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Abstract:

The wedge in Minkowski space has the property that its space-like complement of this set coincides with
the reflection at the origin of this set. This implies that the commutant of the von Neumann algebra
associated with the wedge coincides with the algebra associated with the opposite set. This geometric
symmetry implies symmetries for Tomita’s modular theory also.

If one defines sub-algebras of the double cones or cylinders by intersecting the algebras of the shifted
wedges, one can re-construct the algebras of the larger double-cones or the wedge with help of either the
translations or the modular group of the wedge-algebra.

The symmetry of the wedge and its algebra implies by simple arguments the von Neumann algebra of
the wedge is of type III. By a careful look at Connes’ definition of the classification of the type IIl-algebras
we will show that this algebra is of Connes-type III;. By the same method we will find that also the von

Neumann algebras of double-cones are of Connes-type I117.

1. Introduction-

In earlier papers I investigated the sub-algebras having the same cyclic and separating
vector [1]. T started this investigation since I hoped that this method could be used for
local quantum field theory, where all the local algebras have the same cyclic and separating
vector also. But it turned out that one obtains by this procedure too many algebras in
order that it could be useful for physics. Moreover, these algebras contain algebras of
different Connes-von Neumann types. This is due to the split-property [2]. One even does
not know how to select algebras with the same von Neumann type.

Discussing this situation with D. Buchholz, he suggested to start with the algebras of
wedges and to derive from this all the local algebras. A guide to such enterprise would be
the paper of G. Lechner [3] and others who have solved this problem for the two-dimensional
case. We will look at this problem for the higher-dimensional situation.

As usual T started with a separable Hilbert space H on which there exists a unitary
representation of the translation group of IR fulfilling the spectrum-condition and which
possesses a unique invariant vector 2. In section 2 the wedge-algebra will be defined. In
addition it will be assumed that €2 is cyclic and separating for the wedge-algebra. Using
this input we will define the algebras for the space-like cylinders and the double-cones.
The last algebra will be defined without Lorentz- or rotation-transformations. The only
input is the geometrical structure of the Minkowski space. Having defined these algebras



we will investigate their properties, in particular the Reeh-Schlieder theorem [4] of these
algebras which implies that €2 is also cyclic and separating for these algebras.

Section 3 we start with the algebra of a cylinder or with that of a double cone, and
show how to re-construct the algebra of larger cylinders or double cones. With the same
method the algebra of the wedge can be constructed. To do this we will use the half-
sided translation [5] and we will use techniques of analytic functions of several complex
variables, which can be used because of the spectrum condition for the translation. Out of
this method we take the double-cone theorem [6],[7]. Finally we will look in section 3 at
the centre of the wedge algebra and show that it coincides with that of the global algebra.

In section 4 we look at the type question of local algebras. Although this has already
been solved by Fredenhagen [8], using a result of R. Longo [9], who derived the Connes-
von Neumann type for the wedge. I thought it would be useful to have a new look at this
problem and to develop new techniques. This is desirable since the paper of Fredenhagen
[8] uses additional properties. For our investigation we develop new methods to find the
invariant S by starting directly with Connes’ definition [10] of his invariant S. We will
show that as well the algebras of the space-like cylinder as that of the double-cones have
the Connes-von Neumann type III;. I hope that the results of section 2, 3, and 4 are useful
for the construction of interacting quantum fields in higher dimension. A similar result
has been obtained by Araki [11] but by different methods.

1.1. Assumptions and notations:

a) Let H be a separable Hilbert space. Assume on H exists a continuous unitary represen-
tation of the translation group T'(a) of the d-dimensional Minkowski space.
a Moreover, assume there exists a unique unit-vector 2 € H with the property T'(a)2 =
O, Va € R
£ In addition assume that the spectrum of the translation group T'(a) is contained in
the forward light-cone V.

b) Let M be a von Neumann algebra acting on H. We say 2 € H is cyclic and separating
for M if MQ and M’Q are dense in H. The algebra M’ denotes the commutant of M. In
this situation exists by the Tomita-Takesaki theory [12,13] a modular operator A which is
non-negative and a modular conjugation J fulfilling

AQ=Q, JQ=0Q,
AAAYM = M, IMJT = M’
JA® T = Alt. JAZAQ = A*Q, VA € M

c) Let U(s) be a one-parametric unitary group. We say U(s) is a (£)-half-sided translation
for M if the following conditions are fulfilled:

U(s)Q = Q,
U(s) has a positive spectrum
AdU(s)M Cc M, for(£)s e R*
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If U(s) fulfils these conditions then there exist between the modular group of M and U(s)
the following relations: .

