is of
type III because ∆ is non-trivial (here we use M 6= C1), but cannot be inner by ergodicity. 4

We have to exclude the types III0 and IIIλ for λ ∈ (0, 1). By [Ta03, Prop. XII.3.15], if M is of
type III0, then the center of Mα is non-atomic. As this is not the case for Mα = C, this case
is excluded.

Let Γ(M) ⊆ R
×
+
∼= R̂ denote the Connes spectrum of α on M, which by [Su87, Prop. 3.3.3]

coincides with the spectrum of α on M. Now [Su87, Prop. 3.4.7] asserts that, if M and Mα

are factors, then
Γ(M) = S(M) ∩ R

×
+ = R

×
+ ∩ σ(∆ω)

for any faithful separating normal state ω. If M is of type IIIλ, then Γ(M) = λZ (cf. [Su87,
Def. 3.3.10]), so that the modular group α is periodic. By [Ta03, Exer. XII.2], this implies
that Mα is a factor of type II1, contradicting Mα = C1. So type IIIλ is also ruled out.
Alternatively, one can use [Co73, Lemma 4.2.3], asserting that, if M is a factor and 1 is
isolated in σ(∆ω), then Mα contains a maximal abelian subalgebra of M. In our context this
contradicts Mα = C1.

Remark A.2. We have seen above that M is a type III1-factor if (M,R, α) is ergodic. Ac-
cording to [MV23], the converse also holds in the sense that, if M is a type III1-factor, then
the set of ergodic states is a dense Gδ in the set of all faithful normal states. That there are
also faithful normal states that are not ergodic follows from [CS78, Cor. 8], that asserts for
each hyperfinite factor R the existence of faithful normal states of M with Mα ⊇ R.

Remark A.3. From Proposition A.1(a) it follows that the J-fixed vector Ω is cyclic and
separating in H∆ for the subalgebra Mα. Hence JMJ = M′ implies that the same holds of
(M′)α because JH∆ = H∆. We therefore have a standard form representation of Mα on H∆.
Note that the standard subspace V = VM,Ω satisfies

V ∩ H∆ = V
∆ = V ∩ V

′ = V ∩HJ

and contains the standard subspace Mα
h .Ω of H∆. This implies that the corresponding modular

operator is trivial, so that ωΩ(A) := 〈Ω, AΩ〉 is a trace on Mα ([BR96, Prop. 5.3.3]).

Remark A.4. Suppose that M = R(V) is a second quantization algebra. Then R(V ∩ V′) =
R(V) ∩ R(V)′ by the Duality Theorem, so that R(V) is a factor if and only if V is symplectic,
which is equivalent to

ker(∆V − 1) = {0}.
We also have ∆ = Γ(∆V) for the corresponding standard subspace V. Therefore F(H)∆ = CΩ
implies that H∆V = {0}, which is equivalent to R(V) being a factor, but we have seen in
Proposition A.1(a) that F(H)∆ = CΩ even implies that M is a factor of type III1.

If R(V) is a factor of type I, then the modular group is inner and, if V 6= {0}, it follows that
R(V)α 6= C1. In view of Proposition A.1(a), this implies that F(H)∆ 6= CΩ.

4At this point [Lo08b, Prop. 6.6.5] implies that M is of type III1, but as Longo’s argument is very condensed, we
provide some more details.

55



B Smooth and analytic vectors

For a unitary representation (U,H) of a Lie group G, we write H∞ ⊆ H for the subspace of
smooth vectors, i.e., elements ξ ∈ H whose orbit map

Uξ : G→ H, g 7→ U(g)ξ

is smooth. For x ∈ g, we write ∂U(x) for the infinitesimal generator of the one-parameter
group U(exp tx), so that U(exp tx) = et∂U(x). On this dense subspace we have the derived
representation

dU : gC → End(H∞), dU(x+ iy)ξ := ∂U(x)ξ + i∂U(y)ξ for x, y ∈ g, ξ ∈ H∞

for the derived representation of gC on this dense subspace. We also write Hω ⊆ H∞ for the
subspace of analytic vectors which is dense in H ([Nel59, Thm. 4], [Ga60]). As H∞ is dense
and U(G)-invariant, ∂U(x) is the closure of dU(x) ([RS75, Thm. VIII.10]).

