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Abstract

We discuss dynamical locality in two locally covariant quantum field theories, the
nonminimally coupled scalar field and the enlarged algebra of Wick polynomials. We
calculate the relative Cauchy evolution of the enlarged algebra, before demonstrating
that dynamical locality holds in the nonminimally coupled scalar field theory. We
also establish dynamical locality in the enlarged algebra for the minimally coupled
massive case and the conformally coupled massive case.

1 Introduction

The concept of Axiomatic Quantum Field Theory has traditionally been explored only in
Minkowski space: in particular, the Wightman axioms [15] and the Haag-Kastler axioms
[10] outline ways of providing a set of axioms for a quantum field theory to obey. Over the
past decade, advances have been made in the area of Axiomatic Quantum Field Theory
in curved spacetimes. In particular, the work by Brunetti, Fredenhagen and Verch [3]
outlined a set of axioms, similar to the Haag-Kastler axioms for Quantum Field Theory on
Minkowski space, that should be obeyed by any QFT that can be defined on curved space-
times. The Haag-Kastler axiomatic framework is often described as Algebraic Quantum
Field Theory ; the axioms lay out certain properties that should be held by any legiti-
mate assignment of an algebra of observables to each arbitrary region of Minkowski space.
Extending algebraic QFT to curved spacetime involves examining the ways one might
amend these axioms to define the properties held by a suitable assignment of an algebra
of observables to arbitrary regions of arbitrary spacetimes. In practice, though, to achieve
meaningful results we have to apply some restrictions to the type of region and the type of
spacetime we are allowed to choose. The axioms proposed in [3] use the tools of category
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theory; the allowed regions in this case are open, globally hyperbolic subregions of glob-
ally hyperbolic spacetimes (definitions are given in section 2), and allow us to think of a
particular quantum field theory as a functor between the category Loc whose objects are
globally hyperbolic spacetimes, and the category Alg whose objects are at the very least
∗-algebras, but may possibly possess additional structure.

However, it turns out that these axioms alone allow for some rather undesirable patho-
logical theories. In particular, some very recent work by Fewster and Verch [8] has shown
that certain theories may satisfy the BFV axioms despite in some sense describing different
physics depending on the spacetime to which it assigns the algebra of observables. The
question of precisely what is meant by a theory representing the same physics in all possible
spacetimes is still, by and large, an open one. While it is desirable to find a condition on
theories that somehow formalises this property, this question is more easily answered by
comparing theories with one other, and so the SPASs (Same Physics in All Spacetimes)
condition proposed in the aforementioned paper is a condition on classes of theories. It is
intended to be a necessary condition for such a class to comprise theories, each of which
represents the same physics in all spacetimes, according to some common definition of the
term. In this paper we are concerned with the class of dynamically local theories, which is
shown in [8] to satisfy the SPASs condition.

The property of dynamical locality has other desirable consequences such as a no-
go theorem for natural states, and dynamical locality has so far been demonstrated for
some linear theories, including the minimally coupled massive Klein-Gordon field and the
massless current algebra. However, it fails in the case of the minimally coupled massless
Klein-Gordon field. It is therefore desirable to find further examples of well-known theories
that can be constructed in a locally covariant way that either satisfy or violate dynamical
locality. We will prove in this paper that the nonminimally coupled Klein-Gordon scalar
field is dynamically local in both the massive and massless case, and also that the extended
algebra of noninteracting Wick polynomials can be shown to be dynamically local in the
minimally coupled massive and conformally coupled massive cases; however, it fails to be
dynamically local in the minimally coupled massless case.

2 Local covariance and Dynamical Locality

We are using the prescription in [3] for the construction of locally covariant theories, in
which a theory is considered to be functor from a category of spacetimes to a category of
algebras. We must therefore first define the categories we will be using. We will follow
the definitions and notation in [8] for the category of globally hyperbolic spacetimes. This
category is denoted Loc; its objects are quadruples M = (M, g , o, t) where M is a smooth
paracompact orientable nonempty n-dimensional manifold with finitely many connected
components, g is a smooth time-orientable metric for M with signature +− · · · − , and o

and t are choices of orientation and time-orientation respectively for M. These spacetimes
must also satisfy global hyperbolicity: there can be no closed causal curves in M, and for
each pair p, q ∈ M the intersection J−

M (p)∩J+
M (q) must be compact, where J±

M (p) denotes
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the causal future (+) or past (−) of p in M.
An arrow of Loc from an object N = (N , gN , oN , tN ) to a second object M =

(M, gM, oM, tM) is a smooth embedding ψ : N →֒ M that is isometric (i.e. ψ∗gM = gN )
and orientation- and time-orientation-preserving (i.e. ψ∗

oM = oN , ψ∗
tM = tN ). It must

also respect the causal structure: the image ψ(N ) ⊆ M must be causally convex in M, i.e.
each causal curve in M with both endpoints lying within ψ(N ) must be entirely contained
within ψ(N ).

A Cauchy surface Σ for a spacetime M is a subset of M that is intersected by every
inextendible timelike curve in M exactly once. Clearly no Cauchy surface can have a
timelike tangent at any point, but this definition does allow a Cauchy surface to have a
null tangent; consequently we will refer to a Cauchy surface whose tangents are all spacelike
as a spacelike Cauchy surface. Global hyperbolicity of M is equivalent to M containing
a smooth spacelike Cauchy surface [1]. An arrow in Loc whose image contains a Cauchy
surface for its target is called a Cauchy arrow. We may safely blur the distinction between
a spacetime and its underlying manifold, so in the remainder of this paper we may use
the same notation (e.g. M ) for both; for example, we will denote by C∞

0 (M ) the space of
compactly supported smooth functions on the underlying manifold M.

The category whose objects are candidates for the algebras of observables of a theory
is denoted Alg. The objects of Alg are unital ∗-algebras, and the morphisms are unit-
preserving ∗-monomorphisms.

2.1 Locally covariant theories

A locally covariant quantum field theory is defined to be a covariant functor from Loc to
Alg [3]. That is, a theory A maps objects of Loc to objects of Alg, and arrows of Loc to
arrows of Alg, such that:

• for any Loc-arrow ψ : N →֒ M , the arrow A (ψ) has domain A (N ) and codomain
A (M ),

• for any two Loc-arrows ψ1 : O →֒ N , ψ2 : N →֒ M , we have A (ψ2 ◦ ψ1) =
A (ψ2) ◦ A (ψ1),

• for any spacetime M , we have A (idM ) = idA (M ).

While this is the only property a theory needs to satisfy to be locally covariant, we generally
wish to apply some further conditions on the theories we work with. In particular, there
is no condition pertaining to causality in the basic definition of a locally covariant theory.
A locally covariant theory A is said to be causal if it has the following property: let
ψ1 : N 1 →֒ M , ψ2 : N 2 →֒ M be arrows in Loc such that the images ψ1(N 1) and
ψ2(N 2) are causally disjoint in M . Then [A (ψ1)A1,A (ψ2)A2] = 0 for any A1 ∈ A (N 1),
A2 ∈ A (N 2).

We will also generally require our theories to satisfy the timeslice axiom. Suppose
ψ : N →֒ M is an arrow in Loc; a locally covariant theory A obeys the timeslice axiom if
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the Alg-arrow A (ψ) is an isomorphism whenever the image of N in M under ψ contains
a Cauchy surface for M (alternatively, A (ψ) is an isomorphism whenever ψ is a Cauchy
arrow). The timeslice axiom allows us to define an automorphism of an algebra A (M )
called the relative Cauchy evolution, which is defined as follows.

For any spacetime M = (M, g , o, t), we define h ∈ C∞
0 (T 0

2M) to be a metric perturba-
tion if it is symmetric and the spacetime M [h ] = (M, g + h , o, t′) is also an object in Loc

(where t
′ is the unique choice of time-orientation that coincides with t outside supp(h)).

The set of all such metric perturbations on M is denoted H(M ), and for any O ⊂ M we
denote by H(M ;O) all h ∈ H(M ) whose support lies within O.

Given some h ∈ H(M ), we pick globally hyperbolic subregions N± of M such that
each contains a Cauchy surface Σ± for M , and such that N± ⊆ M \ J∓

M (supp(h)). Now,
we can consider the spacetimes N ± = (N±, g |N±, o|N±, t|N±) in their own right; each is a
sub-spacetime of both M and M [h ], and we denote by ι±, ι±[h ] the canonical embeddings
ofN ± respectively intoM andM [h ]. If a locally covariant theory A satisfies the timeslice
axiom, then the arrows A (ι±) and A (ι±[h ]) must be isomorphisms. It follows that we can
form an automorphism rceM [h ] on A (M ) defined by

rceM [h ] = A (ι−) ◦ A (ι−[h ])−1 ◦ A (ι+[h ]) ◦ A (ι+)−1,

called the relative Cauchy evolution on M induced by h . The relative Cauchy evolution
can be shown to be independent of the choice of future and past subspacetimes N ± [8,
Prop. 3.3].

2.2 Dynamical locality

It is natural to ask the question of whether the condition of local covariance, with the
timeslice axiom, is enough to ensure that a theory is “physically realistic”. As discussed
before, the existence of certain pathological locally covariant theories has motivated the
discussion in [8], where the idea of the Same Physics in All Spacetimes (SPASs) is intro-
duced as a condition on classes of theories that is claimed to be necessary for the theories
to be considered physically realistic. A class of theories T has the SPASs property if,
whenever

• A ,B ∈ T ,

• there exists a natural transformation ζ : A
·

−→ B, and

• there exists a globally hyperbolic spacetime M on which ζM is an isomorphism,

then ζ is a natural isomorphism (i.e. ζN is an isomorphism for each globally hyperbolic
spacetime N ). It is shown in [8] that one can construct a class T of locally covariant causal
theories that obey the timeslice axiom, but such that T does not have the SPASs property.
To this end, it is suggested that the additional axiom of dynamical locality, defined below,
is imposed. The class of dynamically local theories is a subclass of the locally covariant
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theories that obey the timeslice axiom, but it has the added advantage of satisfying the
SPASs condition.

We first define the kinematic nets and dynamical nets of a locally covariant theory
A obeying the timeslice axiom. Let M be a globally hyperbolic spacetime and O be a
globally hyperbolic open subregion of M with finitely many connected components, all of
which are causally disjoint (we denote by O(M ) the set of possible such O). Clearly we
can regard M |O as a globally hyperbolic spacetime in its own right. We will denote the
map embedding M |O into M by ιM ;O. When we apply the functor A to M |O, we get the
algebra A (M |O), which can be embedded in A (M ) by the map αkin

M ;O, defined to be the
result of applying the same functor to ιM ;O. The kinematic net is defined to be the map
which assigns O 7→ αkin

M ;O. The algebra obtained by applying A to the restriction M |O is

called the kinematic algebra of O, denoted by A kin(M ;O) = A (M |O).
Given suchM andO, we can also define the dynamical net as follows: given O ∈ O(M ),

and compact K ⊂ O, we let

A •(M ;K) = {A ∈ A (M ) : rceM [h ]A = A for all h ∈ H(M ;K⊥)}.

Here K⊥ = M \ JM (K) denotes the causal complement of a compact K ⊆ M . We then
define the dynamical algebra as

A dyn(M ;O) =
∨

K∈K (M ;O)

A •(M ;K), (2.1)

where K (M ;O) is the set of compact subsets of M with a multi-diamond neighbourhood
based in O. Here a multi-diamond is a finite union of causally disjoint diamonds, where we
use the following definition from [4]: a diamond is a set DM (B) such that there exists a
spacelike Cauchy surface Σ ⊂ M , and a chart (U, φ) of Σ, where φ(B) is a nonempty open
ball in Rn−1 with closure contained in φ(U), andDM (B) denotes the domain of dependence
of B. The inclusion

αdyn
M ;O : A dyn(M ;O) →֒ A (M )

is unique (up to isomorphism), and we define the dynamical net to be the map which
assigns O 7→ αdyn

M ;O.
A theory is defined to be dynamically local if for every globally hyperbolic spacetime

M and nonempty O ∈ O(M ), we have A kin(M ;O) ∼= A dyn(M ;O), or alternatively

αdyn
M ;O

∼= αkin
M ;O.

This is equivalent to demanding that for all such O,M we have

αdyn
M ;O(A

dyn(M ;O)) = αkin
M ;O(A

kin(M ;O)).