AdA'U(s)

JU(s)J

U(e(q:)27rt8)’

D) (1.1)

These results can be found in [5].

d) Denote by V' the forward light-cone.
a Let £1 # {5 be two light-rays belonging to VT then the wedge W ({1, {s) is defined
by the formula:

W(El,gz) = {alﬁl — a9ls + &, ai,as >0, al (Kl, 62)}

B If tg € VT is a fixed time-like vector with 3 = 1 and £ € VT then we denote by ¢’
the light-like vector in the intersection of OV T with the two-plane spanned by ¢ and
to.

Let the space-like vector ai,a? = —1 belong to the two-plane spanned by (¢, £). In
this case we set
at =tg+a, a =tyg—a.

Now we identify ¢ with a™ and ¢ with a~. In this special situation the two-dimensional
wedge Wo = W (£1,45) NIR*(tp, a;) can be written as

Wy =A{t,a; |t| <a; t =apty,a = ajas}.

v Let M(W (41, £2)) be the algebra associated with W (¢;,¢3), then we identify the com-
mutant with the following algebra

MW (ly,£2))" = M(W (£a,£1)),

but only if Q is cyclic and separating for M (W (£1, {5)).
Locality and the Reeh-Schlieder theorem [4] imply that Q is cyclic and separating for
M(Ws(€1,42)) and for sub-algebras which are defined by intersections of shifted wedge-
algebras, as double-cones and cylinders.

Next we look at special situations described in 1.1. and some applications. We start with
the two-dimensional wedge.



1.2. Modular group of the wedge algebra in two dimensions and the translation
group

Let M(W5) be the von Neumann algebra associated with Ws. If Q is cyclic and separating
for M(W3), then T(ATa™’) is a (+)-half-sided translation for M(W5) and T(A"a™) is
a (—)-half-sided translation for the same algebra. For simpler writing we set A for the
modular operator of M(W3). Now we obtain:

AdAYT(A\Ta™) =T (e ™A Fa™),
AAA*T(N\"a™) =T (e*™\~a™).

(1.2)

Notice that the sign in the exponential is opposite to the sign of the half-sided translation.
Now let a be a vector in the two-dimensional wedge, then the two equations imply:

AdAYT(a) = T(As(t)a)

with As(t) a Lorentz transformation

cosht —sinht
Ax(t) = (—sinht cosht ) ' (1.2.a)

If we look at the opposite wedge W’ = {(t,a), |t| < —a} with ¢t a multiple of ¢, and a
a multiple of a;. Since the modular group of the commutant coincides with that of the
algebra, we obtain for a € W' the same as for W:

AdAYT(Ba™) = T(e™*™3a™)

, B B (1.3)
AdA"T(aa™) = T(e*™aa™)

This implies for a € W3 again

Ad AT (a) = T(As(t)a).

Remark:

New features are obtained for the forward- and backward-light-cone, provided we are deal-
ing with a massles theory, where the forward- cone is the support of an algebra. In this
situation we obtain from (1.2) and (1.3) the same sign for ™ and a .

Ad Alt(\a®) = T(e7?" \a®).

This implies for a € VT: .
Ad AT (X\a) = T(e™?™ \a).

This is a dilatation, precisely for positive ¢ a contraction and for negative ¢ an expansion.
For V'~ we find: _
Ad AT (\a) = T(e*™ \a).
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Usually this result is not connected with an algebra. The only exception is the case of
massless fields. See[14].

The result (1.2.a) will be used in the next section.

1.3. One half-sided translation for different algebras

We leave the two-dimensional situation and go to the higher-dimensional case. In 1.1.d.«
we introduced for ¢1,05 € OV the wedge W ({1, (5). If we keep ¢; fixed and vary f5 # {1
then we obtain a family of wedges W ({1, £;) such that T'(A\¢1) is a half-sided translation for
every of the algebras M (W (¢1,¢;)). But these algebras are not the only one. If we keep

¢y fixed, then M(,ﬁlM(W(fl,&)) has again T (A1) as half-sided translation. In every

of these cases we obtain Ad AYT'(\;) = T(e=2'\{y), where A is the modular operator
of the mentioned algebras. Let now Aq, Ay be the modular operators of two different of
these algebras, then we get that AYA commutes with the translations T'(A¢1). Whether
or not these unitary groups generate the whole commutant of T'(A¢y) is not known. This
is due to the fact that a modular group does not determine the algebra. In case we are
dealing with a Lorentz covariant theory the two algebras M (W (41, ¢5)) and M (W (¢1,43))
are connected by a Lorentz transformation belonging to the fixed group of /.