For an analytic vector ξ ∈ Hω, we then have

Uξ(expx) = U(expx)ξ =
∞∑

n=0

1

n!
(dU(x))nξ

for every x in a sufficiently small 0-neighborhood Uξg ⊆ g. Analytic continuation implies that,
after possibly shrinking Uξg , the power series on the right converges on the 0-neighborhood
UξgC := Uξg + iUξg ⊆ gC and defines a holomorphic function

ηξ : U
ξ
gC

→ H, ηξ(z) :=

∞∑

n=0

1

n!
(dU(z))nξ. (83)

If ker(U) is discrete, then dU is injective on g. But for z ∈ gC the adjoint dU(z)† on dU(z)
on the pre-Hilbert space H∞ satisfies

dU(x+ iy)† = −dU(x) + idU(y) = dU(−x+ iy) for x, y ∈ g.

This implies that dU : gC → End(H∞) is also injective because 0 = dU(x+iy) = dU(x)+idU(y)
implies that the hermitian and the skew-hermitian part of this operator on H∞ vanish, and
thus dU(x) = dU(y) = 0.

Lemma B.1. For z ∈ gC, let dU
ω(z) denote the restriction of dU(z) to Hω. Then

dU(z) ⊆ dUω(−z)∗ (84)

In particular, the representation dUω of gC is injective if ker(U) is discrete. If this is the case,
then dUω(z) is skew-symmetric if and only if z ∈ g.

Proof. We have

〈ξ, dUω(z)η〉 = 〈dU(−z)ξ, η〉 for all ξ ∈ H∞, η ∈ Hω,

which is (84). In particular, we see that dUω(z) = 0 implies dU(z) = 0, so that ker(dU) =
ker(dUω). Suppose that ker(U) is discrete, so that dU and dUω are injective. Then dUω(z) is
skew-symmetric if and only if z − z ∈ ker(dUω) = {0}, which is equivalent to z ∈ g.
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C Some facts on direct integrals

Let H =
∫ ⊕
X

Hm dµ(m) be a direct integral of Hilbert spaces on a standard measure space
(X,µ). We call a closed real subspace H ⊆ H decomposable if it is of the form

H =

∫ ⊕

X

Hm dµ(m),

where (Hm)m∈X is a measurable field of closed real subspaces. Now let (Hk)k∈K be an at most
countable family of decomposable real subspaces. Then we have ([MT19, Lemma B.3]):

(DI1) H
′ =

∫ ⊕
X

H
′
m dµ(m).

(DI2)
⋂
k∈K H

k =
∫ ⊕
X

⋂
k∈K H

k
m dµ(m).

(DI3)
∑

k H
k =

∫ ⊕
X

∑
k H

k
m dµ(m).

Lemma C.1. The subspace H is cyclic/separating/standard if and only if µ-almost all Hm
have this property.

Proof. (a) First we deal with the separating property. By (DI2) we have

H ∩ iH =

∫ ⊕

X

(Hm ∩ iHm) dµ(m),

and this space is trivial if and only if µ-almost all spaces Hm ∩ iHm are trivial, which means
that Hm is separating.
(b) The subspace H is cyclic if and only if H′ is separating. By (DI1) and (a) this means that
µ-almost all H′

m are separating, i.e., that Hm is cyclic.
(c) By (a) and (b) H is standard if and only if µ-almost all Hm are cyclic and separating, i.e.,
standard.

Lemma C.2. For a countable family (Hk)k∈K of decomposable cyclic closed real subspaces,
the intersection V :=

⋂
k∈K H

k is cyclic if and only if, for µ-almost every m ∈ X, the subspace

Vm :=
⋂
k∈K H

k
m is cyclic.

Proof. By (DI2), we have V =
∫ ⊕
X

Vm dµ(m), so that the assertion follows from Lemma C.1.