For an additive theory, that is, one in which A kin(M ;O) is generated by its subalgebras
corresponding to relatively compact subregions of O, [8, Prop. 6.1] entails that we always
have αkin

M ;O(A
kin(M ;O)) ⊆ αdyn

M ;O(A
dyn(M ;O)), and therefore it is sufficient for dynamical

locality to show that

αdyn
M ;O(A

dyn(M ;O)) ⊆ αkin
M ;O(A

kin(M ;O)). (2.2)

This applies to all the theories we will study here.
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3 The Klein-Gordon Field and Wick Polynomials as

LCTs

3.1 Construction of the Klein-Gordon Theory

The Klein-Gordon operator on a spacetime M is denoted PM = �g + ξRg + m2. We
call any solution φ ∈ C∞(M ) to the field equation PMφ = 0 a classical solution to the
field equation. The coupling constant ξ ∈ R and the mass m ≥ 0 are held constant over
all spacetimes. The Klein-Gordon operator has associated with it two unique continuous
linear operators E±

M : C∞
0 (M ) → C∞(M ) with the properties

E±
MPM f = f = PME

±
M f (3.1)

supp(E±
M f) ⊆ J±

M(supp(f)) (3.2)

for any f ∈ C∞
0 (M ) [16] (here we identify E±

MPM f and PME
±
M f with their preimage

under the canonical embedding ι : C∞
0 (M ) →֒ C∞(M )). The operator EM = E−

M −E+
M is

the (advanced-minus-retarded) fundamental solution for the Klein-Gordon field on M , and
any classical solution φ with compact support on Cauchy surfaces is of the form φ = EM f
for some f ∈ C∞

0 (M ). We denote by EM (x, y) the antisymmetric bidistribution on test
functions satisfying ∫

M

dy EM (x, y)f(y) = (EM f)(x)

for each f ∈ C∞
0 (M ). Furthermore, we denote

EM (f, f ′) =

∫

M

dx f(x)(EM f
′)(x) =

∫

M×2

dx dy f(x)EM (x, y)f ′(y),

for f, f ′ ∈ C∞
0 (M ). Note that this entails

∫

M

dx f(x)(EM f
′)(x) = −

∫

M

dx (EM f)(x)f
′(x). (3.3)

Given a fixed spacetime M , we can construct the algebra of the Klein-Gordon quantum
field theory as the unital ∗-algebra generated by elements ΦM (t), t ∈ C∞

0 (M ) satisfying
the following four conditions:

The assignment t 7→ ΦM (t) is linear, (3.4a)

ΦM (t)∗ = Φ(t), (3.4b)

[ΦM (t),ΦM (t′)] = iEM (t, t′)1, (3.4c)

ΦM (PM t) = 0. (3.4d)

While it can be observed that this algebra can be represented simply as a deformation of the
symmetric tensor algebra Γ⊙(EMC

∞
0 (M )) (see e.g. [9]), alternative ways of constructing

this algebra can be seen in [2, 5]. The following treatment is based on [2].
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If we remove the condition (3.4d), then the algebra generated by the other three con-
ditions is isomorphic to the unital ∗-algebra F (M ) comprising functionals on C∞(M ) of
the form

F [f ] =

N∑

n=0

∫

M×n

dnx tn(x1, . . . , xn)f(x1) · · ·f(xn), (3.5)

where each tn is a totally symmetric finite sum of products of test functions in one variable:

tn(x1, . . . , xn) = S
∑

j finite

n∏

k=1

ϕjk(xk)

for some ϕjk ∈ C∞
0 (M ), where S denotes symmetrisation. We denote the set of all such

tn as F n(M ); we define F 0(M ) = C, and we may note that F 1(M ) = C∞
0 (M ). We will

use the shorthand notation

tn[f ] =

∫

M×n

dnx tn(x1, . . . , xn)f(x1) · · ·f(xn).

For each F =
∑N

n=0 tn with tN 6= 0 we define O(F ) = N <∞.

The kth functional derivative of F =
∑N

n=0 tn is given by

F (k)[f ](x1, . . . , xk) =
N∑

n=k

t(k)n [f ](x1, . . . , xk), (3.6)

where for k ≤ n,

t(k)n [f ](x1, . . . , xk) =
n!

(n− k)!

∫

M×(n−k)

dxk+1 · · · dxn tn(x1, . . . , xn)f(xk+1) · · · f(xn). (3.7)

For any f ∈ C∞
0 (M ), we may regard the functional derivative F (k)[f ](x1, . . . , xk) of an

element F ∈ F (M ) as an element of F k(M ) for k ≤ O(F ). Addition in F (M ) is given
by addition of functionals, and products of elements are defined by

(F ⋆ F ′)[f ] =

min(O(F ),O(F ′))∑

k=0

ik

2kk!
Ek

M

(
F (k)[f ], F ′(k)[f ]

)
, (3.8)

where for t, t′ ∈ F k(M ), we have

Ek
M (t, t′) =

∫

M×(2k)

dkx dky t(x1, . . . , xk)t
′(y1, . . . , yk)

k∏

j=1

EM (xj , yj), (3.9)

and for α, β ∈ F 0(M ) = C,
E0

M (α, β) = αβ.
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The product (3.8) can be shown to be associative. The involution of F =
∑N

n=0 tn ∈ F (M )

is given by F ∗ =
∑N

n=0 tn, and the identity with respect to the ⋆ product is the constant
functional 1[f ] ≡ 1.

The algebra F (M ) is generated by elements satisfying conditions (3.4a)–(3.4c), so it
should be the case that we can recover the algebra A (M ) by reapplying condition (3.4d).
The set J (M ), defined to be the set containing all elements F ∈ F (M ) satisfying
F [EM f ] = 0 for all f ∈ C∞

0 (M ), is a two-sided ∗-ideal in F (M ) [2]; on taking the
quotient F (M )/J (M ) we obtain the algebra A (M ). We have the following result:

Lemma 3.1. Let F =
∑N

n=0 tn ∈ J (M) for some spacetime M, where tn ∈ F n(M) for
each n = 0, 1, . . . , N . Then

EM
⊗ntn = 0

as a (nonlinear) functional on C∞
0 (M) for all n.

Proof. If F =
∑N

n=0 tn ∈ J (M ) with tn ∈ F n(M ), then for any f ∈ C∞
0 (M ) and κ ∈ R

we have

0 = F [EM (κf)] =
N∑

n=0

κntn[EM f ].

Consequently tn[EM f ] = 0 for each n, and so by (3.5), and using the fact that for any
g, g′ ∈ C∞

0 (M ) we have
∫
M
dx g(x)EM g

′(x) = −
∫
M
dx g′(x)EM g(x), it follows that

(EM
⊗ntn)[f ] = (−1)ntn[EM f ] = 0.

This holds for all f ∈ C∞
0 (M ), so the result follows.

The ideal J (M ) generates an equivalence relation ∼M ; i.e. for any F, F ′ ∈ F (M ),
F ∼M F ′ if and only if F − F ′ ∈ J (M ), or equivalently F [EM f ] = F ′[EM f ] for all
f ∈ C∞

0 (M ). For any F ∈ F (M ), the equivalence class of F under ∼M is denoted [F ]M ;
the elements of the algebra A (M ) constitute the set of equivalence classes [F ]M with
F ∈ F (M ).

Throughout this paper, we will wish to define the pullback of a Loc-arrow ψ : N →֒ M

on a functional F =
∑N

n=0 tn ∈ F (M ), with tn ∈ F n(M ). Therefore, we denote

ψ∗F =
N∑

n=0

(ψ⊗n)∗tn.

In order to construct the Klein-Gordon QFT as a locally covariant theory, we must now
define the action of the Alg-arrow A (ψ) for an arbitrary Loc-arrow ψ : N →֒ M . Given
such a ψ, we first define a map

F (ψ) : F (N ) → F (M )

F 7→ F ◦ ψ∗.
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To see that F (ψ)F is indeed an element of F (M ) for any F ∈ F (N ), note that for
F =

∑N
n=0 tn, tn ∈ F n(N ), we have

(F (ψ)F )[f ] =

N∑

n=0

∫

N×n

dnx tn(x1, . . . , xn)f(ψ(x1)) · · ·f(ψ(xn))

=
N∑

n=0

∫

M×n

dnxψ∗tn(x1, . . . , xn)f(x1) · · ·f(xn)

for any f ∈ C∞(M ), where the pushforward ψ∗ : F n(N ) → F n(M ) is defined as

ψ∗tn(x1, . . . , xn) =

{
tn(ψ

−1(x1), . . . , ψ
−1(xn)), (x1, . . . , xn) ∈ ψ(N )×n

0, otherwise.

Since ψ−1 : ψ(N ) → N is a diffeomorphism, it follows that each ψ∗tn is an element of
F n(M ) as required. We define the action of ψ∗ on arbitrary F ∈ F (N ) by linearity, and
note that ψ∗ψ∗F = F . For F ∈ F (M ), it also holds that ψ∗ψ

∗F = F if and only if the nth

component of F is supported in ψ(N )×n for 1 ≤ n ≤ O(F ). We may naturally define the
push-forward on elements of C∞

0 (N ) by identifying it with the push-forward on F 1(N ).
We will now construct the map A (ψ) : A (N ) → A (M ) for a Loc-arrow ψ : N →֒ M ,

and demonstrate that under this definition A becomes a covariant functor from Loc to
Alg.

Lemma 3.2. Let N,M be objects in Loc, and ψ : N →֒ M be a Loc-arrow. Then, for any
F, F ′ ∈ F (N) we have F ∼N F ′ if and only if F (ψ)F ∼M F (ψ)F ′.

Proof. If F (ψ)F ∼M F (ψ)F ′ then we have (F (ψ)F )[EM g] = (F (ψ)F ′)[EM g] for every
g ∈ C∞

0 (M ). Now, for every f ∈ C∞
0 (N ) it holds that EN f = ψ∗EMψ∗f ; since ψ∗f ∈

C∞
0 (M ), it follows that

F [EN f ] = (F (ψ)F )[EMψ∗f ] = (F (ψ)F ′)[EMψ∗f ] = F ′[EN f ].

Therefore F ∼N F ′.
Now suppose that F ∼N F ′. Since O(F ), O(F ′) are finite, it follows that there is a

compact region K ⊂ N with the property that the support of the nth components of both
F and F ′ lie within K×n for 1 ≤ n ≤ max(O(F ), O(F ′)). Let ΣN be a Cauchy surface
for N , and consider the intersection S = JN (K) ∩ ΣN ; for any classical solution EM f,
f ∈ C∞

0 (M ), it will always be possible to pick a smooth pair of functions (ϕf , πf ) on
ΣN which are compactly supported and coincide with the Cauchy data for ψ∗EM f on S
(even if ψ(ΣN ) cannot be extended to a Cauchy surface for M ). But since (ϕf , πf) are
compactly supported they provide data for a solution EN g, for some g ∈ C∞

0 (N ). It then
holds that EN g must coincide with ψ∗EM f on the domain of determinacy of S; since this
region contains K, it holds that (EN g)|K = (ψ∗EM f)|K . It follows that

(F (ψ)F )[EM f ] = (F (ψ)F )[ψ∗EN g] = F [EN g]

= F ′[EN g] = (F (ψ)F ′)[ψ∗EN g] = (F (ψ)F ′)[EM f ].
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Since the choice of f ∈ C∞
0 (M ) was arbitrary, we may conclude that F (ψ)F ∼M F (ψ)F ′.

Lemma 3.3. Let N,M be objects in Loc, and ψ : N →֒ M be a Loc-arrow. Then F (ψ)
is a ∗-monomorphism.

Proof. Let F ∈ F (N ) and f ∈ C∞(M ). Writing F =
∑N

n=0 tn with tn ∈ F n(N ), we
have

F (ψ)(F ∗) =

N∑

n=0

ψ∗tn =

N∑

n=0

ψ∗tn = (F (ψ)F )∗.

Now let F, F ′ ∈ F (N ); we have

F (ψ)(F ⋆ F ′) =
∑

k

ik

2kk!
F (ψ)

[
Ek

N

(
F (k)[ · ], F ′(k)[ · ]

)]

=
∑

k

ik

2kk!
Ek

N

(
F (k)[ψ∗ · ], F ′(k)[ψ∗ · ]

)
.

But for any distributions t, t′ ∈ F k(N ), we have

Ek
N (t, t′) = Ek

M (ψ∗t, ψ∗t
′),

and it is also easy to see that for any F ∈ F (N ), we have F (k)[ψ∗f ] = ψ∗(F (ψ)F )(k)[f ].
It follows that

F (ψ)(F ⋆ F ′) =
∑

k

ik

2kk!
Ek

M

(
(F (ψ)F )(k)[ · ], (F (ψ)F ′)(k)[ · ]

)

= (F (ψ)F ) ⋆ (F (ψ)F ′).

It remains to show that F (ψ) is injective. If F, F ′ ∈ F (N ) with F 6= F ′, there exists
some f ∈ C∞

0 (N ) with F [f ] 6= F ′[f ]; it follows that (F (ψ)F )[ψ∗f ] 6= (F (ψ)F ′)[ψ∗f ], and
therefore F (ψ)F 6= F (ψ)F ′.

The final result to prove for F (ψ) is that it is indeed a covariant functor:

Lemma 3.4. The map F : Loc → Alg which maps an object M to F (M) and an arrow
ψ to F (ψ) is a covariant functor.

Proof. Lemma 3.3 shows that for a Loc-arrow ψ : N →֒ M , the map F (ψ) is indeed an
arrow from F (N ) to F (M ). All that remains to prove is that F (idM ) = idF (M ) for
any spacetime M , and that F (ψ2) ◦ F (ψ1) = F (ψ2 ◦ ψ1) for any composable Loc-arrows
ψ1, ψ2. These result directly from the observations that id∗

M f = f for any f ∈ C∞(M ),
and that ψ∗

1 ◦ ψ
∗
2 = (ψ2 ◦ ψ1)

∗.

10



We now define the map

A (ψ) : A (N ) → A (M )

[F ]N 7→ [F (ψ)F ]M .

We can see from lemma 3.2 that this map is well defined, and indeed injective; it must also
be a ∗-homomorphism, as a direct result of the properties of F proved in lemma 3.3. We
can therefore prove the following:

Corollary 3.5. The map A : Loc → Alg which maps an object M to A (M) and an arrow
ψ to A (ψ) is a covariant functor.