2. Construction of the local net from the wedge algebra

We start to list the assumptions for this section.
2.1 Assumptions and notations:

1) Let to, t2 = 1 be a chosen fixed time-like direction and ay, (tg, a;) = 0,a? = —1 be a fixed
space-like direction. Denote by Wy = {a = agto+ aia;} with a contained in the two-space
generated by tp and a; and |ap| < a;. If d > 2 then we set W = {Wy +a},a L Wa.

2) By M(W) we denote a von Neumann algebra acting on H with the property

AdT (a)M(W) C M(W),Va € W. Moreover, § shall be cyclic and separating for M(W).
M(W') denotes the commutant of M (W).

2.a) Moreover, we assume that Ad T'(—Aai)M(W)NAdT (Aa;)M(W)' is a proper algebra
for every A > 0.

2.b) If the dimension is larger than 2 we require that QR applied to the sets described in 2.a)

is not empty (non-empty in 2.a and 2.b) means that the intersection of the corresponding
algebras is a non-trivial algebra. R stands for the rotation-group around the time-axis.

The expression ﬂR stands for the definition of the double-cone given in assumption (3,2).
re

Although we give in (2.1) a definition of the double-cone-algebra without using the rota-
tional invariance, we could have used the rotations since the invariance property has been
shown in [11].

3,1) We define the algebra of the cylinder Z) by the equation

M(°Zy) = [AdT(=AasM(W))] ([Ad T (Aar) M(W'))]
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The upper index zero in front of Z or D indicates that the centre of these sets is located
at zero.

3,2) If the dimension d > 2, then we keep ty fixed and vary a; in the boundary of V.
By this we obtain a family of wedges W (a®) and a family of different cylinders and their
algebras M(°Z(a®, \)). Keeping ) fixed, we define the algebra of the double cone

MEDW) = [ M(°Z(ai.\). (2.1)

aiEBVJF

Having introduced our notation we can start with the investigation, where we use the
assumptions and notations of 2.1. The first result is concerned with properties of the
cylinder.

4) Since we will use increasing families of von Neumann algebras, we will assume continuity
from inside for algebras based on increasing sets of the Minkowski space.

2.2. Lemma:

Denote by "Dy () the restriction of °D(\) to the two-space generated by (tg,ay). Let
Ao > A1 then we get °Z (A1) C YZ(A\2) and °D(\;) C "D(\2).

\/  AAT)M(°Zy,) = M(°Zy,). (2.2)
bGODQ(AQ_Al)
V{M(°Z,y,)} denotes the von Neumann algebra generated by all M(°Zy,).

Proof: The time-translation along the middle axis of "D(\y — ;) is:

\V  Tw°Z(\). (2.3)

(A2—X1)
|M|§f

This domain contains a neighbourhood of time-axis between —Ay and +M\s. Using the
double-cone theorem [6,7] we get as domain Z(\3). For a different proof see lemma 2.3.
q.e.d.

Next we go to double cones and obtain
2.3. Lemma:

Let Ay < Ao then holds:

beOD(A2—A1)

Proof: Eq. (2.4) does not hold only for the standard wedge, but also for all other wedges

with different a € OV . With this notation we want to show

\V  AATOMECD(N)) = M(°D(A2)).

bEOD()\Q_Al)



Applying Eq. (2.1) to the left-hand side of (2.2) we obtain:

M(DMX2) = ) \V  AATOIM(°Z(a, \)).

ac€oV+ bEOD(AQ —)\1)

Performing the intersection find:

\/  AAT()M(D(\)).

beOD(A2—XA1

This formula tells us that we shall enlarge °D();) by the double cone PD(\y — A;). The
upper index p indicates that p is the centre of the double cone. Notice that the double

cone D(A) can be written as (|t| — |a]) < A. This gives in our situation ((|t| — |a|) <
A1)+ (([t] = |a]) < |t|(A1 + (A2 — A1))) = D(A2). This means the formula where the union
is interchanged with the intersection gives also M(°D()2)). q.e.d.

For the next result we need some notations:
The cylinders °Z and double-cones "D have their centre at the origin. In the future we
need cylinders and double-cones sitting in the corner of the wedge. Therefore, we set

Z(\) =AdT(\N)°Z(N),
D(\) =AdT(\)°D()N),

and we have dropped the direction a in the cylinder.