For a direct integral

(U,H) =

∫ ⊕

X

(Um,Hm) dµ(m)

of (anti-)unitary representations of Gτh , the canonical standard subspace V = V(h, U) ⊆ H from
(28) is specified by the decomposable operator J∆1/2 = U(τh)e

πi ∂U(h), hence decomposable:

V =

∫ ⊕

X

Vm dµ(m). (85)

Lemma C.3. Assume that G has at most countably many components. For any subset A ⊆ G
and a real subspace H ⊆ H, we put

HA :=
⋂

a∈A
U(g)H. (86)

Then the following assertions hold:

(a) If H is decomposable, then HA =
∫ ⊕
X

Hm,A dµ(m).

(b) HA is cyclic if and only if µ-almost all Hm,A are cyclic.
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Proof. (a) As G has at most countably many components, it carries a separable metric. Hence
there exists a countable subset B ⊆ A which is dense in A. For ξ ∈ H, we have

ξ ∈ HA if and only if U(A)−1ξ ⊆ H.

Now the closedness of H and the density of B in A show that this is equivalent to U(B)−1ξ ⊆ H,
i.e., to ξ ∈ HB . This shows that HA = HB . We likewise obtain Hm,A = Hm,B for every m ∈ X.
Hence the assertion follows by applying (DI2) to HB = HA.
(b) follows from (a) and Lemma C.1.

We refer to [BR87] for basic definition on direct integral objects.

Lemma C.4. Let H =
∫ ⊕
X

Hxdµ(x), a direct integral von Neumann algebra A =
∫ ⊕
X

Axdµ(x)
and a strongly continuous, unitary, direct integral representation of a connected Lie group G,
(U,H) =

∫ ⊕
X
(Ux,Hx)dµ(x). Let N ⊂ G a subset, then

⋂

g∈N
Ag =

∫ ⊕

X

⋂

g∈N
(Ag)xdµ(x)

where Ag = U(g)AU(g)∗.

Proof. As G has at most countably many components, it carries a separable metric. Hence
there exists a countable subset N0 ⊆ N which is dense in N . For A ∈ B(H), the map

F : G → B(H), F (g) = U(g)AU(g)∗,

is weak operator continuous, so that the set of all g ∈ G with F (g) ∈ ⋂
g∈N0

Ag is a closed
subset, hence contains N . We conclude that

⋂

g∈N0

Ag =
⋂

g∈N
Ag.

We likewise obtain for every x ∈ X the relation
⋂

g∈N0

Ax,g =
⋂

g∈N
Ax,g for Ax,g = Ux(g)AxUx(g)

∗.

From [BR87, Prop. 4.4.6(b)] we thus obtain

⋂

g∈N
Ag =

⋂

g∈N0

Ag =

∫ ⊕

X

⋂

g∈N0

Ax,g dµ(x) =

∫ ⊕

X

⋂

g∈N
Ax,g dµ(x).

Finally, we observe that, for every g ∈ G

Ag =

∫ ⊕

X

(Ag)x dµ(x) =

∫ ⊕

X

Ax,g dµ(x)

follows by the uniqueness of the direct integral decomposition.

D Some facts on (anti-)unitary representations

D.1 Standard subspaces in tensor products

Lemma D.1. Suppose that (U,H) = ⊗nj=1(Uj ,Hj) is a tensor product of (anti-)unitary rep-
resentations of Gτh . Then the standard subspace V = V(h, U) is a tensor product

V = V1 ⊗ · · · ⊗ Vn,

and for every non-empty subset A ⊆ G the subset VA :=
⋂
g∈A U(g)V satisfies

VA ⊇ V1,A ⊗ · · · ⊗ Vn,A. (87)
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Proof. We have ξ ∈ VA if and only if U(A)−1ξ ⊆ V. This shows that any ξ = ξ1 ⊗ · · · ⊗ ξn with
ξj ∈ Vj,A is contained in VA, which is (87).

D.2 Existence of standard subspaces for unitary representations

The following theorem characterizes those Euler elements which, in every unitary representa-
tion, generate a modular group of some standard subspace.

Theorem D.2. (Euler elements generating modular groups) Let G be a connected Lie group
and h ∈ g an Euler element. We consider the following assertions:

(a) h ∈ [g1(h), g−1(h)].

(b) For all quotients q = g/n, n E g, in which the image of h is central, we have h ∈ n, so
that its image in q vanishes.