Proof. We have already shown that for any Loc-arrow ψ : N →֒ M , the map A (ψ) is an
Alg-arrow from A (N ) to A (M ). The required properties for A to be a covariant functor
follow directly from lemma 3.4.

Lemma 3.6. Let ψ : N →֒ M be an arrow in Loc. Then A ∈ A (ψ)(A (N)) if and only
if there exists F ∈ F (M) such that A = [F ]M, and F [EMf ] = F [0] for every f ∈ C∞

0 (M)
such that supp(f) ∩ JM(N) = ∅. Moreover, the theory A is causal.

Proof. Note that A (ψ)(A (N )) comprises those elements A ∈ A (M ) that can be repre-
sented by those F ∈ F (M ) with F =

∑N
n=0 tn, tn ∈ F n(M ), with the property that each

tn can be written as ψ∗t
′
n for some t′n ∈ F n(N ). But these are precisely those F =

∑N
n=0 tn

for which supp(tn) ⊆ N ×n for n ≥ 1, and so for such an F we have F [f ] = F [0] for all
f ∈ C∞

0 (M ) with supp(f) ∩N = ∅. Since F ∼M F ′ if and only if F [EM f ] = F ′[EM f ]
for all f ∈ C∞

0 (M ), it follows that F represents an element of A (ψ)(A (N )) if and only
if F [EM f ] = F [0] for all f ∈ C∞

0 (M ) with supp(f) ∩ JM (N ) = ∅.
Now suppose that N 1 and N 2 are spacetimes embedded in M by Loc-arrows ψ1, ψ2

respectively, and that ψ1(N 1) and ψ2(N 2) are causally disjoint in M . It follows that if
Ai ∈ A (ψi)(A (N i)), i = 1, 2, we may pick F1, F2 ∈ F (M ) such that [Fi]M = Ai, and
that the nth component of Fi is supported in (N i)

×n. It is then clear from (3.8),(3.9) that
(F ⋆ F ′)[f ] = F [f ]F ′[f ] for any f ∈ C∞

0 (M ). It follows that [A1, A2] = 0, and therefore
the theory is causal.

As a final note on this construction, we remark that a different construction of the
Klein-Gordon scalar field theory is given in [9], where dynamical locality is proved in the
massive minimally coupled case. The construction given above has the advantage that
one is able to easily work with the elements of the algebra A (M ) themselves, rather than
its generators only; this makes it easy to compute the relative Cauchy evolution for an
arbitrary element directly. There is also a natural extension of this construction to the
theory of Wick polynomials.
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3.2 Construction of the Theory of Wick Polynomials

We can extend the construction of the Klein-Gordon theory to a larger theory containing
the Wick polynomials. The general aim is to include in the algebras of functionals previ-
ously denoted F (M ) a greater range of distributions. The resulting enlarged theory will
be denoted W . The following construction follows [2] and [5].

We first need to establish the behaviour of the fundamental solution EM and the Klein-
Gordon operator PM on distributions. For a distribution t ∈ D′(M ) (resp. E ′(M ), i.e.
compactly supported distributions), and arbitrary f ∈ C∞

0 (M ) (resp. C∞(M )), we simply
define

〈PM t, f〉 = 〈t, PM f〉 .

Since PM is a formally self-adjoint linear differential operator, the restriction of the map
PM : D′(M ) → D′(M ) to C∞(M ) is compatible with the previous definition of PM on
smooth functions.

Now, analogously to the case for smooth functions, we now wish to construct maps

E±
M : E ′ → D′ satisfying

E±
MPM t = t = PME

±
M t (3.10)

supp(E±
M t) ⊆ J±

M (supp(t)). (3.11)

We therefore let E±
M t = (E∓

M )′t: this expression is clearly a well-defined element of D′(M )
for any t ∈ E ′(M ), and this definition ensures that (3.10) is satisfied. Moreover, we may
see that (3.11) is satisfied by noting that for any t ∈ E ′(M ), f ∈ C∞

0 (M ), we have
J±
M (supp(t)) ∩ supp(f) = ∅ if and only if supp(t) ∩ J∓

M (supp(f)) = ∅. We know that the

maps E±
M satisfying (3.1), (3.2) are unique, so the restrictions of E±

M to C∞
0 (M ) must

coincide with E±
M . As before, we let the fundamental solution EM : E ′(M ) → D′(M ) be

defined by EM = E−
M − E+

M , and therefore EM = −(EM )′, as would be expected from
the relation (3.3). From now on, we will drop the bar from the notation and simply write

E
(±)
M t for a distribution t ∈ E ′(M ).
Recall that for any spacetime M , the algebra of functionals F (M ) consists of elements

of the form F =
∑N

n=0 tn, with each tn ∈ F n(M ) being a finite sum of finite products of test
functions of one variable. We wish to include a much wider range of allowed distributions
into the new theory W , but we must apply enough restrictions to ensure that the resulting
expressions are well defined. We might näıvely assume that we can use the same product
as defined in (3.8) for distributions, but this is not the case. For example, consider two
elements t, t′ ∈ F 1(M ); we see that for any f ∈ C∞(M ),

(t ⋆ t′)[f ] =

∫

M×2

dx dy t(x)t′(y)

(
f(x)f(y) +

i

2
EM (x, y)

)
;

again, for t ∈ E ′(M ×n) we use the notation

t[f ] =
〈
t, f⊗n

〉
=

∫

M×n

dn−1x t(x1, . . . , xn)f(x1) · · ·f(xn),

12



so for any f ∈ C∞
0 (M ) we have t[EM f ] = (−1)n(EM

⊗nt)[f ]. When t and t′ are test
functions the second term above is well defined, but pointwise products of distributions are
not always so, and we require both a condition on the existence of such pointwise products
and a deformation of the product to ensure that all the expressions are well defined. We can
find a suitable condition for existence of pointwise products in [12], namely Hörmander’s
criterion: If t and t′ are distributions, then the pointwise product t(x)t′(x) is a well-defined
distribution if the set

{(x, k + k′) : (x, k) ∈ WF (t), (x, k′) ∈ WF (t′)}

contains no element of the form (x, 0).
It is well known (see e.g. [7]) that the wavefront set of the distribution EM (x, y) satisfies

WF (EM ) ⊂
⋃

x,y∈M
x↔y

(V +
M ;x × V −

M ;y) ∪ (V −
M ;x × V +

M ;y),

where V ±
M ;x ⊂ T ∗

xM is the forward/backward light cone at x, and x ↔ y indicates that x

and y are connected by a null geodesic. We denote by V ±
M the union

⋃
x∈M V ±

M ;x. We then
define for n ≥ 1 (cf. [5])

T n(M ) = {t ∈ E ′(M ×n) : t totally symmetric, WF (t) ∩ (V +
M )×n ∪ (V −

M )×n = ∅}.

As before we also define T 0(M ) = C. Such a definition ensures that the expression∫
M×2 dx dy t(x)t′(y)EM (x, y) for t, t′ ∈ T 1(M ) is well defined (and more generally, that

∫

M×2

dx1 dy tn(x1, . . . , xn)t
′(y)EM (x1, y)

for tn ∈ T n(M ), t ∈ T 1(M ) is always a well defined element of T n−1(M )). Analogously
to the previous case, we wish to define an algebra T (M ) comprising elements of the form

T =
N∑

n=0

tn (3.12)

with tn ∈ T n(M ). For any f ∈ C∞(M ) and T of the above form we define the functional
derivative T (k)[f ] in the same way as detailed in (3.6) and (3.7). It is clear from the
definition of T k(M ) that the functional derivative T (k)[f ] is an element of T k(M ).

It is shown in [5] that for any t ∈ T n(M ), the wavefront set of (E±
M )kt has the

property thatWF ((E±
M )kt)∩ (V +

M )×n ∪ (V −
M )×n = ∅, where (E±

M )k = 1⊗k−1⊗E±
M ⊗1⊗n−k.

Since differential operators and multiplication by smooth functions cannot enlarge the
wavefront set of a distribution, it follows that any element of E ′(M ×n) which is obtained
via application of any such operators and (E±

M )k on an element of T n(M ) must itself be
an element of T n(M ).
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Unfortunately, the restriction on elements of T n(M ) alone does not solve the problem
of ill-defined distributions. Note that for any g ∈ C∞

0 (M ), the distribution t2(x, y) =
g(x)δ(x− y) has empty wavefront set, and is therefore an element of T 2(M ); however

(t2 ⋆ t2)[f ] =

∫

M×2

dx dy t(x)t(y)

(
f(x)2f(y)2 + 2iEM (x, y)f(x)g(y)−

1

2
EM (x, y)2

)
,

and the distribution EM (x, y)2 is ill-defined since it does not obey Hörmander’s criterion.
A solution to this problem is given in [2]: on each spacetime M , it is possible to find
symmetric distributions H which satisfy the properties

WF (EM + 2iH) = WF (EM ) ∩ (V +
M × V −

M )

and
H(PM f, f

′) = 0 (3.13)

for all f, f ′ ∈ C∞
0 (M ). There is no unique choice for H , and we denote by H (M ) the set

of all such distributions. It follows that the distribution (EM + 2iH)k is well defined for
any k ≥ 1 and H ∈ H (M ), and consequently we define a new product ⋆H that acts on
distributions as

(T ⋆H T
′)[f ] =

min(O(T ),O(T ′))∑

k=0

ik

2kk!
Ek

M ;H

(
F (k)[f ], F ′(k)[f ]

)
,

where for t, t′ ∈ T k(M ), we define

Ek
M ;H(t, t

′) =

∫

M×(2k)

dkx dky t(x1, . . . , xk)t
′(y1, . . . , yk)

k∏

j=1

(EM (xj , yj) + 2iH(xj , yj))

for k ≥ 1. As before, we define E0
M ;H(α, β) = αβ. One can show that this product is

still associative. We then denote by TH(M ) the algebra comprising elements of the form
given in (3.12) with product ⋆H . Addition and involution on TH(M ) are again given by
addition and complex conjugation of distributions respectively.

It is possible to show that for any pair H,H ′ ∈ H (M ), the difference H − H ′ is
smooth [2, Theorem 6], and also that the algebras TH(M ) and TH′(M ) are isomorphic;
if we define the map

λH,H′ : TH(M ) → TH′(M )

T 7→

⌊O(T )/2⌋∑

n=0

1

n!

〈
(H −H ′)

⊗n
, T (2n)

〉
(3.14)

where for t ∈ T 2n(M ),

〈
(H −H ′)

⊗n
, t
〉
=

∫

M×(2n)

d2nx t(x1, . . . , x2n)
n∏

j=1

(H(x2j−1, x2j)−H ′(x2j−1, x2j)), (3.15)

14



then this is an isomorphism satisfying λH,H′ = λ−1
H′,H, λH′,H′′ ◦ λH,H′ = λH,H′′ and

T ⋆H T
′ = λ−1

H,H′(λH,H′(T ) ⋆H′ λH,H′(T ′)).

In exactly the same way that the set J (M ) is an ideal for F (M ), it also holds that
the analogous set

J̃ (M ) = {T ∈ TH(M ) : T [EM f ] = 0 for all f ∈ C∞
0 (M )}

(which is independent of the choice of H ∈ H (M )) is an ideal for TH(M ). We therefore

define the algebra WH(M ) = TH(M )/J̃ (M ). Since the equivalence class of an element
T ∈ TH(M ) does not depend on H , we will denote it unambiguously by [T ]M , and if

T − T ′ ∈ J̃ (M ) we will write T ∼M T ′ as before. It follows from (3.13) that T ∼M T ′ if
and only if λH,H′T ∼M λH,H′T ′, so the isomorphism

λ̃H,H′ : WH(M ) → WH′(M )

[T ]M 7→ [λH,H′T ]M

is well defined. We also note that the reasoning used to show lemma 3.1 can be similarly
used to show the corresponding result; that if T ∈ TH(M ) can be written T =

∑N
n=0 tn

with tn ∈ T n(M ) for each n, then T ∈ J̃ (M ) if and only if t0 = 0 and

EM
⊗ntn = 0 (3.16)

for all n = 1, . . . , N .
Since there is no preferred method of uniquely specifying some H ∈ H (M ) for each

spacetime M , the above construction does not constitute a locally covariant theory, as
we have not yet defined a unique algebra for each M . We therefore wish to construct an
algebra W (M ) which is independent of the choice of H . Again following [2], we do this by
letting W (M ) comprise families of elements indexed by choice of H ∈ H (M ), as follows:

W (M ) = {(WH)H∈H (M ) : λ̃H,H′WH =WH′ for all H,H ′ ∈ H (M )}.

Given W = (WH)H∈H (M ), W
′ = (W ′

H)H∈H (M ), we define (W + W ′)H = WH + W ′
H ,

(W ⋆W ′)H =WH ⋆H W
′
H and (W ∗)H =W ∗

H . These operations are clearly consistent with

the compatibility condition λ̃H,H′WH = WH′ . Since this condition also ensures that each
family W = (WH)H∈H (M ) ∈ W (M ) is completely defined by any single entry WH , it
follows that W (M ) ∼= WH(M ) for any H ∈ H (M ).

Having given a prescription for defining W (M ), we must now find a suitable definition
for the Alg-arrow W (ψ) corresponding to a Loc-arrow ψ : N →֒ M . Throughout this
section we will use the same notation as before for the definition of the pullback and
pushforward of a Loc-arrow on an arbitrary functional.