2.4. Corollary:

The algebra of the wedge can be obtained by the following manner

Proof:
We start with the cylinders Z (). The commutant of M(Z())) consists of two wedges:

M (Z(N) = M (W) UT 2N M (W),

going with A — oo we obtain the first result. For the commutant of the double-cone algebra
M'(D(X)) we obtain the union of the wedge algebras T'(2\a1)M (W), rotated about the
point (Aay), i.e.,
M'(D(N) =T(Xa1) \/ R(r)T(Aay) M(W).
reR
Let h be the distance from the plane A\a; = 0. Now we look at the intersection of the hyper-
plane a; = h with the boundary of D()) under the assumption h < A, then these points
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have from the a;-axis the distance \/A\? — (A — h)?, for 0 < h < A and /A2 — (h — \)? for

A < h <2\ For A — oo these points tend to infinity and therefore D(\) tends to the
wedge. q.e.d.

3. Consequences of half-sided translations

Recall a half-sided translation for a von Neumann algebra M with cyclic and sepa-
rating vector 2, and a group U(t) of M, such that U(t)Q = Q and AdU(t)M C M for
either £ > 0 or ¢ < 0. In the first case one speaks about +half-sided translations and in
the other case about —half-sided translations. In case of the wedge we set a™ = (a; & ag).
Then the standard translations T'(a™) fulfil the conditions for M (). Between half-sided
translations of M and the modular group of M exists a remarkable relation:

Ad AR (T(t)) = T(eT2™¢).

Here the minus-sign in the exponent holds for +half-sided translations and the other sign
for —half-sided translations. For the wedge algebra exist both kinds of half-sided transla-
tions, therefore, we introduce the following notation:

cosh(2rt)  —sinh(27t) ) (3.1)

As(t) = <— sinh(27t)  cosh(27t)

The lower index 2 indicates that this is the transformation of the 2-plane generated by
(a1,tp). All other components are kept fixed. For higher dimensions we write:

A(t)(a,a) = (Aqa,a).
Applied to the wedge we obtain:
AdAY(T(a,a)) = T(A(t)(a,a)), (a,a) € W. (3.2)
See[16] That the modular group of the wedge-algebra coincides with the Lorentz-boost has

been shown first by Bisognano and Wichmamm [17].

For the application of the last result we use the notations introduced at the end of the last
section.

3.1. Theorem:
1) Let Ao > Ay then there exists t(Aa, A1) with

Ad A M(Z(M\)) € M(Z(N2)), for [t] < t(Xa, A1), with (Ao, A1) = 5 log =

This value means exactly that for [t| > t(A2, A1) the transformed set is no longer contained
in M(Z(A2)).
2) Now holds:

\V  AdALM(Z(A) = M(Z(%a)).

[t|<t(A2,A1)



Proof: 1) The value of (A2, \1) is determined by the tips of the transformed double cone
which has at most the value \o. This leads to the relation €*™*\; = \s.

2) Let G be the domain in W below the space-like hyperboloid of mass 2\; which is sitting
in Dy(A2). Moreover, let Dy be a small double-cone of radius i < A\; and let G; be the set
of all b such that T'(b)Ds C G. Choose two vectors 11,19 € H which are entire analytic
for T'(z) and define the two functions

F*(2) = (¢1, B{AdT(x)(A) }¢2)
F~(x) = (¢1, {AdT(2)(A)} Bib2)’

with B an operator commuting with M(Z(G)) and A an operator belonging to M (Z(Dy)).
Then F*(z) has an analytic extension into the forward tube T+ and F~ () has an analytic
extension into the backward tube T . In addition one has F*(z) = F () for xz € G;.
Using the double-cone theorem (see [6,7]) one finds F*(z) = F~(x) for x € Z(\a2 — p).
Taking the limit g — 0 one finds B commutes with M(Z()Az2)). This shows the theorem.
q.e.d.

3.2. Corollary:
A1 > 0, then holds
\/ AdAHM(Z (A1) = M(W).

[t]|>0

Proof: For every Ay > A1 we obtain from Thm. 3.1

V' AdAERM(Z(\)) = M(Z(h)).

[t]<t(A2,A1)

Taking the limit Ay — oo we obtain the result by lemma 2.4. q.e.d.

After this we turn to the structure analysis of algebras by using:

3.3. Theorem:

The centre of the algebra of the wedge C(M(W)) coincides with the centre of the global
algebra \/dAdT(b)./\/l(W).
belR

Proof: T(Aa™') is a +half-sided translation for M(W). Therefore, we know from [18]
Thm.2.4. that C(M(W)) is point-wise invariant under the action of T'(Aa™). Let ¢ be
a vector entire analytic for T'(Aa™*) and C' € C(M(W)) and A € M(W). Then vector
function F(A\) = [AdT(Aa™)A, Cy has an analytic continuation into the upper half-plane.
Moreover, F(\) vanishes for A > 0 because of the condition for +half-sided translations.
Hence F()\) vanishes for all A € IR. This means C' commutes with all algebras located in
the half-space below the plane, characterized by {\a™}.