(c) For all unitary representation (U,H) of G, the selfadjoint operator i∂U(h) is unitarily
equivalent to −i∂U(h).

(d) For all unitary representation (U,H) of G, there exists a standard subspace V such that
∆V = e2πi∂U(h).

Then we have the implications
(a) ⇔ (b) ⇒ (c) ⇔ (d),

and if G is simply connected, then all assertions are equivalent.

Proof. (a)⇔ (b): The±1-eigenspaces for the image of h in q are the spaces q±1 = g±1(h)/n±1(h).
That the image of h is central in q means that both these spaces are trivial, i.e., that g±1(h) ⊆ n.
As n is a subalgebra, this means that

i := g1(h) + g−1(h) + [g1(h), g−1(h)] ⊆ n.

As i is an ideal of g, condition (b) means that h ∈ i, but as h ∈ g0(h), this is equivalent to (a).
(b) ⇒ (c): We argue by induction on dimG. Passing to the quotient group G/ ker(U), we may
w.l.o.g. assume that U has discrete kernel. If h is central, then h = 0, so that (c) holds trivially
because ±i∂U(h) = 0.

So we may assume that h is not central. Hence there exists a non-zero x ∈ g±1(h). We
consider the 2-dimensional subalgebra b := Rh + Rx ∼= aff(R) and the corresponding integral
subgroup B := exp(Rx) exp(Rh), which is isomorphic to Aff(R)e.

We may w.l.o.g. assume that HG = {0} because (c) obviously holds for trivial representa-
tions. Then Moore’s Theorem 5.1 implies that

ker(∂U(x)) ⊆ HNx , (88)

where Nx E G is a normal integral subgroup whose Lie algebra nx is the smallest ideal of g such
that the image x of x in the quotient Lie algebra g/nx is elliptic. As x = ±[h, x] is ad-nilpotent
(the h-eigenspace decomposition implies that (ad x)3 = 0), its image x in g/nx must be central.
So x = ±[h, x] = 0 implies x ∈ nx. Using that Nx is a normal subgroup, we see that HNx is
G-invariant, and the representation of G on this space factors through a representation of the
quotient group G/Nx of strictly smaller dimension. By the induction hypothesis, our assertion
holds for this representation.

We may therefore consider the representation of G on the orthogonal complement (HNx)⊥.
In view of (88), we may assume that ker(∂U(x)) = {0}. Then the restriction of U to the 2-
dimensional subgroup B is a direct sum or irreducible representations of B in which x acts non-
trivially, and every such representation is equivalent to one of the representations (U±, L

2(R)),
where

(U±(exp(sx) exp(th))f)(p) = e±ise
p

f(p+ t) for s, t, p ∈ R (89)
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(cf. [NÓ17, Prop. 2.38]). For both these representations, the operator i∂U±(h) is equivalent to
the selfadjoint operator i d

dp
on L2(R, dp). This implies that i∂U(h) is unitarily equivalent to

−i∂U(h).
(c) ⇔ (d): The existence of a standard subspace V with ∆V = e2πi∂U(h) is equivalent to the
existence of a conjugation J commuting with ∂U(h). In view of [NÓ15, Prop. 3.1], this is
equivalent to the existence of a unitary operator S with Si∂U(h)S−1 = −i∂U(h). Therefore
(c) and (d) are equivalent.
(c) ⇒ (b): We assume that G is simply connected. If (b) is not satisfied, then there exists a
quotient q = g/n in which the image h of h is central but non-zero. Hence the corresponding
quotient group Q := G/N (as G is simply connected, N is closed and Q exists [HN12]) has a
non-trivial irreducible unitary representation (U,H) with ∂U(h) 6= 0. The irreducibility of U
implies that ∂U(h) = iλ1 for some λ ∈ R

×. Then −i∂U(h) = λ1 is not unitarily equivalent
to −λ1 = i∂U(h). Composing U with the quotient map G → Q, we see that (c) cannot be
satisfied. This shows that (c) implies (b).

Corollary D.3. If g is semisimple and h ∈ g is an Euler element, then there exists for every
unitary representation (U,H) of G a standard subspace V with ∆V = e2πi∂U(h).