Lemma 3.7. Let N, M be locally covariant theories, and let ψ : N →֒ M be an arrow in
Loc. Then for any H ∈ H (M), we have ψ∗H ∈ H (N).
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Proof. We have WF (φ∗t) ⊆ φ∗WF (t) for any smooth φ : N → M and distribution t on
M [11, Theorem 2.5.11′]. It is a clear consequence that we have equality whenever φ is
a local diffeomorphism; this entails that when ψ : N →֒ M is an arrow in Loc, we have
WF (ψ∗T ) = ψ∗WF (T ) for any T ∈ D′(M ×n). Therefore

WF (EN + 2iψ∗H) = ψ∗WF (EM + 2iH) =WF (EN ) ∩ (V +
N × V −

N ).

Moreover, if H(PM f, f
′) = 0 for all f, f ′ ∈ C∞

0 (M ), it follows that ψ∗H(PN f, f
′) =

H(PMψ∗f, ψ∗f
′) = 0 for all f, f ′ ∈ C∞

0 (N ). Therefore ψ∗H ∈ H (N ).

Note that for any Loc-arrow ψ : N →֒ M , we may also say thatWF (ψ∗U) = ψ∗WF (U)
for U ∈ E ′(N ×n).1

Now, for any H ∈ H (M ) we define the map

TH(ψ) : Tψ∗H(N ) → TH(M )

T 7→ T ◦ ψ∗.

For any T =
∑N

n=0 tn ∈ Tψ∗H(N ), tn ∈ T n(N ), we have

(TH(ψ)T )[f ] =
N∑

n=0

ψ∗tn[f ]

as before, and since tn is compactly supported for each n ≥ 1, it follows that WF (ψ∗tn) =
ψ∗WF (tn). Thus TH(ψ)T is an element of TH(M ) as required. We can also use the same
argument as for lemma 3.2 to see that for any T, T ′ ∈ Tψ∗H(N ), it holds that T ∼N T ′ if
and only if TH(ψ)T ∼M TH(ψ)T

′. Moreover, the result of lemma 3.3 extends directly to
TH(ψ), so it is indeed a ∗-monomorphism. Therefore the map

WH(ψ) : Wψ∗H(N ) → WH(M )

[T ]N 7→ [TH(ψ)T ]M (3.17)

is a well-defined ∗-monomorphism. From this, we define the map W (ψ) : W (N ) → W (M )
by

(W (ψ)W )H = WH(ψ)Wψ∗H , (3.18)

where H ∈ H (M ). It is easy to show that this definition is consistent with the compat-

ibility condition: i.e. λ̃H,H′(W (ψ)W )H = (W (ψ)W )H′ for all H,H ′ ∈ H (M ). We then
have:

Lemma 3.8. The map W : Loc → Alg which maps spacetimes M to W (M) and Loc-
arrows ψ to W (ψ) is a covariant functor.

1We require compact support of U here; if U ∈ D′(N ), then we might not have equality, although
(x1, . . . , xn; k1, . . . , kn) ∈WF (ψ∗U) \ ψ∗WF (U) only if xk ∈ ∂(ψ(N )) for each k.
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Proof. It is trivial to show that for any spacetime M , we have W (idM ) = idW (M ). It
remains to show that for any Loc-arrows ψ1 : N 1 →֒ N 2, ψ2 : N 2 →֒ M , it holds that
W (ψ2) ◦ W (ψ1) = W (ψ2 ◦ ψ1). For any T ∈ Tψ∗

1ψ
∗
2H

(N 1) and H ∈ H (M ), we have

TH(ψ2)Tψ∗
2H

(ψ1)T = T ◦ ψ∗
1 ◦ ψ

∗
2 = TH(ψ2 ◦ ψ1)T.

The desired result follows by (3.17), (3.18).

The covariant functor W is thus a locally covariant theory which represents the extended
algebra of Wick polynomials. We also have the corresponding result to lemma 3.6:

Lemma 3.9. Let ψ : N →֒ M be an arrow in Loc. Then W ∈ W (ψ)(W (N)) if and only if
there exists T ∈ TH(M) such that WH = [T ]M for some H ∈ H (M), and T [EMf ] = T [0]
for every f ∈ C∞

0 (M) such that supp(f) ∩ JM(N) = ∅. Moreover, the theory W is causal.

Proof. W ∈ W (ψ)(W (M )) if and only if we have WH ∈ WH(ψ)(Wψ∗H(N )) for some (and
consequently every) H ∈ H (M ); the required results then follow using an analogous
argument to that given in the proof of lemma 3.6.

3.3 Spaces of smooth functions on spacetimes

Before we consider the timeslice axiom and dynamical locality of the two theories, we
discuss the following spaces of smooth functions onM , in addition to C∞

0 (M ) and C∞(M ).
We define

C∞
s (M ) = {f ∈ C∞(M ) : supp(f) ⊆ JM (K) for some compact K ⊂ M },

C∞
s,±(M ) = {f ∈ C∞

s (M ) : supp(f) ⊆ J±
M (K) for some compact K ⊂ M }.

We also use the following notation for the canonical embeddings

ι0,± : C∞
0 (M ) →֒ C∞

s,±(M ),

ι±,s : C
∞
s,±(M ) →֒ C∞

s (M ),

ιs,∞ : C∞
s (M ) →֒ C∞(M ).

We wish to demonstrate that there exist continuous maps Ê±
M : C∞

0 (M ) → C∞
s,±(M ) that

satisfy E±
M = ιs,∞ ◦ ι±,s ◦ Ê

±
M . It is clear that for any f ∈ C∞

0 (M ), the function E±
M f lies

within the range of ιs,∞ ◦ ι±,s, we may unambiguously let Ê±
M = (ιs,∞ ◦ ι±,∞)−1 ◦ E±

M . To
establish continuity we must first define the topologies on each of these spaces of functions.
The spaces C∞(M ) and C∞

0 (M ) can be constructed as convex topological spaces, as
follows [17, 14]. A compact exhausting sequence for M is a sequence (Kn)n∈N of compact
submanifolds of M such that Kn ⊂ K̊n+1 for each n, and for every point p ∈ M there
exists N ∈ N such that p ∈ Kn for all n > N . Any space of smooth functions on a smooth
manifold can be endowed with the C∞ topology; we do not need to go into details here,
except to say that the topology on C∞(M ) is generated by seminorms pKn,k, k, n ∈ N,
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where (Kn)n∈N is a compact exhausting sequence for M , and pKn,k(f) is given by the
supremum over Kn of the norms of all covariant derivatives of f of order no greater than
k (using a Riemannian metric to induce the norms of the derivatives). The C∞ topology
on a space of smooth functions on M is then defined as the subspace topology induced
from C∞(M ). The topology of C∞

0 (M ), on the other hand, is constructed as an inductive
limit of the topological spaces C∞

Kn
(that is, the finest topology such that each embedding

ιn : C∞
Kn

(M ) →֒ C∞
0 (M ) is continuous), where (Kn)n∈N is again a compact exhausting

sequence for M , and C∞
K (M ) is the space {f ∈ C∞(M ) : supp(f) ⊆ K} endowed with

the C∞ topology. Now, for any inductive limit X of locally convex spaces (Xn)n∈N, and
locally convex space Y , a map T : X → Y is continuous if and only if each restriction
T |Xn

: XN → Y is continuous [14, Theorem V.16]. Since the space C∞
Kn

(M ) inherits
the subspace topology induced from C∞(M ), it follows that the embedding C∞

0 (M ) →֒
C∞(M ) is continuous.

Now, for a spacetime M we wish to endow C∞
s (M ) and C∞

s,±(M ) with topologies in
a similar way to that given for C∞

0 (M ) in [17, 14]; starting with a compact exhausting
sequence (Kn)n∈N for M , we consider the topological spaces C∞

JM (Kn)
(M ) and C∞

J±

M
(Kn)

(M )

defined analogously to C∞
Kn

(M ), and let C∞
s (M ) and C∞

s,±(M ) be the inductive limit of
C∞
JM (Kn)

(M ) and C∞
J±

M
(Kn)

(M ) respectively as n→ ∞. We then have:

Lemma 3.10. The embeddings ι0,±, ι±,s and ιs,∞ are all continuous in the relevant topolo-
gies.

Proof. For the sake of readable notation, we denote Xn = C∞
Kn

(M ), Y ±
n = C∞

J±

M
(Kn)

(M )

and Zn = C∞
JM (Kn)

. Firstly, we consider ιs,∞: for any n ∈ N, the space Zn is endowed

with the subspace topology induced from C∞(M ), so the embedding must be continuous;
therefore ιs,∞|Zn

: Zn → C∞(M ) is continuous for all n, as required for continuity of ιs,∞.
Now, for each n we may factorise ι±,s|Yn as the composition of the embeddings of Y ±

n →֒ Zn
and Zn →֒ C∞

s (M ); the former is continuous as Y ±
n has the subspace topology induced

from Zn, and the latter is continuous by definition of C∞
s (M ). Therefore ι±,s is continuous.

Similarly, we may factorise ι0,±|Xn
as the composition of the embeddings of Xn →֒ Y ±

n and
Y ±
n →֒ C∞

s,±(M ), both of which are continuous. Therefore ι0,± is continuous.

This also allows us to prove:

Lemma 3.11. The maps Ê±
M : C∞

0 (M) → C∞
s,±(M) are continuous.

Proof. We recall that if a topological space Y is endowed with the subspace topology from
a space Z, and the embedding is denoted ι : Y →֒ Z, then a map T : X → Y is continuous
if and only if ι ◦ T is continuous. We note that Xn = C∞

Kn
(M ) has the subspace topology

induced from C∞(M ); since E±
M : C∞

0 (M ) → C∞(M ) is continuous, it follows that the
restrictions E±

M |Xn
: Xn → C∞(M ) are all continuous. Denoting the canonical embedding

by ιn : Xn →֒ C∞(M ), it is clear that we may factorise E±
M |Xn

= ιn ◦ Ê±
M |Xn

, so each

Ê±
M |Xn

is continuous. Therefore Ê±
M is continuous.
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We define

ÊM : C∞
0 (M ) → C∞

s (M )

f 7→ ιs,−(Ê
−
M f)− ιs,+(Ê

+
M f),

which is clearly continuous; we also define ĚM : (C∞
s (M ))′ → D′(M ) by ĚM = −(ÊM )′.

The map PM may be considered to act on elements of C∞
s (M ) and C∞

s,± in the obvious way,

from which we see that strictly speaking PM Ê
±
M f = ι0,± = Ê±

MPM f for any f ∈ C∞
0 (M ).

We say that a distribution t ∈ D′(M ×n) is time-compact if there exist spacelike Cauchy
surfaces Σ± ⊂ M such that supp(t) ⊆ (J−

M (Σ+) ∩ J−
M (Σ−))×n. Note that the action of

a time-compact distribution t is well-defined on f ∈ C∞
s (M ×n), since the intersection

supp(t)∩ supp(f) is compact. Therefore any time-compact distribution can be considered
to be an element of (C∞

s (M ×n))′. We also say that a distribution t is future-compact if there
exists a Cauchy surface Σ ⊂ M such that supp(t) ⊆ (J−

M (Σ))×n, and past-compact if there
exists a Cauchy surface Σ ⊂ M such that supp(t) ⊆ (J+

M (Σ))×n. We may similarly see that
a future-/past-compact distribution can be considered to be an element of (C∞

s,±(M
×n))′.

We then have the following result, which will be important later:

Lemma 3.12. Let u ∈ D′(M), with u[PMf ] = 0 for all f ∈ C∞
0 (M). Then there exists a

distribution t ∈ (C∞
s (M))′ such that u = ĚMt.

Proof. Let Σ± be two disjoint Cauchy surfaces in M with Σ+ ⊂ J+
M (Σ−), and let χadv +

χret = 1 be a smooth partition of unity with χadv(x) = 0, χret(x) = 1 for x ∈ J+
M (Σ+)

and χadv(x) = 1, χret(x) = 0 for x ∈ J−
M (Σ−). Now, let η ∈ C∞(M ) be time-compact,

and defined such that η(x) = 1 for all x ∈ J−
M (Σ̃+) ∩ J+

M (Σ̃−), where Σ̃± ⊂ M are further

Cauchy surfaces disjoint from Σ± with Σ± ⊂ J∓
M (Σ̃±). We define the map ηs : C

∞
s (M ) →

C∞
0 (M ) by the action of multiplication by η. We also consider χadv/ret : C∞

0 (M ) →
C∞

0 (M ) as defined by action of multiplication. The operator PM can be considered as an
endomorphism acting on any of the spaces of functions we defined above; we may similarly
consider it as an endomorphism on any of the dual spaces in question, by

〈PMu, f〉 = 〈u, PMf〉.

We may then show that u = ĚM η
′
sPM (χadv)′u, as follows. Let f ∈ C∞

0 (M ) be arbitrary,
then

(ĚM η
′
sPM (χadv)′u)[f ] = −(η′sPM (χadv)′u)[ÊM f ]

= (η′sPM (χadv)′u)[ι+,sÊ
+
M f ]− (η′sPM (χadv)′u)[ι−,sÊ

−
M f ]

= u[χadvPM ηsι+,sÊ
+
M f ]− u[χadvPM ηsι−,sÊ

−
M f ].