Since M (W) is also invariant under —half-sided translation by T'(Aa~) all the argu-
ments we used for +half-sided translations, after suitable adaptation, can be used for this
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case. Hence C € C(A\)VA € IR). This means C € C(M(W)) commute with all algebras
located in the half-space above the plane characterized by {Aa"}. This means C' com-
mutes with all A located everywhere, except for W. Since C' commutes also with M (W)
it commutes with all operators. (If there exists operators located on the boundary of W,
then they can be included into the commutant of C(M(W)) with help of the double-cone
theorem.) q-e.d.

In corollary 3.2. we have constructed larger cylinders from smaller ones by using the
modular group of the wedge-algebra. This method can be used also for double cones.

The algebra " \(/ )Ad Al M(D,,) presents the algebra of a set, which ends
—[t|<t(A2, A1

at the boundary of D,,. Applying to this the double-cone theorem we obtain D(A3).
Collecting the results of our discussion we obtain:

3.4. Theorem:

The algebra
\/  AdA{M(D,,) (3.4)

[t|<t(A2,A1)

coincides with M(D,).
If in Eq. (3.4) is no restriction for t we obtain the algebra of the wedge.

At the end of this section we want to look at the three-dimensional group generated
be the two dimensional translations of IR? and the modular group of the wedge-algebra:
(t,a),t € R,a € IR?,

(t1,a1)(t2, a2) = (t1 + t2, Ao(t2)ar + az). (3.5)

The investigation of this group is best done in form of 3 x 3 matrices:

1 0 a cosh2nt —sinh27t 0 cosh2nt —sinh27t aq
0 1 ap —sinh 27t cosh2nt 0 | = | —sinh2#xt  cosh2nt  ap | . (3.6.a)
0 0 1 0 0 1 0 0 1

For the investigation of this group, it is better to introduce light-cone coordinates ua™, va™.
With this (3.6.a) reads:

1 0 w e 2wt 0 0 e 2wt 0 U
0 1 w 0 e2™ 0| = 0 2™y | . (3.6)
0 0 1 0 0 1 0 0 1

This is the product of the two-dimensional translation group and the one-parametric mod-
ular group. The one-dimensional sub-groups can easily be determined. One obtains

e 0 b(eer—1
0 e —fear_1)]|. (3.7)
0 0 1



The modular group is obtained for a = —27 and b, ¢ = 0, while the two translation groups
are obtained for a = 0,br = u and ¢ = 0 and the other translation for a = 0,cr = v and
b=0.

A group of special interest is obtained for a = —27,b = —27u, ¢ = 0, which reads in matrix
form
e—27rr 0 u(e—27r'r _ 1)
0 e27rr 0
0 0 1

In terms of representations this reads
T(u(e™™ —1))Al.

Applying this to a vector of the form AQ then All, AQ, A € M(W) has an analytic contin-
uation into the strip S(—3, 0). Since the translations T(¢) can be continued into the upper
complex half-plane, we see that T'(u(e™2™" — 1)) can be continued into —3 < Smtt < 0.
Therefore, the product T'(u(e™2™ — 1)))Alr. AQ, A € M(W) also has an analytic con-
tinuation into the strip (—%,0). Therefore, it presents the modular group of a super-
algebra of M(W). Writing T'(u(e >™ — 1))) = T'(u(e *™"a™))T(—ua™) we obtain with
T(—ua™)MW)Q = M(W (—ua™))2 and we see that T'(u(e=2™)) must be the modular
group of M(W (—ua™)). This is a shift in the negative at-direction. Such a situation is
known from the modular action of the global algebra in thermal states. See [19].

4. The Connes-von Neumann type of local algebras

Although this problem has been solved by Fredenhagen [8], using the result of Longo
[9] about the structure of the wedge-algebra, we will show the result by different methods.