Proof. As all quotients of the semisimple Lie algebra g are semisimple, hence have trivial center,
condition (b) in Theorem D.2 is satisfied.

Example D.4. (An example where (c) ⇒ (b) fails) We consider the group G1 := T
2× S̃L2(R).

Then Z := Z(S̃L2(R)) ∼= Z, and there exists a homomorphism γ : Z → T
2 with dense range

because the element (eπi
√

2, eπi
√

3) generates a dense subgroup of T2. Now

D := {(γ(z), z) : z ∈ Z}

is a discrete central subgroup in G1, so that G := G1/D is a connected reductive Lie group
with Lie algebra g = R

2 ⊕ sl2(R). Its commutator group (G,G) is the integral subgroup
corresponding to sl2(R). As it contains a dense subgroup of the torus T2, it is dense in G.

Let h = hz+hs ∈ g be an Euler element with hz 6= 0 and hs 6= 0. Then g±1(h) = g±1(hs) ⊆
sl2(R) shows that (b) fails. We now verify (c), so that (c) does not imply (b) for all connected
Lie groups.

Pick a non-zero x ∈ g with [h, x] = x. As in the proof of “(b) ⇒ (c)” above, we see
that x ∈ nx, so that sl2(R) = [g, g] ⊆ nx. Hence (G,G) ⊆ Nx, and the density of (G,G)
implies Nx = G. We conclude that, for every unitary representation (U,H) of G, we have
ker(∂U(x)) = HG. Clearly, (c) holds for the trivial representation of G on HG, and by the
argument under “(b) ⇒ (c)” it also holds for the representation on ker(∂U(x))⊥. Therefore (c)
holds for G.

Remark D.5. (a) If G is a connected Lie group with Lie algebra g, then its simply connected

covering qG : G̃→ G is a simply connected Lie group with Lie algebra g. All unitary representa-
tions of G yield by composition with qG unitary representations of G̃, but not all representations
of G̃ are obtained this way. If (c) holds for G, it may still fail for G̃ (Example D.4).
(b) For a semidirect product g = r ⋊ s with r solvable and s semisimple, where h is an
Euler element contained in s, the equivalence of (a) and (b) in Theorem D.2 implies that
h ∈ [s1(h), s−1(h)] ⊆ [g1(h), g−1(h)], so that Theorem D.2 applies to any simply connected Lie
group G with Lie algebra g.

This argument applies in particular to the Poincaré Lie algebra g = R
1,d

⋊ so1,d(R) and the
Euler element h ∈ so1,d(R) generating a boost.
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D.3 A criterion for real irreducibility

The following lemma is needed in the discussion of Example 4.23 below.

Proposition D.6. Any irreducible unitary representation (U,H) of G for which CU 6= −CU
is also irreducible as a real representation.

Proof. Let (UR,HR) be the underlying real representation. Then its complexification is of
the form UR

C
∼= U ⊕ U , as complex representations, where CU = −CU . As CU 6= −CU , the

representations U and U are not equivalent. Therefore the commutant of UR

C is isomorphic
to C

2, and this implies that the commutant of UR(G) in B(HR) cannot be larger than C1.
Hence it contains no non-trivial projections, and thus (UR,HR) is irreducible.

Corollary D.7. For any irreducible unitary positive energy representation (U,H) of S̃L2(R),
and any Euler element h ∈ sl2(R), the restriction to the subgroup P = exp(Rh) exp(g1(h)) is
irreducible as a real orthogonal representation.

Proof. We know that, in all cases, the representation UP := U |P of P ∼= Aff(R)e = R × R+ is
equivalent to the representation on L2(R+,C), given by

(UP (b, a)f)(p) = a1/2eibpf(ap).

Hence (UP ,H) is the unique irreducible positive energy representation of P . Now the assertion
follows from Proposition D.6.
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[NÓ23b] Neeb, K.-H., and G. Ólafsson, Algebraic Quantum Field Theory and Causal Sym-
metric Spaces, Eds Kielanowski, P., et.al., “Geometric Methods in Physics XXXIX.
WGMP 2022”, Trends in Mathematics; Birkhäuser/Springer, 207–231
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