Since u[PM ηsι−,sÊ
−
M f ] = 0, we may use χadv = 1− χret to see that

(ĚM η
′
sPM (χadv)′u)[f ] = u[χadvPM ηsι+,sÊ

+
M f ] + u[χretPM ηsι−,sÊ

−
M f ]. (3.19)
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Now any g ∈ C∞
s,+(M ) can be split into a sum of three functions g−, g0 and g+, with the

properties that supp(g±) ⊆ J±
M (Σ±) and supp(g0) ⊆ J−

M (Σ̃+)∩ J+
M (Σ̃−).We may note that

supp(g−) and supp(g0) are both compact, so we can consider g0 and g− as elements of
C∞

0 (M ), whereupon
g = ι0,+g− + ι0,+g0 + g+.

By construction, we have ηsι+,sι0,+g0 = g0; the definition of χadv also shows that χadvT1g− =
T1g− and χadvT2g+ = 0 for any operators T1 : C∞

0 (M ) → C∞
0 (M ), T2 : C∞

s,+(M ) →
C∞

0 (M ) such that supp(Tif) ⊆ supp(f) for all f , i = 1, 2. It follows directly from these
that if we let g = Ê+

M f and split as described, then

χadvPM ηsι+,sÊ
+
M f = χadvPM ηsι+,sι0,+g− + χadvPM ηsι+,sι0,+g0 + χadvPM ηsι+,sg+

= PM ηsι+,sι0,+g− + χadvPM g0.

But f = (ι0,+)
−1PM Ê

+
M f = PM g0+PM g−+(ι0,+)

−1PM g+, so by the properties of χadv we
have

χadvPM ηsι+,sÊ
+
M f = PM ηsι+,sι0,+g− + χadvf − χadvPM g− − χadv(ι0,+)

−1PM g+

= PM (ηsι+,sι0,+ − 1)g− + χadvf.

Since u is a weak solution and (ηsι+,sι0,+ − 1)g− is compactly supported, we have

u[χadvPM ηsι+,sÊ
+
M f ] = u[χadvf ].

We may similarly conclude that u[χretPM ηsι−,sÊ
−
M f ] = u[χretf ]. It follows from (3.19) that

(ĚM η
′
sPM (χadv)′u)[f ] = u[χadvf ] + u[χretf ]

= u[f ].

This proves the required result, and also gives us an explicit example of a distribution
t ∈ (C∞

s (M ))′ satisfying u = ĚM t.

While we have been very careful with our definitions in this section, in the remainder of
the paper we will not need to be so exact with our notation. Firstly, we make the observa-
tion that since any multiplication operator µ between spaces of smooth functions is formally
self-adjoint, it makes sense to write µ′t = µt for a distribution t and formally regard µt
as the pointwise product of t with the underlying function µ ∈ C∞(M ). We will particu-
larly use this convention when a distributional solution u is of the form u = EM t, where
t ∈ E ′(M ). Lemma 3.12 tells us that EM t = ĚM η

′
sPM (χadv)′EM t = ĚM ηPMχ

advEM t;
however, regarding χadvEM t as a pointwise product allows us to see that in fact the dis-
tribution PMχ

advEM t must be supported within the region J−
M (Σ+)∩ J+

M (Σ−) where χadv

is non-constant, by the properties of PM and EM . Moreover, the support of PMχ
advEM t

lies within JM (supp(t)), which has compact intersection with J−
M (Σ+) ∩ J+

M (Σ−), so the
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support of PMχ
advEM t is compact. Since η = 1 everywhere within supp(PMχ

advEM t), we
may suppress η and instead regard PMχ

advEM t itself as an element of E ′(M ), writing

EMPMχ
advEM t = EM t. (3.20)

Moreover PMEM t = 0 for any t ∈ E ′(M ), so we also have

EMPMχ
retEM t = −EM t.

4 The timeslice axiom and relative Cauchy evolution

It is well known that both the Klein-Gordon theory [3] and the enlarged algebra of Wick
polynomials [5] obey the timeslice axiom. However, we will give a proof that the timeslice
axiom holds in both cases, since the construction is different to that used in the aforemen-
tioned references, and since we require an explicit expression for the inverse maps A (ψ)−1

and W (ψ)−1 when ψ : N →֒ M is a Cauchy arrow.

4.1 The timeslice axiom for the Klein-Gordon Theory

In order to compute the relative Cauchy evolution for either A or W , we must first
demonstrate that they obey the timeslice axiom. It is worth asking first whether the
theory F obeys the timeslice axiom; since the construction for F contains no condition
relating to the field equation, we should not expect F to obey the axiom, and indeed this
is the case: let N ,M be objects in Loc, and ψ : N →֒ M be a Cauchy arrow in Loc.
Suppose that ψ(N ) 6= M ; then, pick some nonzero t ∈ F 1(M ) whose support lies within
M \ ψ(N ). Clearly t

[
t
]
6= 0, but as ψ∗t = 0, we have (F (ψ)F )

[
t
]
= 0 for all F ∈ F (N ).

Therefore F (ψ) is not surjective, and consequently cannot be invertible; hence F does
not satisfy the timeslice axiom.

To demonstrate that A , on the other hand, does obey the timeslice axiom, we use
following lemma, which is proved in [6] (and can also be seen to be a consequence of
lemma 3.12: see (3.20)).

Lemma 4.1. Let Σadv,Σret be disjoint Cauchy surfaces in a globally hyperbolic spacetime
M, with Σret ⊆ J+

M(Σadv), and let χadv+χret = 1 be a smooth partition of unity on M with
χadv(x) = 0, χret(x) = 1 for x ∈ J+

M(Σret) and χadv(x) = 1, χret(x) = 0 for x ∈ J−
M(Σadv).

Then

EMPMχ
advEMf = EMf,

EMPMχ
retEMf = −EMf

for all f ∈ C∞
0 (M). Moreover, PMχ

adv/retEMf ∈ C∞
0 (M).

Defining ζt = PMχ
advEM t for t ∈ F 1(M ), it follows directly that given Σadv,Σret and

χadv, χret defined as above, for any t ∈ F n(M ), n ≥ 1, we have

supp(ζ⊗nt) ⊆ (J+
M (Σadv) ∩ J−

M (Σret))×n ∩ supp(EM
⊗nt).
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Clearly ζ⊗n maps elements of F n(M ) to elements of F n(M ). We also note that by lemma
4.1, we have

ζ⊗nt[EM f ] = (−1)n(EM ζ)
⊗nt[f ]

= (−1)nEM
⊗nt[f ]

= t[EM f ] (4.1)

for any t ∈ F n(M ), n ≥ 1 and f ∈ C∞
0 (M ). It follows that if we define

Z : F (M ) → F (M )

N∑

n=0

tn 7→
N∑

n=0

ζ⊗ntn (tn ∈ F n(M )),

we have ZF ∼M F for all F ∈ F (M ).

Lemma 4.2. The theory A obeys the timeslice axiom.

Proof. Suppose that ψ is a Loc-arrow from N to M with the property that ψ(N ) contains
a Cauchy surface for M . We will always be able to find a second Cauchy surface for M
in ψ(N ) which is disjoint to the first; we denote the Cauchy surface to the past by Σadv

and the one to the future by Σret, and define the operator Z as above using these Cauchy
surfaces for the construction; it follows that for any F ∈ F (M ), the nth component of ZF
is supported in ψ(N )×n for each n ≥ 1. We then define

G (ψ) : F (M ) → F (N )

F 7→ ψ∗ZF. (4.2)

For any F ∈ F (M ) and f ∈ C∞(M ), we then have

H∈H (M )(F (ψ)G (ψ)F )[f ] = (F (ψ)ψ∗ZF )[f ] = ψ∗ZF [ψ∗f ] = ψ∗ψ
∗ZF [f ].

But since the nth component of ZF is supported in ψ(N )×n, we have ψ∗ψ
∗ZF = ZF.

Therefore F (ψ)G (ψ)F = ZF . Now suppose that F ∈ F (N ) and f ∈ C∞(N ); then,

(G (ψ)F (ψ)F )[f ] = G (ψ)(ψ∗F )[f ] = ψ∗Z(ψ∗F )[f ].

Writing F =
∑N

n=0 tn, with tn ∈ F n(N ), we have

ψ∗Z(ψ∗F ) =
N∑

n=0

ψ∗ζ⊗nψ∗tn.

But notice that for any t ∈ F 1(M ), f ∈ C∞
0 (M ), we have

(ψ∗ζψ∗t)[EN f ] = (PNψ
∗(χadvEMψ∗t))[EN f ] = (PN ((ψ∗χadv)EN t))[EN f ] = t[EN f ]
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by (4.1) and lemma 4.1. We have therefore shown that F (ψ)G (ψ)F ∼M F for all F ∈
F (M ), and G (ψ)F (ψ)F ∼N F for all F ∈ F (N ).

Next, we observe that if F, F ′ ∈ F (M ) with F ∼M F ′, then we have F (ψ)G (ψ)F ∼M

F (ψ)G (ψ)F ′; by lemma 3.2 we then have G (ψ)F ∼N G (ψ)F ′. This means that the map

B(ψ) : A (M ) → A (N )

[F ]M 7→ [G (ψ)F ]N

is well defined, and we can conclude that B(ψ) ◦ A (ψ) = idA (N ), and A (ψ) ◦ B(ψ) =
idA (M ). Therefore A (ψ) is invertible, and so A obeys the timeslice axiom.

4.2 The timeslice axiom for the theory of Wick Polynomials

We now proceed to the timeslice axiom for W , adapting the proof given for an equivalent
construction in [5] for the construction used here. Suppose that ψ : N →֒ M is a Cauchy
arrow in Loc. We can then find two disjoint Cauchy surfaces Σadv,Σret ⊂ ψ(N ) for M with
Σret ⊂ J+

M (Σadv). As before, we choose a smooth partition of unity χadv + χret = 1 with
χadv(x) = 0, χret(x) = 1 for x ∈ J+

M (Σret) and χadv(x) = 1, χret(x) = 0 for x ∈ J−
M (Σadv).

It follows that if we again define ζt = PMχ
advEM t for any t ∈ T 1(M ), and for any

H ∈ H (M ), we let

Z : TH(M ) → TH(M )

N∑

n=0

tn 7→
N∑

n=0

ζ⊗ntn (tn ∈ T n(M )),

then by (3.20), ZT ∼M T for all T ∈ TH(M ), and T is compactly supported in ψ(N ).
Moreover, since Z is constructed from differential operators, multiplication by smooth
functions and applications of E±

M , we recall from our previous observation that Z must
indeed map elements of TH(M ) to elements of TH(M ).

Therefore, if we define

SH(ψ) : TH(M ) → Tψ∗H(N )

T 7→ ψ∗ZT, (4.3)

then the same argument as used in the proof of lemma 4.2 shows that TH(ψ)SH(ψ)T ∼M T
for all T ∈ TH(M ) and SH(ψ)TH(ψ)T ∼N T for all T ∈ Tψ∗H(N ).

Now, if ψ(N ) contains a Cauchy surface for M then for each H ∈ H (N ) there is
precisely one H ′ ∈ H (M ) with ψ∗H ′ = H , as a result of the condition (3.13). We will
denote this extension by ψ•H . Now suppose that W = (WH)H∈H (M ) ∈ W (M ) with
WH = [TH ], for some TH ∈ TH(M ) for each H ∈ H (M ). We then define

UH(ψ) : WH(M ) → Wψ∗H(N )

[T ]M 7→ [SH(ψ)T ]N . (4.4)
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This then gives us a map U (ψ) : W (M ) → W (N ) with the property that for any
H ∈ H (N ), we have

(U (ψ)W )H = Uψ•H(ψ)Wψ•H .

It is easy to show that W (ψ) ◦ U (ψ) = idW (M ), and U (ψ) ◦ W (ψ) = idW (N ). Therefore
U (ψ) = W (ψ)−1 and so W obeys the timeslice axiom.

4.3 Relative Cauchy evolution for the Klein-Gordon Theory

In order to demonstrate (or rule out) dynamical locality for A or W , we must first compute
the relative Cauchy evolution of an arbitrary element; this has already been done for the
scalar Klein-Gordon theory in [3] for a different construction, and we will derive a similar
expression in our formalism. We begin with the theory A ; we fix h ∈ H(M ) and choose
two subspacetimes N ± ⊆ M , such that:

• each N ± is an object of Loc, and their embeddings into M are arrows in Loc,

• each N ± contains two disjoint Cauchy surfaces Σadv
± ,Σret

± for M with the property
that Σadv

± ⊆ J−
M (Σret

± ),

• each N ± is disjoint from the support of h , and N ± ⊆ J±
M (supp(h)).

We now choose two smooth partitions of unity χadv
± +χret

± = 1 forM , with the property that
χadv
± (x) = 1, χret

± (x) = 0 for x ∈ J−
M (Σadv

± ), and χadv
± (x) = 0, χret

± (x) = 1 for x ∈ J+
M (Σret

± ),
and define

ζ± : F 1(M ) → F 1(M )

t 7→ PMχ
adv
± EM t.

As before, we also let

Z± : F (M ) → F (M )
N∑

n=0

tn 7→
N∑

n=0

(ζ±)
⊗n
tn (tn ∈ F n(M )).

Additionally, we define

ζ±[h ] : F 1(M [h ]) → F 1(M [h ])

t 7→ PM [h]χ
adv
± EM [h ]t,

and define Z±[h ] : F (M [h ]) → F (M [h ]) in an analagous way to Z±.
Now, if we denote by ι±, ι±[h ] the embeddings of N ± into M and M [h ] respectively,

it is clear that the Alg-arrows A (ι±), A (ι±[h ]) act as

A (ι±)[F ]N± = [F (ι±)F ]M ,

A (ι±[h ])[F ]N± = [F (ι±[h ])F ]M [h],
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and for any F ∈ F (N ±), f ∈ C∞(M ) we have

(F (ι±)F )[f ] = F [f |N±] = (F (ι±[h ])F )[f ].