Our subject is the question of the Connes-von Neumann type of the local algebras
under the assumption that the local algebras are of von Neumann type III. First we have
to explain the procedure, see G.K. Pedersen [20]. Let & € H,|&|| = 1, then we have
to determine the support projection Ef\/l of the expectation value (&,.£) of M, i.e., the
smallest projection in M with (¢, E€) = 1. Ei/t is the same as the projection onto M’E.
Then we must compute the modular operator for the algebra Ei,t./\/lEiA and its spectrum.
The invariant S(M) is obtained by the formula

S(M) = spech e,

where ¢ is arbitrary and A ¢ is the modular operator of ESME¢. To determine S(M)
we will assume that M is a factor. This can be done without loss of generality, since we
can make an integral decomposition and afterwards re-integrate the obtained results. The
first result is:

4.1. Lemma:

Let £ € H and E€ € M be the smallest projection fulfilling ES¢ = £, then € is also cyclic
and separating for ES MES.
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Proof: Since E¢H = M'¢ we see that & is cyclic for EEM'ES in ESH. On the other
hand it follows that ¢ is cyclic for FE M ES since Ef is the smallest projection in M with
(¢, B%¢) = 1. q.e.d.

Next we want to compare the spectra of Ayq and Ageppe under the assumption that
M is of type III. In this situation exist partial isometries V€ M with VV* = 1 and
V*V = EX.

Let U be a unitary operator in EFSMES, then VUV* € M. On the other hand, if Uisa
unitary in M, then V*UV is a unitary in E$ MES. This means V maps all unitaries in
ES MES onto all unitaries in M. Since the unitaries of a von Neumann algebra generate
the whole algebra linearly, we obtain

VESMESV* = M.

We know that ¢ is cyclic and separating for FS$ME¢. But what is with V*Q? Next
we show:

4.2. Lemma:
The vector V*Q is also cyclic and separating for ES MES.

Proof: Since M is dense in H and V* is a partial isometry it follows that ESMESV*Q
is dense in FSH. Assume there exists an operator z’ € ESM'E$ with ESz'V*Q = 0 =
V*Va2'V*Q. Now Va'V* = 2/ is an element in M’, and since ) is separating for M we
obtain V*2'Q2 = 0. This implies ' = 0 = V2'V*. Since V is a partial isometry we get
' =0. q.e.d.
Unfortunately, the two vectors & and V*Q) do not coincide. This defect will be cured in
the next

4.3. Lemma:

For every & € H with E¢ support projection of (§,.€) in M we obtain, that the modular
operator of V* MV and ESMES are the same and hence we have

specAf = specAY ¢, (4.1),

where A£ = AEEMEi and AV*Q = AV*MV-

Proof: Since ¢ and V*Q both are cyclic and separating for ESME¢ we get by a result of
Connes (see [20] Prop. 8.14.11.) that the algebras (ES ME* IR, 0¢) and

(EEMES, IR, 0" ?) are outer equivalent. This means there is a unitary function u; with
of(z) = uoV Puf. By definition of u, (see [20] 8.14.11.) one has u, — 1 for t — 0.
Applying %% to the above equation we obtain in the limit ¢ — 1 (u; is differentiable by
its definition.):

%%U”tao +AY 4 %%Uﬂtao = AL

Since both modular operators are positive, the sum of both derivations must be selfadjoint,
and since both modular operators have the eigenvalue 0, there is no shift of the spectrum.

Therefore, both modular operators coincide. q.e.d.
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Collecting the results obtained so far we get:

4.4. Theorem:

Using the proof of [20] lemma 8.15.8 and let p be a spectral point of Anq then exists for
every € > 0 an operator x € M and a vector y. with |y < € and ApxQd = pzQ + y..
Now we obtain:

VAUV 2Q = Vi ApazQ = V* (uzé + y.) = pV*2VV*Q + V..

Hence spec Ang C specAgEgMEg. Let M be of von Neumann type III, then the Connes-

invariant S(M) coincides with the spectrum of the modular operator A .

Proof: Since for every projection £ € M holds specAg e D specAns and on the other
hand one has S(M) = N specAgamp, where E runs through all projections of M, we get
the result. q.e.d.

Our next aim is to try to compare for two von Neumann algebras N' C M their
modular operators, under the assumption that both are of von Neumann type III. We
start with some known results which we take from [1]. Since (N, Q) C (M, Q) and since
both algewbras have the same cyclic and separating vector, we obtain Ax- > Ax4. This is
generally known, 1 proof can be found in [21]. This implies that we can form the operator
valued function (see [1]):

F(t) = A AL

This function has an analytic continuation into the strip S(0, %), 0 < Qmtt < % This

function is continuous on the boundary and norm-bounded by 1. The operator F(1) is

unitary, i.e., F(3)* = F($)~! and one gets

i

5) = ALAL.

B(
Solving for A/%vt we obtain: _

F(%)Aﬁv = AZ,. (4.2)
Since the modular operators are selfadjoint, it can be written as:

1 1

ARF*(5) = Al (4.2a)

This representation of F(4) implies both equations (4.2) and (4.2a), moreover, we
obtain : 4.5. Lemma:

Between Ay and Axq holds the relation

i

F)ANE"(3)

i
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This is a trivial consequence of (4,2) and (4,2a).

Eq. (4.3) allows to compare the spectra of Ay and Apg with a similar method as the
proof of lemma 4.5.. Now we obtain:

4.6. Theorem:

Let N C M, and let Q be cyclic and separating for both algebras, then we obtain:

specA s = specA .

Proof: Let u be a point in the spectrum of Ay, then exists for every ¢ > 0 an operator
z € N with [[AyzQ — p2Q| < €, or AyzQ = prQ + y. with [ly|| < e. Multiplying this
equation with F(5) we obtain:

i

i i

i
F(2)ANEF™ F Q=F Q ).
(2) N (2) (z)x (2)(u$ + Ye)
This implies together with (4.4) the equation:
1 i
AmE ()2 = F(5)(pzl + ye).

Since M is dense in H exists & € M with F'(1)zQ = #Q, and hence
AmFQ = piQ + j. (4.4)

with ge = F(3)ye.
Eq. (4.4) implies:
specA s C specA .

Passing to the commutant gives:
specAXj C speCAX/—l.

Both equations together give the theorem. q.e.d.

Instead of using the commutaant we can solve (4.3) for Ay and obtain with the similar
calculation
specA g C specAyr.

Up to now we have assumed that the local algebras are of type III and it remains to show
that it is fulfilled.

4.7. Lemma:
The algebra M(W) is of von Neumann type III.

Proof: We show the lemma by contradiction. Assume M (W) is semi-finite then it follows
that Alf, is inner (see [20] Prop. 8.14.13.), i.e.,All, ¢ M(W). We know for (a,a) € W the
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equation Ad All,T(a,a) = T'(Asa, a). Let W, be a shifted wedge, then we know for b € W
Ay, = T(b)Aj,T(—b) and hence

Al T(a) AR = T(6) Al T(—b)T(a)T (D) AT (—b) = T(As(t)(a,a)) = Al T(a) A,

In this formula b € W denotes a n-dimensional vector, which will be written as (b, Z;) if
necessary and consequently A;[}tA%VbT(a) =T (a)Aﬁ}tAi‘be. Since Al is inner, we get
At Al € M(W) V M(W,) and with b € W we have Api*All, € M(W). On the other
hand we find:

~

Ay A, = AT B)ART(=b) = T((A2(—1)b, b) — (b,0)).

Since this is for b € W, A" Alf, contained in M(W) we obtain for every B € M’'(W)
the equation [B, T((Ag(—t)b,b) — (b,b))] = 0. Multiplying with ¢~ and going with t — 0

we get [B’T(((l) (1)) b,b)] = 0. This means [B,T(c,b)] = 0 for all ¢ € V3. Since by the

spectrum condition 7'(.) has an analytic continuation into the forward tube, we obtain
T(.)Cc M(W). 4.8. Lemma:

T(Aa™) is a (+)half-sided translation for M(W). Then T(Aa™) is of the form T(Aa™) =
ClHN

H > 0. Let Ey be the projection onto the T(Aa™) invariant states, then on (1 — Ey)H the
operators T(Aa™t) and A fulfil the Weyl-relation AT (Aa™) = T(e 2™ \a™)A'.

Proof: From [18] Theorem 2.2. we know the following: Let F; be the projection onto
the eigenvalues 1 of A () then one has Fy C Ep. Since by assumption, 2 is the only
invariant vector, we get Fy = Ey. Therefore, log A vy is defined on (1 — Eo)H and this
space is invariant under the translation and the modular action. Now, from the relation of
A" with H, we conclude by functional calculus the relation Ad At H'* = e 2" 1A g.e.d.

Since the Connes invariant of M (W) is composed of two parts, the exponential of the
spectrum of the modular group of M(W) on (1 — Ey)H and the value zero on EyH. The
first part gives IR™. Together, we obtain the closed positive half-line. With theorem 4.4.
we obtain:

4.9. theorem:

The algebra of the wedge is of Connes-von Neumann type I11;.

Next we look at the cylinder in the dimension is larger than 2. In this case exists a direction
b L Wy, and a translation T'(b),b € IR under which M(YZ())) is invariant. This is the
situation studied by W. Driessler [23]. Hence:

4.10. Lemma:
The algebra M(°Z())) is of von Neumann type III.

This result can also be obtained by the method described in the proof of the next theorem.