Moreover, from lemma 4.2 we can see that the inverse arrows A (ι±)−1, A (ι±[h ])−1 act as

A (ι±)−1[F ]M = [G (ι±)F ]N±

A (ι±[h ])−1[F ]M [h] = [G (ι±[h ])F ]N±,

where for any f ∈ C∞(N ±), F ∈ F (M ) and F ′ ∈ F (M [h ]), we see from (4.2) that

(G (ι±)F )[f ] = (Z±F )[ι±∗ f ],

(G (ι±[h ])F ′)[f ] = (Z±[h ]F ′)[ι±[h ]∗f ].

It follows that for any A = [F ]M ∈ A (M ), we have

rceM [h ]A = A (ι−)A (ι−[h ])−1A (ι+[h ])A (ι+)−1A

=
[
F (ι−)G (ι−[h ])F (ι+[h ])G (ι+)F

]
M
.

Now, for any f ∈ C∞(M ) and F ∈ F (M ) we have

(F (ι+[h ])G (ι+)F )[f ] = (Z+F )|N+ [f |N+ ] ,

but since the range of Z+ is contained in ι+(N +), it holds that

F (ι+[h ]) ◦ G (ι+) = ι+[h ]∗ ◦ (ι
+)∗ ◦ Z+,

and similarly
F (ι−) ◦ G (ι−[h ]) = ι−∗ ◦ ι−[h ]∗ ◦ Z−[h ].

Explicitly, the relative Cauchy evolution of A = [F ]M is therefore given by rceM [h ]A =
[B[h ]F ]M , where

B[h ] : F (M ) → F (M )
N∑

n=0

tn 7→
N∑

n=0

β[h ]⊗ntn (tn ∈ F n(M )),

and

β[h ] : F 1(M ) → F 1(M )

t 7→ PM [h]χ
adv
− EM [h ]PMχ

adv
+ EM t. (4.5)

This definition is independent of the choice of χadv
± , provided that the regions N ± in which

they are non-constant lie strictly to the future/past of supp(h).
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4.4 Relative Cauchy evolution for Wick Polynomials

We now calculate the relative Cauchy evolution of an element W ∈ W (M ) generated by
a perturbation h ∈ H(M ). While the calculation is largely similar to the process for
calculating the r.c.e. of an element of A (M ), there are some subtleties introduced by the
need to specify an H ∈ H (M ) to form the algebras TH(M ). We will proceed as before,
fixing some h ∈ H(M ) and defining N ±, Σadv

± ,Σret
± and ι± and ι±[h ] as in the previous

subsection. The relative Cauchy evolution of an element W ∈ W (M ) is given by

rceM [h ]W = (W (ι−) ◦ U (ι−[h ]) ◦ W (ι+[h ]) ◦ U (ι+))W.

But when we calculate the component corresponding to H ∈ H (M ), we see that

(rceM [h ]W )H =
(
W (ι−)U (ι−[h ])W (ι+[h ])U (ι+)W

)
H

= WH(ι
−)UH̃h

(ι−[h ])WH̃h
(ι+[h ])UȞh

(ι+)WȞh
(4.6)

where for any H ∈ H (M ), the distributions H̃h ∈ H (M [h ]) and Ȟh ∈ H (M ) are
defined by

H̃h = ι−[h ]•(ι
−)∗H

Ȟh = ι+• ι
−[h ]∗H̃h .

This definition is independent of the choice of N ±, as a consequence of (3.13).

Lemma 4.3. Let M be a spacetime, and h ∈ H(M) a metric perturbation on M. Suppose
that H ∈ H (M), and let Ȟh,N

± and χadv
± be defined as above. Then

Ȟh = (ĚM(η+s )
′PM[h](χ

adv
+ )′ĚM[h](η

−
s )

′PM(χadv
− )′)

⊗2
H, (4.7)

where χadv
± : C∞

0 (M) → C∞
0 (M) are the multiplication operators induced by the functions

χadv
± ∈ C∞(M), and η±s : C∞

s (M) → C∞
0 (M) are defined as multiplication by time-compact

smooth functions η± that are supported in N±, such that η± ≡ 1 in the region in which
χadv
± is non-constant.

Proof. Since H is a bisolution, we see from the proof of lemma 3.12 that

(ĚM (η±s )
′PM (χadv

± )′)
⊗2
H = H.

Since η± is supported in N ±, it follows that ((η±s )
′PM (χadv

± )′)
⊗2
H is supported in (N ±)×2,

and therefore
H̃h |N− = H|N− = Ě⊗2

N−

(
((η−s )

′PM (χadv
− )′)

⊗2
H
)∣∣∣

N−
.

Since the action of our multiplication operators does not depend on the metric of the
underlying manifold, we may also consider them as maps on the corresponding function
spaces on M [h ]; since H̃h is a bisolution on M [h ] and ĚM [h]|N− = ĚN−, it follows that

H̃h = (ĚM [h](η
−
s )

′PM (χadv
− )′)

⊗2
H.
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A similar argument yields Ȟh = (ĚM (η+s )
′PM [h](χ

adv
+ )′)

⊗2
H̃h , and so (4.7) is satisfied.2

Lemma 4.4. Let M be a spacetime, with a metric perturbation h ∈ H(M). Suppose also
that H ∈ H (M), and let Ȟh be defined as above. Then supp(H− Ȟh) ⊆ (JM(supp(h))×2).

Proof. Let x ∈ M , with x /∈ J+
M (supp(h)). Since supp(h) is compact, we can find a

choice for N − with x ∈ N −. It follows that H(x, y) = H̃h(x, y) for all x /∈ J+
M (supp(h)).

Similarly, if x /∈ J−
M (supp(h)) then we can find a choice for N + with x ∈ N +. There-

fore Ȟh(x, y) = H̃h(x, y) for all x /∈ J−
M (supp(h)). Consequently, if x ∈ supp(h)⊥ then

H(x, y) = Ȟh(x, y). The required result follows by symmetry of H .

The coherency condition on elements of W (M ) tells us that (4.6) can be expressed as

(rceM [h ]W )H = WH(ι
−)UH̃h

(ι−[h ])WH̃h
(ι+[h ])UȞh

(ι+)λ̃H,Ȟh
WH .

Explicitly, we can then see from (4.3),(4.4) that the relative Cauchy evolution of an element
W = (WH)H∈H (M ) ∈ W (M ), where each WH can be represented by TH ∈ TH(M ), is
given by

(rceM [h ]W )H = [BH [h ]λH,Ȟh
TH ]M ,

where

BH [h ] : TȞ(M ) → TH(M )

N∑

n=0

tn 7→
N∑

n=0

β[h ]⊗ntn (tn ∈ T n(M )),

with

β[h ] : T 1(M ) → T 1(M )

t 7→ PM [h]χ
adv
− EM [h]PMχ

adv
+ EM t

as before.
Before we proceed to the dynamical locality of A and W we will need the following

results. The lemma is proved in appendix A (cf. [9, Eqn. 8]).

Lemma 4.5. Let M be a spacetime and let t ∈ T 1
H(M) for some H ∈ H (M). For any

h ∈ H(M) and f ∈ C∞
0 (M), we have

d

ds
(β[sh]t)[EMf ]

∣∣∣∣
s=0

=

∫

M

dvolM habT
ab[EMt, EMf ],

2Note that (4.7) strongly resembles the action of the map β[h ] defined in (4.5), albeit with N+ and
N− interchanged; indeed, if we consider the subcategory of Loc containing only Cauchy arrows, we can
regard H as a functor from Loc to a suitable category of distribution spaces, with H (ψ)H = ψ•H . This
functor can be seen to be covariant; the resemblance remarked above can be explained by noting that
we may define the relative Cauchy evolution of the functor H in the same way as for a locally covariant

theory; this then satisfies rce
(H )
M [h ]Ȟ = H .
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where

T ab[u, φ] = (∇(au)(∇b)φ)−
1

2
gab(∇cu)(∇cφ)

+
1

2
m2gabuφ+ ξ(gab�g −∇a∇b −Gab)(uφ)

for u ∈ EMT 1(M), φ ∈ EMC
∞
0 (M).

Note that the above expression is closely linked to the classical stress-energy tensor
for the Klein-Gordon theory, which we may recover via T ab[φ] = T ab[φ, φ] for a smooth
classical solution φ.

This result leads directly to the following:

Corollary 4.6. Let tn ∈ T n
H (M) for some H ∈ H (M) and f ∈ C∞

0 (M). Then

d

ds
(β[sh])⊗ntn[EMf ]

∣∣∣∣
s=0

= n

∫

M

dvolM habT
ab
[
EMτ

n
f , EMf

]
,

where

τnf (x) =

∫

M×(n−1)

dn−1y tn(x, y1, . . . , yn−1)EMf(y1) · · ·EMf(yn−1) (4.8)

for n ≥ 2, and τ 1f (x) = t1(x).

Note that the previous two results also apply to the elements of F 1(M ) and F n(M )
respectively, since we can consider any element of F n(M ) as an element of T n

H (M ) for
any H ∈ H (M ).

5 Dynamical Locality

5.1 Dynamical locality of the ξ 6= 0 Klein-Gordon theory

It has already been shown in [9] that the Klein-Gordon theory is dynamically local in the
case when ξ = 0 and m 6= 0, and that it is not dynamically local when ξ = 0 and m = 0.
We wish to show that the Klein-Gordon theory A obeys the axiom of dynamical locality
in the nonminimally coupled case, when ξ 6= 0, for both m = 0 and m > 0. Therefore,
we pick some spacetime M and O ∈ O(M ). The algebra A kin(M ;O) is defined to be
the algebra A (M |O); we recall from lemma 3.6 that for any Loc-arrow ψ : N →֒ M , the
algebra A (ψ)(A (N )) comprises elements A = [F ]M such that F [EM f ] = F [0] for every
f ∈ C∞

0 (M ) such that supp(f) ∩ JM (N ) = ∅. It follows that F represents an element of
αkin
M ;O(A

kin(M ;O)) if and only if F [EM f ] = F [0] for all f ∈ C∞
0 (M ) with support lying

in O′ = (cl O)⊥.
We can see from (2.1) and (2.2) that if A •(M ;K) ⊆ αkin

M ;O(A
kin(M ;O)) for each

spacetime M , O ∈ O(M ) and K ∈ K (M ;O), then A obeys dynamical locality. There-
fore, suppose that A ∈ A •(M ;K); from the definition it follows that rceM [h ]A = A for
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all h ∈ H(M ;K⊥). Now, suppose that A is represented by a functional F ∈ F (M ). This
means that B[h ]F ∼M F for all h ∈ H(M ;K⊥), and consequently B[sh ]F −F ∈ J (M )

for all s ∈ R sufficiently small that sh ∈ H(M ;K⊥). Writing F =
∑N

n=0 tn, with each
tn ∈ F n(M ), we can refer to lemma 3.1 to see that for n = 1, . . . , N , we have

(
(β[sh ])⊗ntn

)
[EM f ] = tn[EM f ] (5.1)

for all f ∈ C∞
0 (M ) and for all h ∈ H(M ;K⊥).

Now, for each n ≥ 1 we differentiate (5.1) with respect to s and set s = 0; by corollary
4.6, this yields ∫

M

dvolM habT
ab
[
EM τ

n
f , EM f

]
= 0

for each h ∈ H(M ;K⊥) and f ∈ C∞
0 (M ), where τnf is defined as in (4.8). It follows that

for all n ≥ 1, we have
T ab[EM τ

n
f , EM f ](x) = 0

for all x ∈ K⊥.
Now consider an arbitrary point x ∈ K⊥, and a null geodesic u : I → K⊥, where I ⊂ R

is an open interval containing 0 and u(0) = x. Since u is a null geodesic, it satisfies both
uaubgab = 0 and ua∇au

b = 0, where ua is the tangent vector to u. For each point q on
the geodesic we have ua(q)ub(q)T

ab[EM τ
n
f , EM f ](q) = 0, and consequently for our chosen

x ∈ K⊥ we have

(∇uEM τ
n
f (x))(∇uEM f(x)) + ξ

(
−∇2

u − Rab(x)u
aub

) (
(EM τ

n
f (x))(EM f(x))

)
= 0.

Note that this is equivalent to

(1− 2ξ)(∇uEM τ
n
f (x))(∇uEM f(x))− ξRabu

aub(EM τ
n
f (x))(EM f(x))

+ ξ(EM τ
n
f (x)∇

2
uEM f(x) + EM f(x)∇

2
uEM τ

n
f (x)) = 0. (5.2)

It follows that for any f ∈ C∞
0 (M ) for which EM f(x) = 0 = ∇uEM f(x) and∇2

uEM f(x) 6=
0,3 we have EM τ

n
f (x) = 0, as ξ 6= 0.

In the case that n = 1, we have EM τ
1
f = EM t1 for all f , so we immediately see that

EM t1(x) = 0 for all x ∈ K⊥. Now, we look at the case where n = 2. We have EM τ
2
f (x) =∫

M
dy t2(x, y)EM f(y), which is linear in f . Let f be chosen such that EM f(x) = 0 =

∇uEM f(x) and∇2
uEM f(x) 6= 0; additionally, we choose f ′ ∈ C∞

0 (M ) such that supp(f ′) ⊂
{x}⊥. Then EM f + EM f

′ = EM f in an open neighbourhood of x, so

EM τ
2
f ′(x) = EM τ

2
f+f ′(x)−EM τ

2
f (x) = 0.

3Such a solution always exists; we may explicitly construct one as follows. We work in normal coordi-
nates qa in a neighbourhood S ∋ x such that x is at the origin, and the q0 = 0 hyperplane is a subset of
a spacelike Cauchy surface Σ ⊂ M , and we take our null geodesic u such that in coordinates, the tangent
at x is ua(x) = (1, 1, 0, . . . , 0). Then any solution ψ is uniquely determined by its data (ϕ, π) on Σ, where
ϕ(q) = ψ|Σ(q) and π(q) = (∇0ψ)|Σ(q). It is then easy to check that defining ϕ(q) = (q1)2, π(q) = 0 for
q ∈ Σ ∩ S gives us a solution ψ satisfying the above conditions.
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It follows that for any f ′ ∈ C∞
0 (M ) supported outside JM (x), we have

∫

M

dy (EM
⊗2t2)(x, y)f

′(y) = −EM τ
2
f ′(x) = 0.

Therefore EM
⊗2t2(x, y) = 0 whenever x ∈ K⊥ and y ∈ {x}⊥.

However, by the definition of F 2(M ), we have EM
⊗2t2(x, ·) ∈ EMC

∞
0 (M ) for any fixed

x ∈ M , and it is therefore a smooth classical Klein-Gordon solution. If Σ is a spacelike
Cauchy surface containing x, then the data for EM

⊗2t2(x, ·) on Σ is supported in {x} for
any x ∈ K⊥ by the above result. But the data for a smooth solution is itself smooth, and
therefore cannot be both nonzero and supported at a point. Consequently EM

⊗2t2(x, y) = 0
for any (x, y) ∈ K⊥ ×M , and by symmetry we have supp(EM

⊗2t2) ⊆ JM (K)×2.
Now, consider the case where n > 2. Suppose that we have f, f1 such that EM f(x) =

0 = ∇uEM f(x), EM f1(x) = 0 = ∇uEM f1(x), and EM f(x) 6= 0. Then, for sufficiently
small κ we have EM τ

n
f+κf1

(x) = 0. Therefore, by symmetry of tn we have

EM τ
n
f (x) + (−1)n−1(n− 1)κ

∫

M×(n−1)

dn−1y
[
(EM

⊗ntn)(x, y1, . . . , yn−1)

f1(y1)f(y2) · · ·f(yn−1)
]
+O(κ2) = 0.

Differentiating this expression with respect to κ and setting κ = 0, we have
∫

M×(n−1)

dn−1y (EM
⊗ntn)(x, y1, . . . , yn−1)f1(y1)f(y2) · · · f(yn−1) = 0.

We may repeat this argument to see that
∫

M×(n−1)

dn−1y (EM
⊗ntn)(x, y1, . . . , yn−1)f1(y1) · · ·fn−1(yn−1) = 0

for any f1, . . . , fn−1 such that EM fi(x) = 0 = ∇uEM fi(x), i = 1, . . . , n− 1. It follows that
for any x1 ∈ K⊥, we have EM

⊗ntn(x1, . . . , xn) = 0 whenever at least one of x2, . . . , xn lies
in x1

⊥. Fixing x1 ∈ K⊥, we note that EM
⊗ntn(x1, y1, . . . , yn−1) is a smooth Klein-Gordon

(n − 1)-solution; its data on a spacelike Cauchy surface Σ ∋ x is supported in {x}×(n−1).
Consequently we must have EM

⊗ntn(x1, y1, . . . , yn−1) = 0 for x1 ∈ K⊥, y1, . . . , yn−1 ∈ M

by smoothness. Therefore we have proved the following lemma:

Lemma 5.1. Let M be a spacetime and let tn ∈ F n(M), n ≥ 1. If O ∈ O(M),
K ∈ K (M;O) and

(
(β[sh])⊗ntn

)
[EMf ] = tn[EMf ] for all f ∈ C∞

0 (M) and for all
h ∈ H(M;K⊥), then

supp(EM
⊗ntn) ⊆ JM(K)×n.

From here we may prove the following result:

Theorem 5.2. The Klein-Gordon theory is dynamically local in the nonminimally coupled
case, for all m ≥ 0.

30



Proof. Recall that for any spacetime M and O ∈ O(M ), the algebra αkin
M ;O(A

kin(M ;O))
comprises elements represented by functionals F with the property that F [EM f ] = F [0]
for all f ∈ C∞

0 (M ) supported within O′. To demonstrate that the theory is dynamically
local, it is sufficient to show that A •(M ;K) ⊆ αkin

M ;O(A
kin(M ;O)) for all K ∈ K (M ;O).

Given such a K, and an element A ∈ A •(M ;K) represented by F =
∑N

n=0 tn, with each
tn ∈ F n(M ), we may see from (5.1) and lemma 5.1 that supp(EM

⊗ntn) ⊆ JM (K)×n

for each n = 1, . . . , N , and subsequently tn[EM f ] = 0 for all f ∈ C∞
0 (K⊥). Therefore

in particular we have F [EM f ] = t0 = F [0] for all f ∈ C∞
0 (O′), and so F represents an

element of αkin
M ;O(A

kin(M ;O)). Consequently the theory is dynamically local.

5.2 Dynamical Locality of the algebra of Wick Polynomials

We now proceed to examine the cases in which we can demonstrate dynamical locality
for the theory W . We begin by looking at the minimally coupled massless case. The
corresponding case for the Klein-Gordon theory is not dynamically local, and so one would
not expect dynamical locality to hold here. Indeed, this is the case; when ξ = m = 0,
any constant function is a classical solution to the Klein-Gordon equation. Therefore, in
any spacetime M with compact Cauchy surfaces, the function φ(x) = 1 is an element of
EMC

∞
0 (M ). However, we have T ab[φ,EM f ] = 0; it follows that for any t ∈ T 1(M ) such

that EM t ≡ 1, we have t ∈ W dyn(M ;O) for any O ∈ O(M ). But it is also the case that
if we pick f ∈ C∞

0 (O′) with
∫
M
dx f(x) 6= 0, then t[EM f ] 6= 0; therefore, t /∈ W kin(M ;O).

We may, however, demonstrate dynamical locality in two cases. To do this, we need
the following results:

Lemma 5.3. Let M be a spacetime with O ∈ O(M) and K ∈ K (M;O). Let tn ∈ T n(M)
for some n ≥ 0, and suppose that for all f ∈ C∞

0 (M) and h ∈ H(M;K⊥) we have

∫

M

dvolM habT
ab[EMτ

n
f , EMf ] = 0, (5.3)

where τnf is defined as in (4.8). Then, in the massive minimally coupled and massive

conformally coupled cases, we have supp(EM
⊗ntn) ⊆ JM(K)×n.

Proof. We will consider the massive minimally coupled case first, in which m 6= 0 and
ξ = 0. Clearly T ab[EM τ

n
f , EM f ](x) = 0 for all f ∈ C∞

0 (M ) and x ∈ K⊥; now, we fix

x ∈ K⊥ and pick some f ∈ C∞
0 (M ) such that (EM f)(x) 6= 0. In the case where M has

dimension 2, we note that

0 = gabT
ab[EM τ

n
f , EM f ](x) = m2EM τ

n
f (x)EM f(x),

and consequently EM τ
n
f (x) = 0 for any such f ; in higher dimensions, we choose normal

coordinates at x oriented such that ∇2EM f(x) = · · · = ∇d−1EM f(x) = 0, and define vab
such that in these coordinates we have v00 = 1, v11 = −1, and all other entries zero. It
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follows that vabg
ab(x) = 2 and vab∇(aEM τ

n
f (x)∇

b)EM f(x) = ∇aEM τ
n
f (x)∇aEM f(x), so

that we have
0 = vabT

ab[EM τ
n
f , EM f ](x) = m2EM τ

n
f (x)EM f(x).

Again, we may conclude that EM τ
n
f (x) = 0 for any such f .

When n = 1 we deduce immediately that EM t1(x) = 0 for all x ∈ K⊥. For n = 2, we
note that τ 2f is linear in f , and as any f ∈ C∞

0 (M ) may be expressed as f = f1− f2 where

EM f1(x) 6= 0 6= EM f2(x) we have EM τ
2
f (x) = −

∫
M
dy (EM

⊗2t2)(x, y)f(y) = 0 for all f ∈

C∞
0 (M ). Therefore EM

⊗2t2(x, y) = 0 for all x ∈ K⊥, and so supp(EM
⊗2t2) ⊆ JM (K)×2

by symmetry. For n > 2, we pick f ∈ C∞
0 (M ) with EM f(x) 6= 0 and let f1 ∈ C∞

0 (M )
be arbitrary; for sufficiently small κ we have EM τ

n
f+κf1

(x) = 0. We differentiate this
expression with respect to κ and set κ = 0, which yields

∫

M×(n−1)

dn−1y (EM
⊗ntn)(x, y1, . . . , yn−1)f1(y1)f(y2) · · · f(yn−1) = 0;

we may then repeat this argument to see that
∫

M×(n−1)

dn−1y (EM
⊗ntn)(x, y1, . . . , yn−1)f1(y1)f2(y2) · · ·fn−1(yn−1) = 0

for any f1, . . . , fn−1 ∈ C∞
0 (M ). It follows that EM

⊗ntn(x, y1, . . . , yn−1) = 0 for all x ∈ K⊥,
and by symmetry we have supp(EM

⊗ntn) ⊆ JM (K)×n. This concludes the proof for the
massive minimally coupled case.

In the massive conformally coupled case, where m 6= 0 and ξ = d−2
4(d−1)

, where d is the

dimension of M , we have gabT
ab[φ1, φ2] = m2φ1φ2 for any φ1, φ2 ∈ EMC

∞
0 (M ). It follows

that for all x ∈ K⊥, we have EM τ
n
f (x)EM f(x) for all f ∈ C∞

0 (M ). We may use the same

argument as above to show that supp(EM
⊗ntn) ⊆ JM (K)×n.

Lemma 5.4. Let tn ∈ T n(M), and suppose that supp(EM
⊗ntn) ⊆ JM(K)×n. Further-

more, let S be any open neighbourhood of an arbitrary Cauchy surface Σ ⊂ M. Then there
exist s, uk ∈ T n(M), k = 1, . . . , n, such that

tn = s+

n∑

k=1

(PM)kuk,

where we define (PM)k = 1⊗k−1 ⊗ PM ⊗ 1⊗n−k, and such that supp(s) ⊆ (JM(K) ∩ S)×n.

Proof. To prove this, we will need the result of lemma A.2: namely, that

kerEM
⊗n =

{
n∑

k=1

(PM )kuk : uk ∈ T n(M )

}
.

Now, if S is an open neighbourhood of a Cauchy surface, then we can find two disjoint
Cauchy surfaces Σ± ⊂ S such that Σ+ ⊂ J+

M (Σ−). Let χadv+χret = 1 be a smooth partition

32



of unity such that χadv(x) = 0, χret(x) = 1 for x ∈ J+
M (Σ+) and χadv(x) = 1, χret(x) = 0

for x ∈ J−
M (Σ−). We let s = (PMχ

advEM )
⊗n
tn; by (3.20) we have EM

⊗ns = EM
⊗ntn, so

by lemma A.2 it follows that

tn − s =

n∑

k=1

(PM )kuk

for some uk ∈ T n(M ), k = 1, . . . , n. The required support properties of s follow from the
support of EM

⊗ntn and the fact that χadv is constant outside S.

The above results allow us to prove the following:

Theorem 5.5. The theory W of Wick polynomials is dynamically local in the massive
minimally coupled case and the massive conformally coupled case. The theory is not dy-
namically local in the massless minimally coupled case.

Proof. We pick a spacetime M , and some O ∈ O(M ); we will denote the dynamical and
kinematic nets for W by ωdyn

M ;O, and ω
kin
M ;O respectively. We may then use a similar argument

to that used above to see that ωkin
M ;O(W

kin(M ;O)) comprises elements W ∈ W (M ) with
W = [WH ]H∈H (M ), where each WH ∈ WH(M ) can be represented by TH ∈ TH(M ) with
the property that TH [EM f ] = TH [0] for all f ∈ C∞

0 (O′).
As already mentioned, for an additive theory, it is sufficient for dynamical locality to

show that we have W •(M ;K) ⊆ ωkin
M ;O(W

kin(M ;O)) for all K ∈ K (M ;O); we therefore
pick some such K, and let W ∈ W •(M ;K). Let W = (WH)H∈H (M ), and pick some fixed
H ∈ H (M ); moreover, let WH ∈ WH(M ) be represented by a functional TH ∈ TH(M ).
Since rceM [h ]W = W for all h ∈ H(M ;K⊥) it follows that

BH [h ]λH,Ȟh
TH ∼M TH (5.4)

for all such h . If TH =
∑N

n=0 tn with each tn ∈ T n(M ), then using (3.14), interchanging
sums and relabelling, we may write

λH,Ȟh
TH =

⌊n/2⌋∑

k=0

1

k!

N∑

n=0

〈
(H − Ȟh)

⊗k
, t(2k)n

〉

=

N∑

n=0

⌊N−n

2
⌋∑

k=0

1

k!