4.11. Lemma:
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The algebras M(°D())) are of type III.

Proof: Let M(W) be a factor and let us use the methods of lemma 4.2.. Let E €
M(D(N)), then M(D(\)) € M(W) implies that there exists a partial isometry V with
V*V =FE and VV* = 1€ M(W). Hence V has the property VEM(D(N)E = M(W)V.
This means as in lemma 4.2. specAgp(pr)e O specAy = IR"™. Since this holds for
every projection in M(D(A)), it follows that M(D())) is of Connes-type III;, and this can
only be true if the algebra is of von Neumann type III.

Collecting all results, obtained so far, we have:

4.12. Theorem:

All algebras we have treated are of von Neumann-type III and of Connes-type I11;.

References

[1] H.-J. Borchers: On the embedding of von Neumann sub-algebras, Commun. Math. Phys. 205,
69-79 (1999).

[2] D. Buchholz, C: D’Antoni, and K. Fredenhagen: The universal structure of local algebras, Com-
mun. Math. Phys. 111 123-135 (1987).

[3] Gandalf Lechnmer: Construction of Quantum Field Theories with Factorizing S-Matriz, Com-
mun. Math. Phys. 277 821-860 )2008).

[4] H. Reeh and S. Schlieder: Eine Bemerkung zur Unitdrdquivalenz von Lorentzinvarianten
Feldern, Nuovo Cimento 22, 1051 (1961).

[5] H.-J. Borchers: The CPT-Theorem in Two-dimensional Theories of Local Observables, Com-
mun. Math. Phys. 143, 315-332 (1992).

[6] H.J. Borchers: Uber die Vollstindigkeit lorentzinvarianter Felder in einer zeitartigen Réhre ,
Nuovo Cimento 19, 787-796 (1961).

[7] V.S. Vladimirov: The construction of envelopes of holomorphy for domains of special type,
Doklady Akad. Nauk SSSR 134, 251 (1960).

[8] K. Fredenhagen: On the Modular Structure of Local Algebras of Observables, Commun. Math.
Phys. 97, 79-89 (1985).

[9] R. Longo: Notes on Algebraic Invariants for Non—commutative Dynamical Systems, Commun.
Math. Phys. 69, 195-207 (1979).

[10] A. Connes: Un classification de factors de type I1I, Ann. Sci. Ecole Norm. Sup. 6, 133-252
(1973).

[11] H. Araki: Remarks on Spectra of Modular Operators of von Neumann Algebras, Commun. Math.
Phys. 28 267-277 (1972).

[12] M. Tomita: Quasi-standard von Neumann algebras, Preprint (1967).

[13] M. Takesaki: Tomita’s Theory of Modular Hilbert Algebras and its Applications, Lecture Notes

in Mathematics, Vol. 118 Springer-Verlag Berlin, Heidelberg, New York (1970).

16



D. Buchholz: On the Structure of Local Quantum Fields with non—trivial Interactions, In: Pro-
ceedings of the International Conference on Operator Algebras, Ideals and their Applications in
Theoretical Physics, Leipzig 1977, Teubner—Texte zur Mathematik (1978) p. 146-153.

H.-J. Borchers: Half-sided Modular Inclusion and the Construction of the Poincaré Group,
Commun. Math. Phys. 179,703-723 (1996).

H.-J. Borchers: On the use of modular groups in quantum field theory, Ann. Inst. Henri
Poincaré, 63, 331-382 (1995).

J. Bisognano and E.H. Wichmann: On the duality condition for a Hermitean scalar field, J.
Math. Phys. 16, 985-1007 (1975).

H.-J. Borchers: Half-sided Translations and the Type of von Neumann algebras, Lett. Math.
Phys. 44, 283-290 (1998).

H.-J. Borbers and J. Yngvason: Modular Groups of Quantum Fields in Thermal States, J. Math.
Phys. 40, 602-624 (1999).

G.K. Pedersen: C*-Algebras and their Automorphism Groups, Academic Press, London, New
York, San Francisco (1979).

H-J. Borchers: On revolutionizing quantum field theory with Tomita’s modular theory, Jour.
Math.Phys. 41, 3604- 3673 (2000).

H.-J. Borchers: Remark on a Theorem of B. Misra, Commun. Math. Phys. 4, 315-323 (1967).
W. Driessler; On the Type of Loal Algebras in Quantum Field Theory, Commun. Math. Phys.
53, 295-297 (1977).

17