〈
(H − Ȟh)

⊗k
, t

(2k)
n+2k

〉
;

the precise meaning of the notation here is given in (3.15). Note that in the second sum,
the inner sum for each n consists only of elements of T n(M ); we write

T n(M ) ∋ t̃n;h =

⌊N−n

2
⌋∑

k=0

1

k!

〈
(H − Ȟh)

⊗k
, t

(2k)
n+2k

〉
(5.5)

33



for n = 0, . . . , N , and may express the condition (5.4) as

(
(β[h ])⊗nt̃n;h

)
[EM f ] = tn[EM f ] (5.6)

for all f ∈ C∞
0 (M ) and for each 1 ≤ n ≤ N . We note that the n = 0 term in (5.4) requires

⌊N/2⌋∑

k=1

1

k!

〈
(H − Ȟh)

⊗k
, t

(2k)
2k

〉
= 0 (5.7)

for all h ∈ H(M ;K⊥).
It follows from (5.6) that for n ≥ 1 we have

d

ds

(
(β[sh ])⊗nt̃n;sh

)
[EM f ]

∣∣∣∣
s=0

= 0

for all f ∈ C∞
0 (M ) and h ∈ H(M ;K⊥). But since β[0] = 1 and t̃n;0 = tn, this is

equivalent to
d

ds

(
(β[sh ])⊗ntn

)
[EM f ]

∣∣∣∣
s=0

+
d

ds
t̃n;sh [EM f ]

∣∣∣∣
s=0

= 0; (5.8)

by corollary 4.6, we have

d

ds

(
(β[sh ])⊗ntn

)
[EM f ]

∣∣∣∣
s=0

= n

∫

M

dvolM habT
ab[EM τ

n
f , EM f ], (5.9)

where as before τnf is defined according to (4.8).

We now wish to show that in fact t̃n;h ∼M tn for all h ∈ H(M ;K⊥) and n ≥ 0. To
do so, we firstly note that by (5.5), we automatically have t̃N ;h = tN and t̃N−1;h = tN−1

for all h ∈ H(M ). We may then proceed by descent, using the fact that t̃n;h ∼M tn for
all h ∈ H(M ;K⊥) if t̃n+2k;h ∼M tn+2k for all k satisfying 2 ≤ 2k ≤ N − n. This can be
shown from the previous results, as follows.

If t̃n+2k;h ∼M tn+2k for 2 ≤ 2k ≤ N − n, then (with n replaced by n + 2k) the second
term on the left hand side of (5.8) vanishes, and so by (5.9) we also have

∫

M

dvolM habT
ab[EM τ

n+2k
f , EM f ] = 0

for 2 ≤ 2k ≤ N−n and h ∈ H(M ;K⊥). It follows from lemma 5.3 that in the massive min-
imally coupled and massive conformally coupled theories, we have supp(EM

⊗(n+2k)tn+2k) ⊆
JM (K)×(n+2k). We may now use lemma 5.4 to see that for any open neighbourhood S of
an arbitrary Cauchy surface, the distributions tn+2k may be written

tn+2k = s+
n+2k∑

j=1

(PM )juj
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where s, uj ∈ T n+2k(M ) and supp(s) ⊆ (JM (K) ∩ S)×(n+2k). If we now fix some h ∈
H(M , K⊥) and choose S such that JM (supp(h)) ∩ JM (K) ∩ S = ∅, it follows that

〈
(H − Ȟh)

⊗k
, s(2k)

〉
= 0,

recalling from lemma 4.4 that supp(H− Ȟh) ⊆ (JM (supp(h)))×2. But this means that for
all f ∈ C∞

0 (M ), we have

〈
(H − Ȟh)

⊗k
, t

(2k)
n+2k

〉
[EM f ] =

n+2k∑

j=1

〈
(H − Ȟh)

⊗k
, (PM )ju

(2k)
j

〉
[EM f ] = 0

for 2 ≤ 2k ≤ N − n, where we have used the fact that (PM ⊗ 1)H = 0 = (1⊗ PM )H for
any H ∈ H (M ). By (5.5), we therefore have t̃n;h ∼M tn.

As observed above, we certainly know that t̃N ;h ∼M tN and t̃N−1;h ∼M tN−1 for all h ∈
H(M ;K⊥), and consequently by the above arguments t̃N−2;h ∼M tN−2 and t̃N−3;h ∼ tN−3

for all h ∈ H(M ;K⊥). We may continue this argument to see that in fact t̃n;h ∼M tn for
all n ≥ 0 and h ∈ H(M ;K⊥). Therefore (5.8) and (5.9) tell us that (5.3) is satisfied for all
n ≥ 1; a final use of lemma 5.3 tells us that supp(EM

⊗ntn) ⊆ JM (K)×n for n = 1, . . . , N .
This firstly shows that the condition (5.7) is satisfied. More importantly, it shows

that tn[EM f ] = 0 for all f ∈ C∞
0 (K⊥) and n ≥ 1, and therefore if T represents an

element of W •(M ;K), then T [EM f ] = t0 = T [0] for all f ∈ C∞
0 (K⊥). If this is the

case for all K ∈ K (M ;O) then T represents an element of ωkin
M ;O(W

kin(M ;O)), and so

W •(M ;K) ⊆ ωkin
M ;O(W

kin(M ;O)) for all K ⊂ O. Therefore the massive minimally coupled
and massive conformally coupled theories are dynamically local. We have already observed
that the massless minimally coupled theory is not dynamically local.

Acknowledgement

The author wishes to thank Chris Fewster for help, support and many useful conversations
throughout the course of this work.

A Appendix

Lemma A.1. Let M be a locally covariant theory obeying the timeslice axiom and let
t ∈ T 1

H(M) for some H ∈ H (M). For any h ∈ H(M) and f ∈ C∞
0 (M), we have

d

ds
(β[sh]t)[EMf ]

∣∣∣∣
s=0

=

∫

M

dvolM habT
ab[EMt, EMf ],

where

T ab[u, φ] = (∇(au)(∇b)φ)−
1

2
gab(∇cu)(∇cφ)

+
1

2
m2gabuφ+ ξ(gab�g −∇a∇b −Gab)(uφ)

35



for u ∈ EMT 1(M), φ ∈ EMC
∞
0 (M).

Proof. We adopt and adapt the strategy used in Appendix B of [9]. Let h ∈ H(M ),
and consider the metric perturbation sh where s ∈ R is sufficiently small to ensure that
sh ∈ H(M ). We have EMβ[sh ]t = EM ζ

−[sh ]ζ+t, therefore

EMβ[sh ]t−EM t = EM (PM [sh] − PM )χadv
− EM [sh]ζ

+t+ EMPMχ
adv
− (EM [sh] −EM )ζ+t.

Since PM is a differential operator it follows that the support of (PM [sh] − PM )f lies
within supp(h) ∩ supp(f) for any f ∈ C∞(M ). The support of χadv

− lies strictly to the
past of supp(h), so the first term above vanishes. Moreover, note that the support of
E+

M [sh]f−E
+
M f is contained within J+

M (supp(h)) for any f ∈ C∞
0 (M ), and is also therefore

disjoint from supp(χadv
− ); it follows that

EMβ[sh ]t− EM t = EMPMχ
adv
− (E−

M [sh] − E−
M )ζ+t.

Similarly, (E−
M [sh] − EM )f must be supported in J−

M (supp(h)), for any f ∈ C∞
0 (M ); it

follows that the support of χret
− (E−

M [sh] −EM )f is compact. Therefore

EMβ[sh ]t− EM t = EMPM (E−
M [sh] − E−

M )ζ+t.

We use PM [sh]E
−
M [sh]ζ

+t = ζ+t = PME
−
M ζ

+t to see that

EMβ[sh ]t− EM t = −EM (PM [sh] − PM )E−
M [sh]ζ

+t

= EM (PM [sh] − PM )E−
M [sh](PM [sh] − PM )E−

M ζ
+t

−EM (PM [sh] − PM )E−
M ζ

+t,

where we have used the fact that E−
M [h]PM [h]E

−
Mu = E−

Mu for any u ∈ E ′(M ) and h ∈

H(M ); this is proved below.
Finally, we note that supp(h) ∩ supp(E+

M ζ
+t) = ∅, so

EMβ[sh ]t−EM t = EM (PM [sh] − PM )E−
M [sh](PM [sh] − PM )E−

M ζ
+t

− EM (PM [sh] − PM )EM ζ
+t. (A.1)

Now, for any f ∈ C∞(M ) we have

�g+shf = �gf + s

(
1

2
∇a(hbb)∇af −∇a(hab∇

bf)

)
+O(s2);

we may also note that

d

ds
Rg+sh

∣∣∣∣
s=0

= (gab�g −∇a∇b − Rab)hab
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(see e.g. [13]). It follows that lims→0((PM [sh] − PM )/s)f exists and is equal to
(
1

2
∇a(hbb∇af) +

1

2
hbbm

2f +
1

2
hbbξRgf

−∇a(hab∇
bf) + ξf

(
gab�g −∇a∇b −Rab

)
hab

)
.

By duality, the same limit holds for distributions in the weak topology. Moreover, the first
term of (A.1) can now be seen to be of order O(s2) as s→ 0, and therefore

d

ds
EMβ[sh ]t

∣∣∣∣
s=0

= −EM

(
1

2
∇a(hbb∇aEM t) +

1

2
hbbm

2EM t +
1

2
hbbξRgEM t

−∇a(hab∇
bEM t) + ξEM t

(
gab�g −∇a∇b − Rab

)
hab

)
,

where the derivative is taken in the weak topology. We can now see that for any f ∈
C∞

0 (M ), we have

d

ds
(β[sh ]t)[EM f ]

∣∣∣∣
s=0

=

∫

M

dvolM (EM f)

(
1

2
∇a(hbb∇aEM t) +

1

2
hbbm

2EM t

+
1

2
hbbξRgEM t−∇a(hab∇

bEM t)

+ ξEM t
(
gab�g −∇a∇b −Rab

)
hab

)
.

Integration by parts then yields

d

ds
(β[sh ]t)[EM f ]

∣∣∣∣
s=0

=

∫

M

dvolM habT
ab[EM t, EM f ]

as required.
It remains to show that for any u ∈ E ′(M ) and h ∈ H(M ) we have E−

M [h]PM [h]E
−
Mu =

E−
Mu. We may see that this holds by considering an arbitrary f ∈ C∞

0 (M ) and splitting
E−

Mu = t + t′ where t ∈ E ′(M ) and t′ ∈ D′(M ) with J−
M [h ](supp(t

′)) ∩ supp(f) = ∅. It
follows that

E−
M [h]PM [h]E

−
Mu[f ] = E−

M [h]PM [h]t[f ] + E−
M [h]PM [h]t

′[f ]

= t[f ].

But t[f ] = t[f ] + t′[f ] = E−
Mu[f ]. Since f was arbitrary, we have E−

M [h]PM [h]E
−
Mu =

E−
Mu.

Lemma A.2. Let M be a spacetime, and consider EM as a map from T 1(M) to D′(M).
Then for all n ∈ N,

kerEM
⊗n =

{
n∑

k=1

(PM)kuk : uk ∈ T n(M)

}
,

where (PM)k = 1⊗k−1 ⊗ PM ⊗ 1⊗n−k.
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Proof. Let Sn denote the set in the right hand side of the above equation. Clearly any
distribution in Sn lies in kerEM

⊗n; therefore, we need only prove the inclusion kerEM
⊗n ⊆

Sn. Suppose that t ∈ T 1(M ), with EM t = 0. We have E+
M t = E−

M t; t is compactly
supported, and so by the support properties of E±

M t we must have that E+
M t is compactly

supported. But t = PME
+
M t, and therefore kerEM ⊆ PMT 1(M ). This proves the case

where n = 1. Now suppose that tn ∈ T n(M ) with EM
⊗ntn = 0. Then pick two disjoint

Cauchy surfaces Σ± ⊂ M with Σ+ ⊂ J+
M (Σ−), and some χ ∈ C∞(M ) with χ(x) = 0 for

x ∈ J+
M (Σ+) and χ(x) = 1 for x ∈ J−

M (Σ−). We know that EMPMχEM t = EM t and that
PMχEM t is compactly supported for any t ∈ T 1(M ); it follows that

(E+
M ⊗ (PMχEM )⊗n−1)tn = (E−

M ⊗ (PMχEM )⊗n−1)tn,

and that by the support properties given above the left hand side of the above equation
must be compactly supported. Denoting this as u1 we therefore have tn = (PM )1u1 + v1,
where

v1 = tn − 1⊗ (PMχEM )⊗n−1tn.

As observed earlier, since u1 is obtained from an element of T n(M ) by the application
of E±

M , differential operators and multiplication by smooth functions, it follows that its
wavefront set also has the desired properties for u1 itself to be an element of T n(M ).

Now tn, (PM )1u1 ∈ T n(M ), so v1 ∈ T n(M ); but 1⊗ EM
⊗n−1v1 = 0, so v1 ∈ ker(1 ⊗

EM
⊗n−1): we may repeat the argument to see that v1 = (PM )2u2 + v2 for some u2, v2 ∈

T n(M ) with v2 ∈ ker(1 ⊗ 1 ⊗ EM
⊗n−2). Continuing the argument further, we may

eventually see that tn = (PM )1u1 + · · · + (PM )nun for some u1, . . . , un ∈ T n(M ), and
consequently tn ∈ Sn.
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